Abstract evolution equations governed by time-dependent dissipative operators with respect to metric-like functionals

Naoki Tanaka¹

Department of Mathematics, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan

1. Main theorem

Let X be a real Banach space and we consider the initial value problem

u'(t) = A(t)u(t) for $t \in [s, b)$, and u(s) = x,

where $-\infty < a \le s < b \le \infty$, $x \in X$ and $A = \{A(t); t \in [a, b)\}$ is a family of operators in X satisfying the dissipativity condition and the subtangential condition with growth condition described below.

Let $\varphi = \{\varphi^t; t \in [a, b)\}$ be a family of functionals on *X* to $[0, \infty]$ satisfying the following condition:

(φ) If $(t, x) \in [a, b) \times X$ and if $\{(t_n, x_n)\}$ is a sequence in $[a, b) \times X$ such that $x_n \in D(\varphi^{t_n})$ for $n \ge 1$, $\limsup_{n \to \infty} \varphi^{t_n}(x_n) < \infty$, $t_n \le t$ for $n \ge 1$ and $(t_n, x_n) \to (t, x)$ as $n \to \infty$, then $x \in D(\varphi^t)$ and $\varphi^t(x) \le \limsup_{n \to \infty} \varphi^{t_n}(x_n)$.

Let Φ be a nonnegative functional on $[a, b) \times X \times X$ satisfying the following conditions:

(Φ 1) There exists a positive continuous function L on [a, b) such that

$$|\Phi(t, x, y) - \Phi(t, \hat{x}, \hat{y})| \le L(t)(||x - \hat{x}|| + ||y - \hat{y}||) \qquad \text{for } (x, y), (\hat{x}, \hat{y}) \in X \times X \text{ and } t \in [a, b).$$

- (Φ 2) Φ (*t*, *x*, *x*) = 0 for *t* \in [*a*, *b*) and *x* \in *D*(φ ^{*t*}).
- (Φ3) If $t \in [a, b)$ and $(x, y) \in D(\varphi^t) \times D(\varphi^t)$ and if $\{(t_n, x_n, x_n)\}$ is a sequence in $[a, b) \times X \times X$ such that $t_n \le t$ for $n \ge 1$, $(x_n, y_n) \in D(\varphi^{t_n}) \times D(\varphi^{t_n})$ for $n \ge 1$, $\limsup_{n \to \infty} \varphi^{t_n}(x_n) < \infty$, $\limsup_{n \to \infty} \varphi^{t_n}(y_n) < \infty$, and $(t_n, x_n, y_n) \to (t, x, y)$ in $[a, b) \times X \times X$ as $n \to \infty$, then

$$\Phi(t, x, y) \le \limsup_{n \to \infty} \Phi(t_n, x_n, y_n)$$

(Φ 4) If $\{(x_n, y_n)\}$ is a sequence in $X \times X$ and if there exist $r \ge 0$ and a sequence $\{t_n\}$ in [a, b) such that $(x_n, y_n) \in D_r(\varphi^{t_n}) \times D_r(\varphi^{t_n})$ for $n \ge 1$, and $\{t_n\}$ converges in [a, b) and $\Phi(t_n, x_n, y_n) \to 0$ as $n \to \infty$, then $||x_n - y_n|| \to 0$ as $n \to \infty$.

Let $g \in C([a, b) \times [0, \infty); \mathbf{R})$ and $g(t, 0) \ge 0$ for $t \in [a, b)$. For each $(s, p) \in [a, b) \times [0, \infty)$, let $\tau(s, p)$ be the maximal existence time of the noncontinuable maximal solution m(t; s, p) of the problem

$$p'(t) = g(t, p(t))$$
 for $s \le t < b$, and $p(s) = p$.

We make the following assumptions on the family A.

