REPRESENTATION OF SCHRODINGER OPERATOR OF A FREE
PARTICLE VIA SHORT-TIME FOURIER TRANSFORM AND ITS
APPLICATIONS
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ABSTRACT. We propose a new representation of the Schrédinger operator of a free par-

ticle by using the short-time Fourier transform and give its applications.

1. INTRODUCTION

We consider the Schrodinger equation of a free particle,

iOu+tAu=0, (t,z)€eRxR",
u(0,2) = up(x), =z €R,

(1)

where i = /—1, u(t, ) is a complex valued function of (¢,x) € RxR", uy(z) is a complex
valued function of z € R", dyu = du/dt and Au =Y  0*u/dz?.
When uy is a function in S(R"), the solution u(t,z) of (1) can be written as

ult, ) = (e3P ug)(z) = FLL, [e™ 7 Fug(€)) ().

E—a

Here we use the notation Ff(§) = [.. f(z)e “4dx for the Fourier transform of f and
F (@) = [on F(E)e™tdE with @€ = (2m)"dE for the inverse Fourier transform of f.
The Schrédinger operator 2 and closely related operators such as

(ei‘D‘auo)(x) =F! [e“ﬂa]:uo(ﬁ)](x), a€cR

— Y o
have been studied extensively by many authors. Hormander [8] has proved elPI’ is
bounded on LP(R™) if and only if p = 2, and Miyachi [11] has proved the sharp end-
point LP-Sobolev estimates for e/PI* o > 1. We also remark that ¢!°” is bounded on
the Besov space BP(R™) or BP4(R") if and only if p = 2 (Mizuhara [13] and Li [10]).
On the other hand, a recent work by Bényi, Grochenig, Okoudjou and Rogers [1] has
shown €”I” 0 < & < 2 is bounded on the modulation space MP4 for all 1 < p, ¢ < oo,
which means e2#4 preserves the MP%-norm (see the precise definition of MP? in Section
2.2 below). For further developments in this direction we refer to Bényi-Okoudjou [2],
Cordero-Nicola [3], Miyachi-Nicola-Rivetti-Tabacco-Tomita [12], Sugimoto [14], Wang-

Zhao-Guo [15], Wang-Hudzik [17] and the reference therein.
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In this paper, we propose a new representation of the solution u(¢, z) by using the short-
time Fourier transform and give its applications. More precisely, let ¢y be a function in

S(R™) \ {0} and suppose ¢(t, z) = (e2""¢py)(x), which solves the initial value problem
(0, 7) = po().

Then we have

@) 1,7) = s Vil Vil — €.9)(0),

where V,, uy denotes the short-time Fourier transform of uy with respect to the window
wo and Vi, y denotes the (informal) adjoint operator of the short-time Fourier transform
Vo, for fixed ¢, which are defined in Section 2.1.

By using the representation (3), we have the following propositions.

PROPOSITION 1.1. Let 1 < p,q < oo. Suppose py, p(t,-) € S(R™) \ {0} satisfy (2).
Then

(1) s = luoll s
holds for uy € MP4(R™).

PROPOSITION 1.2 (Bényi-Grochenig-Okoudjou-Rogers [1]). Let 1 < p,q < 0o and ¢g €
S(R™) \ {0}. Then there exists a positive constant C such that

(5) lut, )l arg < C(L+ [)"|uo | arzg
for up € S(R™).

PrOPOSITION 1.3 (Wang-Hudzik [17]). Let 2 < p < 00,1 < ¢ < 00 and py € S(R?) \
{0}. Then there exists a positive constant C such that
(6) lu(t, e < O+ [8) 2P o] o

©0

for ug € S(R™) with 1/p+1/p' = 1.

PRrROPOSITION 1.4 (Wang-Hudzik [17]). Let 2 < p < 00,1 < ¢ < 00 and py € S(R?) \
{0}. Then there exists a positive constant C such that
(7) lu(t, e < O+ [¢)" 22 Juo||prze
for up € S(R™).

The paper is organized as follows. In Section 2, we recall the definitions and basic
properties of the short-time Fourier transform and the modulation spaces. In Section 3,
we prove the representation (3). In Section 4, we prove Propositions 1.1 — 1.4. Finally,

in Section 5, we give local well-posedness result for the nonlinear Schrodinger equations
with Cauchy data in modulation spaces MP-t,



REPRESENTATION OF SCHRODINGER OPERATOR 3
2. PRELIMINARIES

Throughout this paper the letter C' denotes a constant which may be different in each

occasion.

