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1. Introduction.

Let n = 1 and x 2 Rn; y 2 R. In this paper we study the following wave equations
with dissipative terms :

(1.1) @2t u(x; y; t) + b(x; y)@tu(x; y; t)� c0(y)
24u(x; y; t) = 0;

where (x; y; t) 2 Rn �R� [0;1); 4 is Laplacian for (x; y),

c0(y) =

8><
>:

c+ (y = h)

ch (0 < y < h)

c� (y 5 0);

and c+; c�; ch and h are positive constants. Our aim is to show the existence of
the scattering states to (1.1) for t ! +1. We deal with the following assumption for
b(x; y) : There exist C > 0 and � > 1 such that

0 5 b(x; y) 5 C(1 + jxj2 + y2)�
�

2 ;

for any (x; y) 2 Rn �R.

Considering the case ch < min(c+; c�) we �nd the guided waves (cf. Wilcox [8] or
Weder [7]). In brief we deal with ch < c+ 5 c� only.

L2(Rn+1) is the usual L2 space de�ned on Rn+1: For s 2 R, let be L2s(R
n+1) the

weighted L2 space de�ned by

L2s(R
n+1) = fu(x) : X�su(x) 2 L2(Rn+1)g; X�s = (1 + jxj2 + y2)

s

2 :

Let E and F be Banach spaces. Then we denote by k � kE the norm of E. If T is
considered as an operator from E into F , we denote by kTkE!F the operator norm.
If in particular T is considered as an operator from L2(Rn+1) into itself, then its norm
is denoted by the notation kTk.

We de�ne the symmetric operator L0 as :

L0 = �c0(y)
24;
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Then L0 admits a unique self-adjoint realizations in L2(Rn+1; c�20 (y)dxdy) . Then
L0 is a non-negative operator ( zero is not an eigenvalue ) and the domain of L0, D(L0),
is given by H2(Rn+1), Hs(Rn+1) being Sobolev space of order s over Rn+1. We also
denoted by R(�;L0) the resolvent (L0 � �)�1 of L0 for Im� 6= 0.

We remark that Weder [7] has showed the absence of eigenvalues and the limiting
absorption principle for L0.

To state our main results we introduce the free wave equations :

(1.2) @2t u(x; y; t) + L0u(x; y; t) = 0:

We put f = (u(t; x; y); @tu(t; x; y)). Then (1.1) and (1.2) can be written as @tf = �iAf
and @tf = �iA0f respectively, where

A = i

�
0 1

�L0 �b(x; y)

�
; A0 = i

�
0 1

�L0 0

�
:

Let H be Hilbert spaces with inner products

< f; g >H=

Z
Rn+1

(rf1(x; y)rg1(x; y) + f2(x; y)g2(x; y)c
�2
0 (y))dxdy;

and the corresponding norms k � kH where r = (@=@x1; @=@x2; � � � ; @=@xn; @=@y) and
f =t (f1; f2); g =t (g1; g2).

H is the energy space for (1.1) and (1.2). Then A and A0 generate a contrac-
tion semi-group fV (t)gt=0 and a unitary group fU0(t)gt2R on H respectively. Their
domains are

D(A0) = ff 2 H;4f1 2 L2(Rn+1); f2 2 H1(Rn+1)g

and D(A) = D(A0). Main results is as follows:

Theorem 1.1. Assume that c+ = c�. Then the wave oprators

W = s� lim
t!+1

U0(�t)V (t)

exists. Moreover W is not identically zero in H.

Assuming c+ = c� we show the existence of scattering states to (1.1) as an imme-
diate consequence of Theorem 1.1.