- (A1) $D(A(t)) = D(\varphi^t)$ for $t \in [a, b)$.
- (A2) If $t \in [a, b)$ and $x \in D(\varphi^t)$ and if $\{(t_n, x_n)\}$ is a sequence in $[a, b) \times X$ such that $x_n \in D(\varphi^{t_n})$ for $n \ge 1$, $(t_n, x_n) \to (t, x)$ in $[a, b) \times X$ as $n \to \infty$ and $\limsup_{n \to \infty} \varphi^{t_n}(x_n) \le \varphi^t(x)$, then

$$\lim_{n \to \infty} A(t_n) x_n = A(t) x \quad \text{in } X$$

(A3) For each $r \ge 0$ there exists a nonnegative continuous function ω_r on [a, b) such that

 $\liminf_{h\to 0+} h^{-1}(\Phi(t+h,x+hA(t)x,y+hA(t)y) - \Phi(t,x,y)) \le \omega_r(t)\Phi(t,x,y) \quad \text{for } t \in [a,b) \text{ and } x, y \in D_r(\varphi^t).$

(A4) For each $\epsilon > 0$, $t \in [a, b)$ and $x \in D(\varphi^t)$ there exist $h \in (0, \epsilon]$ and $x_h \in D(\varphi^{t+h})$ such that t + h < b,

$$||x + hA(t)x - x_h|| \le h\epsilon$$
 and $h^{-1}(\varphi^{t+n}(x_h) - \varphi^t(x)) \le g(t, \varphi^t(x)) + \epsilon$.

Email address: tanaka.naoki@shizuoka.ac.jp(Naoki Tanaka)

¹Partially supported by JSPS KAKENHI Grant Number JP20K03677.

The following is the main theorem, which gives a generalization of [3, Theorem I].

Theorem 1. Assume that for any $p \ge 0$ there exists M > 0 such that $t \in [a,b)$, $x \in D(\varphi^t)$ and $\varphi^t(x) \le p$ imply $||A(t)x|| \le M$. Let $s \in [a,b)$ and $x \in D(\varphi^s)$, and set $\tau_0 = \tau(s, \varphi^s(x)) - s$. Then the initial value problem u'(t) = A(t)u(t) for $t \in [s, s + \tau_0)$, and u(s) = x

has a unique solution u in the sense that u(t) is continuous for $t \in [s, s + \tau_0)$, u(s) = x, u(t) is right-differentiable for $t \in [s, s + \tau_0)$, the right-derivative $(d/dt)^+u(t)$ is right-continuous for $t \in [s, s + \tau_0)$, $(d/dt)^+u(t) = A(t)u(t)$ for $t \in [s, s + \tau_0)$ and $\varphi^t(u(t)) \le m(t; s, \varphi^s(x))$ for $t \in [s, s + \tau_0)$.

Remark 2. (i) The family φ is used to define the local quasi-dissipativity of the family A and specify the growth of a solution u in terms of the real-valued function $\varphi^t(u(t))$. In case of concrete partial differential equations the use of such a family φ corresponds to a priori estimates or energy estimates which ensure the global existence of the solutions as well as their asymptotic properties. The idea of the localization with respect to φ is affected by the Lyapunov method and our setting is similar in spirit to that of Oharu and Takahashi [5] discussing nonlinear semigroups associated with semilinear evolution equations. Another role of φ is to control the behavior of the domain of A(t) with respect to t. (ii) A quasi-dissipativity condition in terms of a metric-like functional was found by Okamura [6] as a criterion for the uniqueness of solutions of ordinary differential equations. Condition (A3) is a slightly modified version of Kobayashi *et.* [2] where the mapping $(t, x) \rightarrow A(t)x$ is assumed to be continuous in *X*. Condition (Φ 3) is about continuity of Φ in some sense. Condition (Φ 4) roughly means that the topology induced by the functional Φ is equivalent to that induced by the original norm on each revel set of φ^t . The advantage of this condition is that it allows us to handle the case where the continuous dependence of solutions on their initial data is Hölder continuous. A subtangential condition was found by Nagumo [4] to characterize viability, and we use a subtangential condition combined with growth condition (see (A4)). (iii) The following consideration leads us to condition (A2): Let X be a Banach space such that both Xand its dual space are uniformly convex, and let $\{\mathfrak{A}(t); t \in [a, b)\}$ be a family of maximal dissipative operators in X satisfying a type of demiclosed condition stated as follows: If $t \in [a, b)$ and $y \in X$ and if $t_n \in [a, b)$, $x_n \in D(\mathfrak{A}(t_n))$ and $y_n \in \mathfrak{A}(t_n)x_n$ for $n \ge 1$, and $t_n \to t$ and $y_n \to y$ weakly in X as $n \to \infty$, then $x \in D(\mathfrak{A}(t))$ and $y \in \mathfrak{A}(t)x$. This condition was used by Martin [3] with a "directional growth" condition, which is a special version of condition (A4). Let $A = \{A(t); t \in [a, b)\}$ be a family of the minimal sections of $\{\mathfrak{A}(t); t \in [a, b)\}$ and let $\varphi = \{\varphi^t; t \in [a, b)\}$ be a family of proper functionals from X into $[0, \infty]$ defined by $\varphi'(x) = ||A(t)x||$ if $x \in D(A(t))$, and $\varphi'(x) = \infty$ otherwise. Then condition (φ) and condition (A2) can be proved to be satisfied. The dissipativity in the usual sense is the special case of (Φ 4) with $\Phi(t, x, y) = ||x - y||$ for $(t, x, y) \in [a, b) \times X \times X$ and $\omega_r = 0$.