2.1. The Short-Time Fourier Transform. We recall the definitions of the short-time
Fourier transform and its adjoint operator. Let f € S'(R") and ¢ € S(R"). Then the
short-time Fourier transform V,,f of f with respect to the window ¢ is defined by

(8) Vof(2,€) = (f(y), oy — 2)e™$) = [ f(y)oly —z)e " dy.
R
Let F' be a function on R* x R* and ¢ € S(R"). Then the adjoint operator V; of Vj is
defined by
ViF@) = [[ | Fun9ota - nedyas
R2n
with @€ = (27)7"d¢. It is known that for f € S'(R") and ¢ € S(R™), V,,f is a continuous
function on R* x R" and
Vo (2, )| < O+ x|+ 1E)Y, VY(z,§) €R" xR

for some constant C, N > 0 ([7, Theorem 11.2.3]). Moreover, for ¢, ¢,y € S(R") satisfying
(1, ) # 0 and (7,1) # 0, we have the inversion formula

1
—ViVef = S'(R"
([7,Corollary 11.2.7]) and the following pointwise inequality
C ! (Tom
(10) Vo f (2, )] < |<%W(Iwal « Vo)) (@,€), feS R,

for all (z,£) € R*" ([7, Lemma 11.3.3]).

2.2. Modulation Spaces. We recall the definition of modulation spaces MP? which were
introduced by Feichtinger [5] to measure smoothness of a function or distribution in a way
different from Besov spaces. Let 1 < p,q < oo and ¢ € S(R")\{0}. Then the modulation
space MP(R") = MP consists of all tempered distributions f € S'(R") such that the

norm 1
a/p
£l = ( [ ([ s opa) dg) = Vo (2.6l

is finite (with usual modifications if p = 0o or ¢ = 0).

The space Mg’q(R”) is a Banach space, whose definition is independent of the choice of
the window ¢, i.e., MP*(R") = M7*(R") for all ¢, € S(R")\{0} ([5, Theorem 6.1]). This
property will be crucial in the sequel, since we will choose a suitable window ¢ to estimate
the modulation space norm. If 1 < p, ¢ < oo then S(R") is dense in MP? ([5, Theorem
6.1]). We also note L? = M*?, and MP>" — MP>% if p; < py,q; < q2 ([5, Proposition
6.5]). Let us define by MP%(R") the completion of S(R™) under the norm || - ||s»a. Then
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MPA(RY) = MP4(R") for 1 < p,q < oo. Moreover, the complex interpolation theory
for these spaces reads as follows: Let 0 < 0 < 1 and 1 < p;,q; < 00,2 = 1,2. Set
1/p=1—=0)/pr+0/p2, 1/qg = (1 —0)/q1 + 0/qe, then (MPI MP2T) g = MPT ([5,
Theorem 6.1], [16, Theorem 2.3]). We refer to [5] and [7] for more details.

3. REPRESENTATION OF THE SOLUTION OF FREE SCHRODINGER EQUATION

In this section, we show that the solution u(t,z) of (1) is represented by (3). Let u(t, x)
be the solution of (1) with u(0,z) = up € S(R™). Note that u(t,z) is in C*°(R; S(R™)) in
this case. Let ¢(¢,z) be the solution of (2) with p(0,z) = po(x) € S(R™) \ {0}, which is
used as a window function. Using integration by parts, we have

Vi (320(6)) (.9

1 _— -
=5 /n o(t,y —x)Ayu(t,y)e ™ dy

1 iy , — iy
= iAy(p(ta Y- ZL‘)U(t, y)e yﬁdy + / (_Z€ ’ Vy)(p(ta Y- l‘)U(t, y)e yﬁdy
Rn n

- 5l [Py Bt g)e ey
= Vi 0@+ (i€ 9 = ) Vi atts )i, ©
Since u(t, z) and (t, ) are solutions of (1) and (2), and
10 Vo(t,) (u(t, ) (2, €) = Vaiope,) (ult, ))(2, €) + Ve, (i0yult, ) (2, £),
is valid, we obtain

iatvap(t,.)(u(ta ))(33, f) + (Zf Vg — %|§|2> Vap(t;)(u(ta ))(:L‘, )

1
= Vot (10000, + 53000, ) (2:6) = Vi a0 )0
=0.

Hence the initial value problem (1) is transformed via the short-time Fourier transform
with window function p(t, ) to

(i0h + i€ - Vo = 51E1°) Vo (ult, ) (@,€) = 0,
Voo(0,) (u(0,)) (2, §) = Voo, §)-

It is easy to see that

(12) Vit (ult, ) (2, €) = e 2PV ug (o — €2,€)

(11)
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is the solution of (11). Applying the adjoint operator Vo Of Vo, to the both sides of
(12), we have the representation (3) by the inversion formula (9). It is easy to check that
the above argument is valid for ug(x) € S'(R™).