Considering solutions to (1.1) in any low energy space we �nd scattering states for
the case c+ 6= c� too. This results is as follows :

Theorem 1.2. Assume that c+ 6= c�. Then the local wave operators

Wl = s� lim
t!+1

E0((�l; l))U0(�t)V (t)

exists for any l > 0, where E0((�l; l)) is the spectral projection of A0onto (�l; l).
Moreover Wl is not identically zero in H.
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It seems that there are no works dealing with scattering problem for dissipative
wave equations in strati�ed media. Our proof of Theorem 1.1 and 1.2 are due to
Mochizuki [4] (see section 4). He has proved existence of scattering states for wave
equations with disspative terms in the case ch = c+ = c� = 1. His idea is baesd
on the combination Kato's smooth pertabation theory with a resolvent estimates for
Laplacian in Rn(n 6= 2). To consider scattering problem for strati�ed media, we also
need Mochizuki's estimates for L0. That statement is as follows : There exist � > 0
and C� > 0 such that for any � 2 CnR satis�ng jIm�j 5 �

(1.3) sup
jIm�j5�

kX �

2
R(�2;L0)X �

2
k 5 C�j�j

�1;

where X �

2
= (1 + jxj2 + y2)��=4:

(1.3) follows from low and high resolvent estimates. In section 2 and section 3 the idea
of the proof for low and high estimates is given respectively.

2. Low energy resolvent estimates.

The idea is due to Kuroda [3] using the satandard trace operator. We deal with s;
only 1=2 < s < 1. This condition is su�cient to prove Theorem 1.1 and 1.2.

We state Weder's result [14]. That is needed to prove our results. a and b are used
as follows :

c+ = c� =) 0 5 a < b <
c2+

h2(
c2
+

c2
h

� 1)
�2

or

c+ 6= c� =) 0 5 a < b <
c2+

h2(
c2+
c2
h

� 1)
arctan2

r
1�

c2+
c2
�r

c2
+

c2
h

� 1

:

We write Snr as the sphere of center zero and radius in Rn. Then We de�ne

Sc = S+ [ S0 [ S�;

where

S+ = f! 2 Sn
1
c+

: !0 > (
c2�
c2+

� 1)1=2j!jg

S0 = f! 2 Sn1
c+

: 0 < !0 < (
c2�
c2+

� 1)1=2j!jg

S� = f! 2 Sn1
c
�

: !0 < 0g;

! = (!; !0) and j!j2 = !21 + !22 + � � �+ !2n.

According to Lemma 2.3 in Weder [7] there exist trace operators, T0(�) and T1(�),
from L2s(R

n+1) into L2(Sc) and L2(Sn�11 ) respectively such that
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XsE0((a; b))R(�
2;L0)Xs

=

8>>><
>>>:

Z b

a

1

�� �2
XsT

�
0 (�)T0(�)Xsd�+

Z b

a

1

�� �2
XsT

�
1 (�)T1(�)Xsd�; (c+ = c�)

Z b

a

1

�� �2
XsT

�
0 (�)T0(�)Xsd�; (c+ 6= c�);

where �2 2 CnR, L2(Sc) and L2(Sn�11 ) are usual L2 spaces de�ned on Sc and Sn�11

respectively.

Analyzing T0(�) and T1(�) we obtain the following theorem.

Theorem 2.1. As j�j ! 0, one has

kXsR(�
2;L0)Xsk =

�
O(j�j2s�2) (if n = 2)

O(j�j
�1) (if n = 1);

for any 
 < s� 1=2.

3. High energy resolvent estimates.

By a technical reason we deal with only the case c+ = c� except for Lemma 3.4 and
its introduction.

Theorem 3.1. Let s > 1=2. Assume that c+ = c�. Then one has

kXsR(�� i�;L0)Xsk = O(��
1
2 ) (�!1);

uniformly in � > 0, where Xs = (1 + jxj2 + y2)�s=2.

It follows from Theorem 3.1 that

Corollary 3.2. Assume that c+ = c�. Then there exist �1 >> 1; �1 > 0 and C�1;�1 >
0 such that for any � 2 CnR satis�ng jRe�j = �1 and jIm�j 5 �1

sup
jRe�j=�1;jIm�j5�1

kX �

2
R(�2;L0)X �

2
k 5 C�1;�1 j�j

�1:

To prove Theorem 3.1 we de�ne the self-adjoint operator L0(�) on L2(Rn+1),�
L0(�) = �4� �(c�20 (y)� c�2+ )

D(L0(�)) = H2(Rn+1):

This operator has been introduced by Weder [7]. Theorem 3.1 is obtained as an imme-
diate consequence of the following proposition

Proposition 3.3. Assume that c+ = c�. Then one has

kXsG
�
� (0; �)Xsk = O(��

1
2 ) (�!1);
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uniformly in � > 0, where

G�� (0; �) = (L0(�)� �c�2+ � i�c�20 (y))�1

for � > 0.