We illustrate how Theorem 1 apply to the mixed problem for the inhomogeneous equation of Kirchhoff type

$$u_{tt} = \beta'(||\nabla u||^2)\Delta u - \kappa u_t + f \qquad \text{in } \Omega \times (0, T)$$

$$u_t + \beta'(\|\nabla u\|^2) \frac{\partial u}{\partial n} + \sigma u = g$$
 on $\Gamma \times (0, T)$

for small initial data and forcing terms. From Theorem 1 we also derive the well-posedness for an abstract timedependent linear evolution equation governed by operators whose domains do not necessarily contain a dense subspace of X differently in Kato [1], and the result applies to a degenerate evolution equation of the form

 $u''(t) + A(\phi(t)^2 u(t)) = 0 \text{ for } t \in [0, T)$

in a real Hilbert space *H*, where *A* is a selfadjoint operator in *H* such that $\langle Au, u \rangle \ge 0$ for $u \in D(A)$, and ϕ satisfies the following condition: There exist C > 0 and $\beta > 0$ such that $C^{-1}t^{\beta} \le \phi(t) \le Ct^{\beta}$ for $t \in [0, T)$. An interesting result was proved by Shigeta [7] that the sum of the regularity of *u* and *u'* is kept for any $t \in [0, T)$, although the degeneracy occurs at t = 0. We can show continuity and right-differentiability at t = 0.

References

- [1] T. Kato, Linear evolution equations of "hyperbolic" type, J. Fac. Sci. Univ. Tokyo Sect. I A 17 (1970), 241-258.
- [2] Y. Kobayashi, N. Tanaka and Y. Tomizawa, Nonautonomous differential equations and Lipschitz evolution operators in Banach spaces, Hiroshima Math. J. 45 (2015), 267–307.
- [3] R. H. Martin, Jr., Generating an evolution system in a class of uniformly convex Banach spaces, J. Functional Analysis 11 (1972), 62–76.
- [4] M. Nagumo, Uber die Lage der Integralkurven gewohnlicher Differentialgleichungen, Proc. Phys.-Math. Soc. Japan 24 (1942), 551–559.
- [5] S. Oharu and T. Takahashi, Characterization of nonlinear semigroups associated with semilinear evolution equations, Trans. Amer. Math. Soc. 311 (1989), 593-619.
- [6] H. Okamura, Condition necessaire et suffisante remplie par les equations differentielles ordinaires sans points de Peano, Mem. Coll. Sci. Kyoto Imp. Univ. Ser. A. 24 (1942), 21–28.
- [7] T. Shigeta, Linear evolution equations and a mixed problem for singular or degenerate wave equations, Comm. Partial Differential Equations 12 (1987), 701–776.