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1. Introduction

One of the subjects of studies in mathematical biology is to analyze behavior of solu-
tions to chemotaxis systems. Here chemotaxis is the property such that a species reacts
on some chemical substance and moves towards or away from this substance. Chemotaxis
systems describing such phenomena were proposed by Keller–Segel [3]. After that, many
types of chemotaxis systems have been studied (e.g. Tello–Winkler [5], Winkler [6, 7]).
In particular, the chemotaxis system for tumor angiogenesis,

ut = ∆u−∇ · (u∇v) + χ∇ · (u∇w),

vt = ∆v +∇ · (v∇w)− v + u,

0 = ∆w − w + u,

where χ > 0 is a constant, was investigated. In this system the functions u, v, w repre-
sent the density of endothelial cells, the concentration of an enzyme, the density of an
extracellular matrix, respectively. Also, the term −∇ · (u∇v) means that blood vessels
grow towards an enzyme (see Figure 1 (a)), the term +∇ · (u∇w) idealizes that blood
vessels move away from an extracellular matrix (see Figure 1 (b)), the term +∇ · (v∇w)
represents that an enzyme moves away from an extracellular matrix (see Figure 1 (c)).

Figure 1: The meanings of terms appearing in the above system

From a mathematical point of view, Tao–Winkler [4] gave a pioneering study of the
parabolic–parabolic–elliptic system and established boundedness under largeness condi-
tion for χ. However, there is still scope for study on a fully parabolic i.e. parabolic–
parabolic–parabolic system including sensitivity functions. The purpose of this talk is to
derive boundedness in a fully parabolic system including sensitivity functions.
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In this talk we consider the fully parabolic chemotaxis system with signal-dependent
sensitivities,

ut = ∆u−∇ · (uχ1(v)∇v) +∇ · (uχ2(w)∇w), x ∈ Ω, t > 0,

vt = ∆v +∇ · (vξ(w)∇w) + αu− βv, x ∈ Ω, t > 0,

wt = ∆w + γu− δw, x ∈ Ω, t > 0,

∇u · ν = ∇v · ν = ∇w · ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.1)

where Ω ⊂ RN (N ≤ 3) is a bounded domain with smooth boundary ∂Ω; ν is the outward
normal vector to ∂Ω; u0, v0, w0 are initial data fulfilling

u0 ∈ C0(Ω) \ {0}, v0, w0 ∈ W 1,∞(Ω) and u0, v0, w0 ≥ 0 in Ω.(1.2)

Also, χ1, χ2, ξ are positive known functions satisfying

χi, ξ ∈ C1+ϑ([0,∞)) (0 < ∃ϑ < 1), χi, ξ > 0 (i ∈ {1, 2}),(1.3)

sup
s>0

sχi(s) < ∞ (i ∈ {1, 2}),(1.4)

∃Ki > 0; χ′
i(s) +Ki|χi(s)|2 ≤ 0 for all s ≥ 0 (i ∈ {1, 2})(1.5)

∃ ξ0 > 0; ξ(s) ≤ ξ0χ2(s) for all s ≥ 0,(1.6)

∃K3 > 0; ξ′(s) ≤ K3 for all s ≥ 0.(1.7)

The example of χ1, χ2, ξ are as follows:

χ1(s) =
a1

(b1 + s)k1
, χ2(s) =

a2
(b2 + s)k2

, ξ(s) =
a3

(b3 + s)k3
for s ≥ 0

with ai > 0, bi ≥ 0, ki > 1. In this example the constants Ki in (1.5) are given by biki
ai

.
Therefore some largeness conditions for K1, K2 imply that a1, a2 are small.

The main result reads as follows.

Theorem 1.1. Assume that χ1, χ2 satisfy (1.3)–(1.5) with K1, K2 fulfilling

K1 > min
λ∈J

2(2λ+ 1)(3λ+ 4) +
√
Dλ

2(K2 − 4)− λ2 − 2
, K2 > 4 +

√
2,

where J :=
(
K2 − 4−

√
(K2 − 4)2 − 2, K2 − 4 +

√
(K2 − 4)2 − 2

)
and where

Dλ := 4λ
[
2 (K2 − 4) + 3λ+ 8

][
λ (K2 − 4) + 4λ2 + 12λ+ 7

]
.

Then there exists a constant ξ∗0 > 0 such that for all ξ satisfying (1.3), (1.6) with some
ξ0 ∈ (0, ξ∗0) as well as (1.7), and all (u0, v0, w0) fulfilling (1.2) there exists a unique triplet
(u, v, w) of nonnegative functions

u ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

v, w ∈
∩
q>n

C0([0,∞);W 1,q(Ω)) ∩ C2,1(Ω× (0,∞)),

which solves (1.1) in the classical sense. Also, the solution is bounded in the sense that

∥u(·, t)∥L∞(Ω) ≤ C

for all t > 0 with some C > 0.
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2. Strategy for the proof

The strategy in the proof of Theorem 1.1 is to obtain L2-boundedness of u and Lr-
boundedness of ∇v with some r > n. The former can be shown by constructing the
differential inequality

d

dt

∫
Ω

u2(x, t)f(x, t) dx ≤ c1

∫
Ω

u2(x, t)f(x, t) dx− c2

(∫
Ω

u2(x, t)f(x, t) dx
)1+θ

for some constants c1, c2, θ > 0 and some test function f ; this method is based on a
testing argument which was recently developed in the papers [1, 2]. Once we obtain L2-
boundedness of u, the next step is to prove Lr-boundedness of ∇v with some r > n. An
Lr-estimate for ∇v can be shown by semigroup estimates in the case that ξ = 0; however,
in the case that ξ ̸= 0 this method breaks down due to the term ∇ · (vξ(w)∇w). On the
other hand, the method for the case that ξ is a constant in [4] does not work, because
new complicated terms appear. In order to overcome this difficulty we first observe L2-
boundedness of ∇v by an energy estimate. We next upgrade L2-boundedness of ∇v to
Lr-boundedness of ∇v with some r > n. Finally, in light of Lr-boundedness of ∇v, we
can obtain L∞-boundedness of u, which yields global existence and boundedness.
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