On directional blow-up for a semilinear heat equation with space-dependent reaction

Ryuichi Suzuki (Kokushikan University)

We consider a nonnegative solution u of the Cauchy problem for a semilinear heat equation with space-dependent reaction $u_t = \Delta u + |x|^{\theta} u^p$ with the initial data $u_0(x) (\not\equiv 0)$ satisfying $|||x|^{\theta/(p-1)} u_0||_{L^{\infty}(\mathbf{R}^N)} = M \in (0, \infty)$, where p > 1, $0 \le \theta \le (N-2)(p-1)$ and $N \ge 3$. Then, this solution u satisfies that

$$|x|^{\theta/(p-1)}u(x,t) \le v_M(t)$$
 in $\mathbf{R}^N \times (0,T_M)$,

where $v_M(t)$ is a solution of the initial value problem of an ordinary differential equation

$$\begin{cases} v_t = v^p & \text{in } (0, T), \\ v(x, 0) = M, \end{cases}$$

and T_M is the blow-up time of v_M , namely,

$$T_M = \frac{M^{-p+1}}{p-1}.$$

We study a weighted solution $|x|^{\theta/(p-1)}u$ which blow up at minimal blow-up time. Such a weighted solution blows up at space infinity in some direction at the time T_M (directional blow-up). We call this direction a blow-up direction of the weighted solution $|x|^{\theta/(p-1)}u$. We give a sufficient and necessary condition on u_0 for a weighted solution to blow up at minimal blow-up time. Moreover, we completely characterize blow-up directions of $|x|^{\theta/(p-1)}u$ by the profile of the initial data.

This talk is based on a joint work with Noriaki Umeda (Meiji University).