By using Mourre's method (cf. Mourre's [5]) Proposition 3.3 can be proven. Con-
cering with L0(�) there exist F0(�); F1(�) and Gj(�)(j = 1; 2; 3 � � �Q(�)) which are
partially isometric operators from L2(Rn+1) onto L2(Rn

k ); L
2(
0) and L2(Rn

k
) re-

spectively, where k = (k; k0) 2 Rn � R, 
0 = fk 2 Rn+1; 0 < k0 <
p
q�(�) =q

�(c�2+ � c�2� )g and Q(�) is �nite number in N. Using F0(�); F1(�) and Gj(�) we

construct the conjugate operators and show Mourre's estimates (3.1) (cf. Mourre [5]).
First we de�ne conjugate operator, D(�), as follows (cf. Kadowaki[1]):

F0(�)
�(�Dn+1)F0(�) + F1(�)

�(�Dn)F1(�) +

Q(�)X
j=1

Gj(�)
�(�Dn)Gj(�);

where

Dn+1 =
1

2i
(k � rk +rk � k); Dn =

1

2i
(k � rk +rk � k):

We consider the commutator i[L0(�); D(�)] as a form on H2(Rn+1)\D(D(�)). More-
over we can extented the commutator as a bounded operators,i[L0(�); D(�)]0, from
H1(Rn+1) to H�1(Rn+1) and obtain Mourre's estimates as follows

Lemma 3.4. Let � > 1, take f�(r) 2 C10 (R); 0 5 f� 5 1 such that f� has support in

((c�2+ � c�2� =2)�; 2c�2+ �) and f� = 1 on [(c�2+ � c�2� =4)�; 3c�2+ �=2]. Then there exists a

positive constant C which is independent of � such that

(3.1) f�(L0(�))i[L0(�);D(�)]0f�(L0(�)) = C�f�(L0(�))
2

in the form sense.

It follows from (4.3) that f�(L0(�))i[L0(�);D(�)]0f�(L0(�)) is non-negative and
hence we de�ne an operator, G�� (�; �), on L2(Rn+1) by

G�(�; �) = (L0(�) � �c�2+ � i�c�20 (y)� i�M0(�))
�1

for � > 0 and � > 0, where M0(�) = f�(L0(�))i[L0(�); D(�)]0f�(L0(�)).

We write

F�� (�;�) = �
1
2Zs(�; �)G

�
� (�

� 1
2 �;�)Zs(�; �);

where Zs(�; �) = (�
1
2 + jD(�)j)�s(�

1
2 + �jD(�)j)s�1:

This is due to Yafaev [9]. But we do not use the scaling argument for � (see the
de�nition of G�� (0; �) and D(�)). Using (3.1) and di�ereting F�� (�; �) for � > 0 we
obtain Proposition 3.3. (cf. Kikuchi-Tamura[2]).
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4. Proof of Theorem 1.1 and 1.2.

The proof of Theorem 1.1 and 1.2 are same as in x3 in Mochizuki[4]. Here we give
only a sketch of the proof of Theorem 1.1.

proof of Theorem 1.1. Noting that the local boundedness of R(� 0;L0) for �0 2 C�( see
Weder[14]) we obtain (1.3) by Theorem 2.1 and Corollary 3.2. It follows from (1.3)
that

sup
jIm�j5�

k� �

2
(A0 � �)�1� �

2
kH!H 5 C�;

where C� is a positive constant which depend on � only and

� �

2
=

�
0 0
0 (1 + jxj2 + y2)�

�

4

�
:

This means that � �

2
is A0-smooth (cf. Reed-Simon [6]). Therefore we have that

fU0(�t)V (t)fgt=0 is Chauchy sequence as t!1 in H for f 2 H.

To prove W 6� 0 we assume that

lim
t!1

kV (t)fk = 0;

for any f 2 H. Then we can show a contradiction. �
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