Concentration phenomena of solutions to Chemotaxis models on compact metric graphs and related results

Kazuhiro Kurata

Tokyo Metropolitan University, kurata@tmu.ac.jp July 26, 2025 at Kagurazaka Analysis Seminar

Abstract. In this talk, we investigate concentration phenomena of the following stationary chemotaxis model on compact metric graphs as $k \to \infty$:

$$0 = (u_x - ku(\phi(v))_x)_x, \quad 0 = v_{xx} - v + u \quad \text{on} \quad \mathcal{G},$$

with the Kirchhoff-Neumann boundary condition:

$$\sum_{e \succ z} \partial u^{(e)}(z) = 0, \quad \sum_{e \succ z} \partial v^{(e)}(z) = 0 \quad (\forall z \in V)$$

and

$$\int_{\mathcal{G}} u \, dx = M,$$

where $\mathcal{G} = (V, E)$ is a compact metric graph, k and M are positive constants, $\phi(v) = v$ or $\phi(v) = \log v$, $\partial u^{(e)}(z)$ means the outward derivative on each edge $e \in E$ incident to the vertex $z \in V$. In the case $\phi(v) = v$, this problem can be reduced to find a solution v of

$$0 = v_{xx}(x) - v(x) + M \frac{e^{kv(x)}}{\int_{\mathcal{G}} e^{kv}(z) dz} \quad \text{on} \quad \mathcal{G}$$

with

$$\sum_{e \succ z} \partial v^{(e)}(z) = 0 \quad (\forall z \in V).$$

Here, u can be obtain as

$$u(x) = M \frac{e^{kv(x)}}{\int_{\mathcal{C}} e^{kv}(z) \, dz}.$$

To solve v, define the corresponding energy as follows:

$$E_k(w) = \frac{1}{2} \int_{\mathcal{G}} ((w_x)^2 + w^2) dx - \frac{M}{k} \log \left(\int_{\mathcal{G}} e^{kw} dx \right)$$

for $w \in H^1(\mathcal{G}) := \{u \in C(\mathcal{G}) \mid u^{(e)} = u|_e \in H^1(e) \ (\forall e \in E)\}$. We consider the minimization problem:

$$\sigma(k) := \inf\{E_k(w) \mid w \in H^1(\mathcal{G})\}.$$

To state our main result, for a given $y \in \mathcal{G}$, we define the Green function $G_y(x)$ as the unique solution to

$$-w_{xx} + w = M\delta_y$$
 in \mathcal{G}

with

$$\sum_{e \succ z} \partial w^{(e)}(z) = 0 \quad (\forall z \in V).$$

We denote $H(y) := G_y(y)$ $(y \in \mathcal{G})$. Then, we have the following main result.

Theorem 0.1 There exists a minimizer v_k to $\sigma(k)$. Furthermore, as $k \to \infty$, we have

$$\sigma(k) \to -\frac{M}{2}H(y^*),$$

and, taking a subsequence if necessary,

$$v_k \to G_{y^*}$$
 in $H^1(\mathcal{G})$,

where $H(y^*) := \max_{y \in \mathcal{G}} H(y)$. Moreover, as $u_k(x) = M \frac{e^{kv_k(x)}}{\int_{\mathcal{G}} e^{kv_k(z)} dz}$, we have

$$u_k \to M\delta_{y^*} \quad (k \to \infty),$$

i.e. u_k satisfies

$$\int_{\mathcal{G}} u_k \phi \, dx \to M \phi(y^*) \quad (\forall \phi \in H^1(\mathcal{G})).$$

Namely, u_k concentrates near the maximum point of the function $H(z) = G_z(z)$.

Remark 0.1 In the case $\phi(v) = \log v$, this problem can be reduced to find a solution v of

$$0 = v_{xx}(x) - v(x) + M \frac{v^k(x)}{\int_{\mathcal{G}} v^k(z) dz} \quad on \quad \mathcal{G}$$

with the same Kirchhoff-Neumann boundary condition. For the corresponding least energy solution, a similar concentration phenomena occurs and that $u_k(x) = M \frac{v^k(x)}{\int_{\mathcal{G}} v^k(z) dz}$ concentrates near the maximum point of the function $H(z) = G_z(z)$.

Remark 0.2 We also have similar results for other chemotaxis models (e.g. Jäger-Luckhaus model), in which solutions concentrate near the optimization point of the another Green function.

Remark 0.3 For several typical metric graphs \mathcal{G} , we can compute the corresponding Green functions $G_y(x)$ on \mathcal{G} , respectively, and determine the maximum point of $H(y) = G_y(y)$.