UNIFORM DISPERSIVE ESTIMATES FOR THE SEMI-CLASSICAL HARTREE EQUATION WITH LONG-RANGE INTERACTION

SONAE HADAMA (KYOTO UNIVERSITY, RIMS)

0.1. **Setup of the problem.** In this talk, we consider the Hartree equation in three-dimensional space:

$$i\hbar\partial_t\gamma^{\hbar} = \left[-\frac{\hbar^2}{2}\Delta_x + w * \rho^{\hbar}(\gamma^{\hbar}), \gamma^{\hbar} \right], \quad \gamma^{\hbar} : \mathbb{R}_{\geq 0} \to \mathcal{B}_{\mathrm{sa}}(L^2(\mathbb{R}^3)),$$
 (NLH)

where $w: \mathbb{R}^3 \to \mathbb{R}$ is a given function, $\mathcal{B}_{\text{sa}}(L^2(\mathbb{R}^3))$ is the space of all bounded self-adjoint operators on $L^2(\mathbb{R}^3)$, [A,B] = AB - BA is the commutator, and $\hbar \in (0,1]$ is the reduced Planck constant. We often write A(x,x') for the integral kernel of the linear operator A on $L^2(\mathbb{R}^3)$. We formally define the (semi-classically scaled) density function of A by $\rho^{\hbar}(A)(x) = (2\pi\hbar)^3 A(x,x)$. It is well-known that the Hartree equation (NLH) appears in many-body problems of quantum mechanics.

The global well-posedness of (NLH) is well-known. For long-time behavior of solutions, a small-data scattering result was given in [3] for short-range interactions. In [3], the optimal decay of the density function of the solution $\gamma^{\hbar}(t)$

$$\|\rho^{\hbar}(\gamma^{\hbar}(t))\|_{L_x^{\infty}} \lesssim \frac{1}{\langle t \rangle^3}$$
 (0.1)

is given when $\hbar=1$ and the initial data is small, where $\langle t \rangle := (1+|t|^2)^{1/2}$. However, if we directly apply the argument in [3] to general $\hbar \in (0,1]$, then the smallness condition for initial data gets stronger as $\hbar \to 0$. More precisely, for any $\hbar \in (0,1]$, we can actually prove (0.1) when the initial data γ_0^{\hbar} is small. However, we immediately find that $\|\gamma_0^{\hbar}\|_{\mathcal{X}_{\hbar}} \to 0$ as $\hbar \to 0$ for any acceptable family of initial data $(\gamma_0^{\hbar})_{\hbar \in (0,1]}$, where $\|\cdot\|_{\mathcal{X}_{\hbar}}$ is a natural norm in the semi-classical regime.

The recent work by Smith [4] proved (0.1) for regular interaction around a certain class of translation-invariant stationary solutions for all $\hbar \in (0,1]$ when $\|\gamma_0^{\hbar}\|_{\mathcal{X}_{\hbar}} \leq \varepsilon_0$, where $\varepsilon_0 > 0$ is a small but \hbar -independent constant. Moreover, Hong and the speaker obtained a similar result in [1] near vacuum when $w(x) = \pm |x|^{-a}$ for 1 < a < 5/3.

Although both [3] and [1,4] dealt with short-range interaction w, a modified scattering result for the Coulomb interaction was proved in [2], and the same optimal decay rate (0.1) is given when $\hbar = 1$. In this talk, we prove (0.1) for long-range interaction w when $\|\gamma_0^{\hbar}\|_{\mathcal{X}_{\hbar}} \leq \varepsilon_0$, where $\varepsilon_0 > 0$ is a small but \hbar -independent constant.

0.2. **Main result.** Before stating the main result, we prepare some notation. First of all, if we write $A \lesssim B$, then it means $A \leq CB$, where C > 0 is a \hbar -independent constant. Let $\mathcal{B} = \mathcal{B}(L^2(\mathbb{R}^3))$ be the space of all bounded linear operators. Define the Schatten-r norm by $\|A\|_{\mathfrak{S}^r} = \{\operatorname{Tr}(|A|^r)\}^{1/r}$ for $r \in [1, \infty)$ and $\|A\|_{\mathfrak{S}^r} := \|A\|_{\mathcal{B}}$ for $r = \infty$. Moreover, we define the semi-classically scaled Schatten-r norm by $\|A\|_{\mathfrak{S}^r} := (2\pi\hbar)^{3/r} \|A\|_{\mathfrak{S}^r}$. Throughout this

