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1. Introduction

1.1. Connection of locally constructed solutions. We consider the Schrödinger equation

(1.1) (−∆+ V )u = Eu,

in Rn, where ∆ is the Laplacian, V is a real valued function in Rn, u is the eigenfunction and E is the
eigenvalue. When the space dimension n is 1, exceptionally detailed information of the eigenfunctions
and the eigenvalues is obtained by connecting solutions constructed on intervals at the end points of
the intervals (see e.g. [7, Section 34] and [9]). Since the structures of the solutions of (1.1) are strongly
affected by the local behavior of the potential V (in particular, the structure of an eigenfunction of an
electron in neighborhoods of nuclei is very different from that in the interstitial region), it is desirable to
develop methods that construct local solutions in several regions Ω1, . . . ,ΩN and connect the solutions
at the boundaries Ωα ∩ Ωβ, α ̸= β also in the case of n ≥ 2.
Actually, exact local solution itself is difficult to obtain when n ≥ 2 in general. Nevertheless, in

physical situations we can speculate local basis functions that approximate the local true solutions by
their linear combinations. Thus it is expected to obtain approximations of the true eigenfunctions by
the linear combinations of the basis functions ui

α, i = 1, 2, . . . in different regions Ωα, α = 1, . . . , N .
However, these linear combinations cannot be connected exactly on the boundaries Ωα ∩ Ωβ, α ̸= β
as stated above. Instead, in practical calculations a feasible method would be to construct linear
combinations ui, i = 1, . . .M that have only small discontinuity on the boundaries Ωα ∩ Ωβ first, and
then solve the secular equation by these functions ui as in the Rayleigh-Ritz method.

Here let us recall the secular equation and the Rayleigh-Ritz method. Let X be a Hilbert space, A
be a semibounded selfadjoint operator in X, q be the quadratic form associated with A, and Q ⊂ X be
the form domain of q. For linearly independent elements {u1, . . . , uM} ∈ Q in X we set hij := q(ui, uj)
and sij := ⟨ui, uj⟩. The secular equation for E ∈ R is defined by

det (H − ES) = 0,

where H = (hij), S = (sij). In particular, if {ui} is orthonormal, S is a unit matrix and E is an

eigenvalue of H. Let Ẽ1 ≤ · · · ≤ ẼM be solutions to the secular equation and E1 ≤ · · · ≤ EM be the M
lowest eigenvalues of A. Then by the min-max principle (cf. [6, Theorem XIII.1, 2]) we have

Ẽm ≥ Em, m = 1, . . . ,M.

The evaluation of eigenvalues Em based on this inequality is called the Rayleigh-Ritz method.
The problem of the method in the second paragraph is that the relation between the true eigenvalues

and the approximations of the eigenvalues obtained by solving the secular equation are not clear as in
the Rayleigh-Ritz method because of the discontinuity of the functions ui on the boundaries Ωα ∩ Ωβ,

that is, the eigenvalues Ẽi(u
1, . . . , uM), i = 1, . . . ,M obtained by the secular equation are not upper

bounds of the true eigenvalues, and inf{u1,...,uM} Ẽi(u
1, . . . , uM), i = 1, . . . ,M do not coincide with the

true eigenvalues in contrast to the Rayleigh-Ritz method.
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1.2. Augmented plane wave (APW) method. The augmented plane wave (APW) method is one
of the methods of band structure calculations in solid state physics (see e.g. [5]) and an example in
which the problem as above arises. The APW method was proposed by Slater [8]. The purpose of
the APW method is to obtain eigenvalues of the Bloch functions. The Bloch function is a generalized
eigenfunction in a periodic lattice with the primitive translation vectors a1, . . . , an ∈ Rn. The Bloch
function restricted to the unit cell D := {x =

∑n
i=1 ciai : ∀i, 0 < ci < 1} is an eigenfunction of the

selfadjoint operator −∆ + V in L2(D) (the selfadjointness can be proved under a mild assumption on
the potential) with the domain

Dk :=

{
u ∈ H2(D) : ∀j, u(x+ aj) = eik·aju(x), (Gj · ∇)u(x+ aj) = eik·aj(Gj · ∇)u(x),

x =
∑
l ̸=j

clal, 0 < cl < 1

}
,

(1.2)

for some k ∈ Rn, where Gi ∈ Rn is the reciprocal lattice vector such that Gi · aj = 2πδij. We can
also prove that the spectrum of the operator is discrete, the eigenvalue Em (labeled in ascending order)
depend analytically on k if it is simple, and Em → ∞ (m → ∞). We divide D into regions as

