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1 Introduction

We consider the following resolvent and non-stationary Stokes equations with Dirichlet or Neu-
mann boundary conditions in the half space Rn

+ = Rn−1 × (0,∞).{
λu−∆u+∇π = f in Rn

+,

div u = 0 in Rn
+,

(D)

{
uj = hj (j = 1, . . . , n− 1),

un = 0,

(N)

{
−(∂nuj + ∂jun) = hj (j = 1, . . . , n− 1),

−(2∂nun − π) = hn

{
∂tU −∆U +∇Π = F in Rn

+ × (0,∞),

divU = 0 in Rn
+ × (0,∞),{

Uj = Hj (j = 1, . . . , n− 1),

Un = 0,{
−(∂nUj + ∂jUn) = Hj (j = 1, . . . , n− 1),

−(2∂nUn − Π) = Hn.

Notation：Let ε ∈ (0, π/2), 1 < p, q < ∞, γ0 ≥ 0, s ≥ 0 and

Σε := {λ ∈ C \ {0} | | arg λ| < π − ε},
Ŵ 1

q (D) := {π ∈ Lq,loc(D) | ∇π ∈ Lq(D)},
Lp,0,γ0(R, X) := {f : R → X | e−γ0tf(t) ∈ Lp(R, X), f(t) = 0 for t < 0},
Wm

p,0,γ0
(R, X) := {f ∈ Lp,0,γ0(R, X) | e−γ0t∂j

t f(t) ∈ Lp(R, X), j = 1, . . . ,m},
Hs

p,0,γ0
(R, X) := {f : R → X | Λs

γf := L−1
λ [|λ|sL[f ](λ)](t) ∈ Lp,0,γ(R, X) for any γ ≥ γ0},

where L and L−1
λ are two-sided Laplace transform; let λ = γ + iτ ∈ C and

L[f ](λ) =
∫ ∞

−∞
e−λtf(t)dt = Ft→τ (e

−γtf), L−1
λ [g](t) =

1

2π

∫ ∞

−∞
eλtg(λ)dτ = eγtFτ→tg.

2 Main theorems

Theorem 2.1 (resolvent Lq estimate). Let 0 < ε < π/2 and 1 < q < ∞. Then for any λ ∈ Σε,

f ∈ Lq(Rn
+), h ∈

{
W 2

q (Rn
+) Dirichlet,

W 1
q (Rn

+) Neumann,

there exists a unique solution (u, π) ∈ W 2
q (Rn

+) × Ŵ 1
q (Rn

+) of resolvent Stokes equations with
the estimate

‖(λu, λ1/2∇u,∇2u,∇π)‖Lq(Rn
+) ≤

{
C‖(f, λh, λ1/2∇h,∇2h)‖Lq(Rn

+) (D),

C‖(f, λ1/2h,∇h)‖Lq(Rn
+) (N).

Theorem 2.2 (Maximal Lp-Lq estimate). Let 1 < p, q < ∞ and γ0 ≥ 0. Then for any

F ∈ Lp,0,γ0(R, Lq(Rn
+)), H ∈

{
W 1

p,0,γ0
(R, Lq(Rn

+)) ∩ Lp,0,γ0(R,W 2
q (Rn

+)) Dirichlet,

H
1/2
p,0,γ0

(R, Lq(Rn
+)) ∩ Lp,0,γ0(R,W 1

q (Rn
+)) Neumann,



and U0 = 0, there exists a unique solution

U ∈ W 1
p,0,γ0

(R, Lq(Rn
+)) ∩ Lp,0,γ0(R,W 2

q (Rn
+)),

Π ∈ Lp,0,γ0(R, Ŵ 1
q (Rn

+))

of non-stationary Stokes equations with the estimate; for any γ ≥ γ0,

‖e−γt(Ut, γU,Λ
1/2
γ ∇U,∇2U,∇Π)‖Lp(R,Lq(Rn

+)) ≤

{
C‖e−γt(F,Ht,Λ

1/2
γ ∇H,∇2H)‖Lp(R,Lq(Rn

+)) (D),

C‖e−γt(F,Λ
1/2
γ H,∇H)‖Lp(R,Lq(Rn

+)) (N).

As the corollary of theorem 2.1, we have that the two kinds of Stokes operator generate bounded
analytic semi-groups on solenoidal vector spaces. In theorem 2.2, we can take general initial
data U0 from above semi-group theory.

3 Strategy of the proofs

At first, we remark that the theorems have already proved in [1](Dirichlet) and [3, 4](Neumann).
However, the main point is that we have shortened their proofs by using H∞-calculus methods
(c.f.[2]). (Here H∞ means holomorphic and bounded.) In particular we proved the following
new Fourier multiplier theorem for a suitable form which is used to the half space; Let us define
the operators T and T̃γ by

T [m]f(x) =

∫ ∞

0

[F−1
ξ′ m(ξ′, xn + yn)Fx′f ](x, yn)dyn,

T̃γ[mλ]g(x, t) = L−1
λ

∫ ∞

0

[F−1
ξ′ mλ(ξ

′, xn + yn)Fx′Lg](x, yn)dyn,

= [eγtF−1
τ→tT [mλ]Ft→τ (e

−γtg)](x, t).

Let Σ̃η := {z ∈ C \ {0} | | arg z| < η} ∪ {z ∈ C \ {0} | π − η < | arg z|} for η ∈ (0, π/2).

Theorem 3.1. (i) Let m satisfy the following two conditions:
(a) There exists η ∈ (0, π/2) such that {m(·, xn), xn > 0} ⊂ H∞(Σ̃n−1

η ).
(b) There exist η ∈ (0, π/2) and C > 0 such that supξ′∈Σ̃n−1

η
|m(ξ′, xn)| ≤ Cx−1

n for all xn > 0.

Then T [m] is a bounded linear operator on Lq(Rn
+) for every 1 < q < ∞.

(ii) Let γ0 ≥ 0 and let mλ satisfy the following two conditions:
(c) There exists η ∈ (0, π/2− ε) such that for each xn > 0 and γ ≥ γ0,

Σ̃n
η 3 (τ, ξ′) 7→ mλ(ξ

′, xn) ∈ C
is bounded and holomorphic.
(d) There exist η ∈ (0, π/2 − ε) and C > 0 such that sup{|mλ(ξ

′, xn)| | (τ, ξ′) ∈ Σ̃n
η} ≤ Cx−1

n

for all γ ≥ γ0 and xn > 0.
Then F−1

τ→tT [mλ]Ft→τ is a bounded linear operator on Lp(R, Lq(Rn
+)), i.e., T̃γ[mλ] satisfies

‖e−γtT̃γg‖Lp(R,Lq(Rn
+)) ≤ C‖e−γtg‖Lp(R,Lq(Rn

+))

for every γ ≥ γ0 and 1 < p, q < ∞.

By this theorem, it is enough to check the order of the symbols although the previous papers
need to decompose the symbols into some types.

We can show the resolvent Lq estimate as follows.

Step1. We show that div u = g = 0 and f = 0 are enough by considering the problems in Rn.
Step2. We find the multiplier symbols by considering partial Fourier transform (h(x′, 0) → u).
Step3. By fundamental theorem, we make an integral of xn. (Integrands are h and ∂nh.)
Step4. We decompose the symbols so that we can use the multiplier theorem.
The proof of maximal Lp-Lq is similar to the resolvent estimate through Laplace transform.



Remark 3.2. By a similar method, we are able to consider various boundary conditions (Robin,
two-phase problem, on layer domain, with surface tension).
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