S. HADAMA

talk, we use the following class of operators for initial data:

$$\mathcal{X}^{\sigma}_{\hbar} := \left\{ A \in \mathcal{B}(L^2(\mathbb{R}^3)) \mid A \text{ is self-adjoint,} \right.$$

$$\langle \hbar \nabla \rangle^{\sigma} A \langle \hbar \nabla \rangle^{\sigma}$$
 is compact, and $||A||_{\mathcal{X}^{\sigma}_{\hbar}} < \infty$,

where the norm $\|\cdot\|_{\mathcal{X}^{\sigma}_{h}}$ is defined by

$$||A||_{\mathcal{X}_{\hbar}^{\sigma}} := ||A||_{\mathfrak{S}_{\hbar}^{1}} + \sum_{j=0,1} ||\langle \mathcal{D}_{j} \rangle^{\sigma} A \langle \mathcal{D}_{j} \rangle^{\sigma}||_{\mathcal{B}} + \sum_{j=0,1} ||\mathfrak{D}_{j} A||_{\mathfrak{S}_{\hbar}^{1}} + \sum_{j=0,1} ||\langle \mathcal{D}_{j} \rangle^{\sigma} \mathfrak{D}_{j} [A] \langle \mathcal{D}_{j} \rangle^{\sigma}||_{\mathfrak{S}_{\hbar}^{2} \cap \mathcal{B}} + \sum_{j,k,\ell=0,1} ||\langle \mathcal{D}_{j} \rangle^{\sigma} \mathfrak{D}_{k} [\mathfrak{D}_{\ell} [A]] \langle \mathcal{D}_{j} \rangle^{\sigma}||_{\mathcal{B}},$$

$$(0.2)$$

where $\mathcal{D}_0 = \hbar \nabla_x$, $\mathcal{D}_1 := x$ and $\mathfrak{D}_j A := [\mathcal{D}_j/\hbar, A]$ for j = 0, 1.

Remark 0.1. The norm $\|\cdot\|_{\mathcal{X}^{\sigma}_{h}}$ defined in (0.2) is "natural" in the semi-classical regime.

For interaction w(x), we assume the following condition:

$$w \in C^3(\mathbb{R}^3)$$
, and $|\partial^{\alpha} w(x)| \lesssim \frac{1}{\langle x \rangle^{1+|\alpha|}}$ for all $|\alpha| \leq 3$. (A)

Example 0.2. The Coulomb interaction $w(x) = \pm |x|^{-1}$ does not satisfy (A). However, the Coulomb interaction regularized around the origin $w(x) = \pm \langle x \rangle^{-1}$ satisfies (A).

Theorem 0.3. Let d=3 and $3/2<\sigma<2$. Assume that w(x) satisfies (\mathbf{A}) . Then, there exists $\varepsilon_0>0$ such that the following holds: If the family of self-adjoint initial data $(\gamma_0^{\hbar})_{\hbar\in(0,1]}\subset\mathcal{X}^{\sigma}_{\hbar}$ satisfies $\sup_{\hbar\in(0,1]}\|\gamma_0^{\hbar}\|_{\mathcal{X}^{\sigma}_{\hbar}}\leq\varepsilon_0$, then, there exists a unique global solution $\gamma^{\hbar}(t)\in C(\mathbb{R}_{\geq};\mathfrak{S}^1_{\hbar})$ to (NLH) such that

$$\sup_{\hbar \in (0,1]} \sup_{t \ge 0} \left\{ \left\| \rho^{\hbar}(\gamma^{\hbar}(t)) \right\|_{L_x^1} + \langle t \rangle^3 \left\| \rho^{\hbar}(\gamma^{\hbar}(t)) \right\|_{L_x^{\infty}} \right\} \lesssim 1.$$

Remark 0.4. The solution obtained in Theorem 0.3 exhibits modified scattering. Namely, there exists $\gamma_+^{\hbar} \in \mathfrak{S}_{\hbar}^1$ such that

$$\lim_{t \to \infty} \left\| e^{i\Psi(t, -i\hbar\nabla_x)} \mathcal{U}^{\hbar}(t)^* \gamma^{\hbar}(t) \mathcal{U}^{\hbar}(t) e^{-i\Psi(t, -i\hbar\nabla_x)} - \gamma_+^{\hbar} \right\|_{\mathcal{B}} = 0, \tag{0.3}$$

where

$$\Psi(t,\xi) := \frac{1}{\hbar} \int_0^t V(\tau,\tau\xi) d\tau, \quad V(t) := w * \rho^{\hbar}(\gamma^{\hbar}(t)).$$

However, we could not remove the \hbar -dependence from the rate of convergence (0.3).

References

- [1] S. Hadama and Y. Hong, Semi-classical limit of quantum scattering states for the nonlinear Hartree equation, arXiv Preprint (2025), arXiv:2507.12627.
- [2] T. T. Nguyen and C. You, Modified scattering for long-range Hartree equations of infinite rank near vacuum, arXiv Preprint (2024), arXiv:2408.15860.
- [3] F. Pusateri and I. M. Sigal, Long-time behaviour of time-dependent density functional theory, Arch. Ration. Mech. Anal. **241** (2021), no. 1, 447–473.
- [4] M. Smith, Phase mixing for the Hartree equation and Landau damping in the semiclassical limit, arXiv Preprint (2024), arXiv:2412.14842v2.