D = Ω1 ∪
(∪N

α=2 Ωα

)
,

Ωα := {x : |x− x̄α| < Rα}, α = 2, . . . , N,

Ω1 := D \

(
N∪

α=2

Ωα

)
,

where x̄α, α = 2, . . . , N are atomic sites and Rα > 0. We assume that the potential has the form

V (x) =

{
V (|x− x̄α|), x ∈ Ωα, α = 2, . . . , N

0 x ∈ Ω1

,

which is called Muffin-Tin potential. In Ω1 the eigenfunction u is given by the linear combination of the
plane waves vG(x) = ei(k+G)·x, where G is a reciprocal lattice vector i.e. ∀i, G · ai/(2π) ∈ Z. On the
other hand, in Ωα, α ≥ 2, we consider the linear combination

vG(x) = ei(k+G)·x̄α

∞∑
l=0

l∑
m=−l

Aα,k+G
lm χα

l (rα, E)Ylm(θα, φα),

where (rα, θα, φα) is the polar coordinates of x − x̄α, χ
α
l (rα, E) is a radial function depending on the

energy E, and coefficients Aα,k+G
lm are determined so that the right-hand side coincides with ei(k+G)·x on

the boundaries ∂Ωα. We consider the secular equation of such waves ui = vGi
for different Gi and the

eigenvalue E is determined from the condition that the equation has a solution. However, in practice the
infinitely many coefficients Aα,k+G

lm can not be calculated and we need to cut off the expansion at some
finite number of coefficients. Thus ui are discontinuous on the boundaries ∂Ωα and the problem stated
above arises. As for the mathematical convergence analysis of the APW method Chen and Schneider
[3] proved existence of a convergent subsequence of approximate solutions as the basis set increases and
an error estimate for the subsequence.

In the theory of finite element method there is a method to use functions discontinuous on boundaries
of the elements. Such a method is called nonconforming finite element method (cf. [2, section 10.3]).
There are also other methods such as discontinuous Galerkin (DG) method (cf. [4]). In some cases error
estimates were obtained for nonconforming method and DG method. In these analysis specific forms of
basis functions play crucial roles.
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2. Main result

Set Qk := {u = (ũ1, . . . , ũN) ∈
⊕N

α=1 H
1(Ωα); ∀j, ũ1(x+aj) = eik·aj ũ1(x), x =

∑
l ̸=j clal, 0 < cl < 1}.

We assume that for any u ∈ Dk

∥V u∥L2(D) ≤ a∥∆u∥L2(D) + b∥u∥L2(D),

that there exist 0 ≤ a < 1, b ≥ 0 such that

⟨ũα, |V |ũα⟩Ωα ≤ a∥∇ũα∥L2(Ωα) + b∥ũα∥L2(Ωα), α = 1, . . . N,

and that there exists d ≥ 0 such that Em ≤ d, m = 1, . . . ,M , where Dk is defined by (1.2). Let ui =

(ũi
1, . . . , ũ

i
N) ∈ Qk ∩ (

⊕N
α=1 H

2(Ωα)), i = 1, . . . ,M , ⟨ui, uj⟩ = δij and set hij := ⟨∇ui,∇uj⟩+ ⟨ui, V uj⟩,
where ⟨u, v⟩ :=

∑N
α=1⟨ũα, ṽα⟩Ωα and ∇ui := (∇ũi

1, . . . ,∇ũi
N). We denote by Ẽm the mth eigenvalue of

the matrix (hij). The following is the main result.

Theorem 2.1 ([1]). There exist constants C, δ > 0 depending only on {Ωα}, a, b and d such that if

M
M∑
i=1

∑
α ̸=β

∥ũi
α|∂Ωα − ũi

β|∂Ωβ
∥H3/2(∂Ωα∩∂Ωβ)

< δ,

we have for any 1 ≤ m ≤ M ,

Ẽm ≥ Em − CM5/2

M∑
i=1

∑
α ̸=β

∥ũi
α|∂Ωα − ũi

β|∂Ωβ
∥H3/2(∂Ωα∩∂Ωβ)

.

Thus the difference between Em and the infimum of Ẽm with respect to {ui} is estimated by the
discontinuity of ui on the boundaries. We also have a similar result for nonperiodic case in Rn.
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