EXISTENCE OF SCATTERING STATES FOR WAVE EQUATIONS
WITH DISSIPATIVE TERMS IN STRATIFIED MEDIA

MITSUTERU KADOWAKI

1. Introduction.

Let n 2 1 and x € R",y € R. In this paper we study the following wave equations
with dissipative terms :

(11) atzu(xv yvt) + b(:z;,y)atu(:z;, yvt) - co(y)ZAu(x,y,t) = 07
where (z,y,t) € R” x R x [0,00), A is Laplacian for (z,y),
cr (y 2 h)
co(y) = e (0<y<h)
c— (y=0),

and cy,c_, ¢, and h are positive constants. Our aim is to show the existence of
the scattering states to (1.1) for t — +o0o. We deal with the following assumption for
b(x,y) : There exist C' > 0 and 6 > 1 such that

0 < b(a,y) < C(1+ |2 +4°)73,
for any (z,y) € R" x R.

Considering the case ¢, < min(cy,c_) we find the guided waves (cf. Wilcox [8] or
Weder [7]). In brief we deal with ¢, < ¢y < ¢_ only.

L?(R"™!') is the usual L? space defined on R"!. For s € R, let be L2(R"*!) the
weighted L? space defined by

LIR™) = {u(2) : Xogu(z) € LR}, Xy = (14 J2* +47)%.

Let E and F be Banach spaces. Then we denote by || - ||z the norm of E. If T is
considered as an operator from E into F, we denote by ||T||p—r the operator norm.
If in particular T is considered as an operator from L?(R"*1) into itself, then its norm
is denoted by the notation ||T|.

We define the symmetric operator Ly as :

Lo = —co(y)* L,
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Then Ly admits a unique self-adjoint realizations in L2(R"+'; ¢5?(y)dedy) . Then
Ly is a non-negative operator ( zero is not an eigenvalue ) and the domain of Ly, D(Lg),
is given by H*(R"*!), H*(R"*1) being Sobolev space of order s over R"*!. We also
denoted by R((;Lo) the resolvent (Lo — ¢)~' of Lo for Im( # 0.

We remark that Weder [7] has showed the absence of eigenvalues and the limiting
absorption principle for L.

To state our main results we introduce the free wave equations :
(1.2) Ofu(z,y.t) + Lou(z,y,t) = 0.

We put f = (u(t,z,y), Ou(t,x,y)). Then (1.1) and (1.2) can be written as O, f = —iAf
and 0y f = —tAg f respectively, where

) 0 1 ) 0 1
A_Z<—L0 —b(f"?ay)>7 AO_Z<—L0 0>'

Let ‘H be Hilbert spaces with inner products

< fig>n= /RW(Vfl(x, YIVai(z,y) + falz,y)g2(x, y)eg (y))dudy,

and the corresponding norms || - || where V = (9/0x1,0/0xs,--- ,0/0x,,0/0y) and
f =! (f17f2)7g =! (91792)‘

H is the energy space for (1.1) and (1.2). Then A and Ay generate a contrac-
tion semi-group {V(¢)},>o and a unitary group {Us(¢)}+er on H respectively. Their
domains are

D(Ao) ={f e H;Afy e L*(R"™), f, e H'(R"T")}
and D(A) = D(Ap). Main results is as follows:

Theorem 1.1. Assume that ¢4 = c—. Then the wave oprators

W=s-— tlg{loo Uo(—t)V (¢)
exists. Moreover W s not identically zero in H.

Assuming ¢y = c_ we show the existence of scattering states to (1.1) as an imme-
diate consequence of Theorem 1.1.
Considering solutions to (1.1) in any low energy space we find scattering states for
the case cq # c_ too. This results is as follows :
Theorem 1.2. Assume that ¢y # c¢_. Then the local wave operators
=s— lim Eo((-11 -V (t
Wi=s— lim Ey((~L0)o(~V()

exists for any | > 0, where Eo((—[,1)) is the spectral projection of Agonto (—I,1).
Moreover Wi is not identically zero in H.



It seems that there are no works dealing with scattering problem for dissipative
wave equations in stratified media. Our proof of Theorem 1.1 and 1.2 are due to
Mochizuki [4] (see section 4). He has proved existence of scattering states for wave
equations with disspative terms in the case ¢; = ¢ = ¢ = 1. His idea is baesd
on the combination Kato’s smooth pertabation theory with a resolvent estimates for
Laplacian in R™(n # 2). To consider scattering problem for stratified media, we also
need Mochizuki’s estimates for Ly. That statement is as follows : There exist n > 0
and C, > 0 such that for any ( € C\R satisfing [Im(| < n

(1.3) sup || X R(¢%; Lo)X g || = Cyl¢| ™,
[Tm¢|<n

where X% =(1+ |z|? + yz)_9/4.
(1.3) follows from low and high resolvent estimates. In section 2 and section 3 the idea
of the proof for low and high estimates is given respectively.

2. Low energy resolvent estimates.

The idea is due to Kuroda [3] using the satandard trace operator. We deal with s,
only 1/2 < s < 1. This condition is sufficient to prove Theorem 1.1 and 1.2.

We state Weder’s result [14]. That is needed to prove our results. a and b are used
as follows :

2
¢
c+:c_:>0§a<b<c27+ﬂ'2
n(F - 1)
or
02
et e =0Za<b< 027—1_211"0&11&2
2(£ _ 2
h(ci 1) cc_;r_l
h

We write S as the sphere of center zero and radius in R". Then We define

S. =S, USyUS_,

where
. 1/2
Sp={wesSh 1w > (5 —1) / @]}
C_I_ c+
2
So={wesS" :0<wo<(7_—1)1/2|w|}
C_I_ c+

S_={we " 1wy <0},

w=(W,wp) and |[w|* = wi + w3 + - + w2,

According to Lemma 2.3 in Weder [7] there exist trace operators, Ty(p) and T3 (i),
from LZ(R"*!) into L?(S.) and L?(S?™') respectively such that
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X,Eo((a,b))R(¢?; Lo) X,

b by
[ min s [T X (e = )

b
1 *k

/ o To (1) To(p) Xodps, (e # e,
where (2 € C\R, L(S,) and L2(S"') are usual L? spaces defined on S, and S"~

respectively.

Analyzing Ty(p) and T3 (p) we obtain the following theorem.
Theorem 2.1. As |(| — 0, one has
O(¢c*™?) (if nz22)

HXSR(Cz;LO)XSH = { O(|c|7—1) (Zf n = 1)

for any v < s—1/2.

3. High energy resolvent estimates.

By a technical reason we deal with only the case ¢4 = ¢_ except for Lemma 3.4 and
its introduction.

Theorem 3.1. Let s > 1/2. Assume that ¢4 = c_. Then one has
IX RO\ & ik; Lo) Xof| = O(A72) (A = o0),
uniformly in x> 0, where X, = (1 + |z|? 4 y?) 73/,
It follows from Theorem 3.1 that

Corollary 3.2. Assume that c; = c_. Then there exist Ay >> 1,11 > 0 and Cy, 5, >
0 such that for any ( € C\R satisfing |Re(| = A\ and [Im(| < ny

sup |Xe R(C*: Lo)Xe || < Oy €7
|Re¢| 21, [Im¢|Sm

To prove Theorem 3.1 we define the self-adjoint operator Lo(\) on L?*(R"T1),

{ Lo(N) = =A = Mg 2(y) — ¢&7)
D(Lo(N)) = H*(R™H).

This operator has been introduced by Weder [7]. Theorem 3.1 is obtained as an imme-
diate consequence of the following proposition

Proposition 3.3. Assume that cx = c—. Then one has

X GE0; V) XS] = O(A7%) (A — o0),
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uniformly in k > 0, where
G (03 A) = (Lo(\) = Aex? Fireg ™ (1)~
for k> 0.

By using Mourre’s method (cf. Mourre’s [5]) Proposition 3.3 can be proven. Con-
cering with Lg(\) there exist Fy(A), Fi(A) and Gj(A\)(j = 1,2,3---Q(\)) which are
partially isometric operators from L?*(R"™!) onto L*(R}), L*() and Lz(R%) re-

spectively, where k = (k, ko) € R* xR, Qo = {k € R"T1,0 < ko < \/q_(\) =
1//\(012 —¢Z*)} and Q()) is finite number in N. Using Fy()\), Fi(\) and G;j()\) we

construct the conjugate operators and show Mourre’s estimates (3.1) (c¢f. Mourre [5]).
First we define conjugate operator, D(\), as follows (cf. Kadowaki[1]):

Q)
Eo (M) (=Dnt1) EFo(A) + Fr(A) (=D 1 (A) + Z G (A (=Dn)G(N),

where

1 1 — _
Dyy1 = Z(k‘vk+Vk'k), D, = Z(k'vﬁ Ve k).

We consider the commutator i[Lo(A), D(A)] as a form on H2(R"1)N D(D()\)). More-
over we can extented the commutator as a bounded operators,i[Lo(\), D(A)]°, from
H'(R"™) to H7Y(R™*!) and obtain Mourre’s estimates as follows

Lemma 3.4. Let A > 1, take fi(r) € C§°(R),0 < fa < 1 such that fy has support in
((c3? = cZ?/2)N,2¢7N) and fa =1 on [(c;? — cZ?/4)\,3¢7°\/2]. Then there ezists a
positive constant C' which 1s independent of A\ such that

(3.1) FA(Lo(M)i[Lo(A), DIV fa(Lo(A)) 2 CAfA(Lo(N))*

in the form sense.

It follows from (4.3) that fa(Lo(\))i[Lo(A), D(N)]°fa(Lo()\)) is non-negative and
hence we define an operator, Gi(e; \), on L(R"1!) by
Gule;N) = (Lo(N) — /\c;2 F i/ico_z(y) FieMo(\))™?
for £ > 0 and € > 0, where Mo(\) = fa(Lo(\))i[Lo(N), D(N)]° fa(Lo(N))-
We write
FE(e\) = A2 Z,(e, ) GE(A 26, M) Zy (e, \),
where Z,(e,\) = (A2 + |D(\)])"*(A2 + e|D(\)[)*!

This is due to Yafaev [9]. But we do not use the scaling argument for \ (see the
definition of GF(0;\) and D()\)). Using (3.1) and differeting F¥(e; \) for € > 0 we
obtain Proposition 3.3. (cf. Kikuchi-Tamura[2]).

5



4. Proof of Theorem 1.1 and 1.2.

The proof of Theorem 1.1 and 1.2 are same as in §3 in Mochizuki[4]. Here we give
only a sketch of the proof of Theorem 1.1.

proof of Theorem 1.1. Noting that the local boundedness of R((’; Lg) for (' € C4( see
Weder[14]) we obtain (1.3) by Theorem 2.1 and Corollary 3.2. It follows from (1.3)
that
sup [[Ag (Ao — Q)7 Ag lumn = G,
[Im¢|<n

where (', is a positive constant which depend on 7 only and

A 0 0 )
6 — .
= Lo (1t feP g2

This means that Ay is Ag-smooth (cf. Reed-Simon [6]). Therefore we have that
{Uo(=t)V(#)f }4>0 is Chauchy sequence as t — oo in H for f € H.

To prove W # 0 we assume that
lim V()] = 0.

for any f € H. Then we can show a contradiction. O
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