4. PROOF OF PROPOSITIONS
In this section, we prove Propositions 1.1 — 1.4.
Proof of Proposition 1.1. Taking L? L{ norm of the both sides of (12), we have
et Magze = Vool ), )l

= e 2" Vpuo(x — €8, €)ll2rs

= [Vptto( €)ll 2.2
= [Juollrg-

O

Proof of Proposition 1.2. By Proposition 1.1 and the pointwise inequality (10), it suffices

to estimate |[ug||pme above by C(1 + |t])/?

equation (2). We note that

||U0||MP’(‘§ X where @o(x) and (¢, x) satisfy
e

o
(o), ¢(2,-))

by the inversion formula (9). Then, we have

Voo (2, €)

= Voo {Wlso(t,-» / 4{  Voyuo(z meoly — z)eiy'"dza'n] (z,€)

- m / / L @0y — x)e " Vouyuo(z,m) oy — 2)e " dydzdn

- m / 4{ </ poly = o)l - Z)e_i(g_")'ydy) Vip(e,yuo (2, m)dzdn

1 —i(§—n)-z
= m/[@z VQOOQOU(QT — Z,é- — 77)6 (€=m) Vnp(t,-)UO(zan)dZdn-

By Young’s inequality, we have

Vlﬂouo = VLPO [ V;ovw(t:')uo]

C
, < s .

Since
[(0(), 0 (t, )| = [(Bo, e 21 Go)| =

the stationary phase method yields that

[(po()s @ (t, )] ~ CRa(0) [t/ (as [t — o0).

[ et e e
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Hence we have (5).
Proof of Proposition 1.3. Firstly,

to show that ||Vw0ug(x,§)||Lng =

Veteyuo(@, &)l 22z

= IV
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O

we prove (6) for p = 2. By Proposition 1.1, it suffices

||Vgo(t,-)U0(fU,§)||Lng- By Plancherel theorem, we have

/ (L y — @)uo(y)e ™ dy

L2

/ B0 e g (y)e v Edy

2
Ly Lg

/ et S e Mg (y)e =V Edy

J.

/ woly — x)up(y)e ¥idy
Rn

2
Ly LZ

Do(m)e” Y Mug(y)e™ ¥ dy

2
Ly Lg

13|

oo (2, )l rars-

Secondly, we prove (6) for p = oo. The same argument as in the proof of Proposition

1.2, we have

e

‘V { : Vet tol 5)]
= ug(

lo(t, )12 w(t:) 20 -

el || // Voo (0t ) (@ = 2,€ = m)e™ =DV (ult, ) (2, m)dziln

®o L2 R2n L?Lg
< T Vo (2t ) (@, ) e 2 | Vipeey (ult, ) (@, €) | s

||s00|| :

C

||90 ||2 ||90( )HM%’IHUOHM;,Oq-

Since

Voo (o(t, ) (@, ) =

—iy- gdy

voly — 2)e(t y)e
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the stationary phase method (see [6], [9]) yields that
|VLP0(90(t7 ))(IL’, §)|

T\ ~( T

a(-5)@ (-5 -¢)

Fo 3 [1(5) [Eozi=o]|a s -

la/<2(1+n

<Clt|™:

Hence we have (6) for p = co. By the complex interpolation method, we have (6) for all
1 <p<oo.
0

Proof of Proposition 1.4. By using the complex interpolation method between p = oo for
(5) and p = 2 for (6), we have the conclusion.
O

5. NONLINEAR SCHRODINGER EQUATION

Next we consider the following initial value problem of the nonlinear Schrodinger equa-
tion,
i0u + Au = f(u),
(13) t 2 f( )
u(0, ) = ug(x),
where f(u) is a polynomial of v and w with f(0) = 0.

The following result is already known, but we obtain it as a corollary of our represen-
tation (3).

PROPOSITION 5.1 (Bényi-Okoudjou [2]). For uy € MPH(R™) with 1 < p < oo, there ex-
ists a positive constant T and a unique solution of (13) such that u € C([0, T]; MP*(R")).

A

PROOF. Using the representation (3) of the Schrédinger operator ez we have the

integral equation associated to (13),
V‘P(ta') (U(t, ))(xa g)
¢
= IR g — 16,€) + / e HSNERY ()] — (¢ — $)E, €)ds.
0

We recall that M?! is a Banach algebra, i.e., for ¢ € S(R")\ {0}, there exists a positive
constant C' such that

(14) ||U1U2||Mg1 < C'||u1||1\4§;,1||U2||z\4g1

for all uy,uy € MPH(R™) (]2, Corollary 2.7], [15, Corollary 4.2]).
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We define the mapping F(u) from C([0, T]; MP*(R")) to itself as follows:

F(u) =V,

’

[e‘%itézvmuo(x —16,6) + /Ut e MY )@ = (t = s)E, g)ds] '

Putting A = |lug||re and Xp = C([0, T]; MPH(R™)), we define a closed subspace Xr 4
©0
of C([0, T]; MP'(R"™)) as follows:

Xra = {u e C(0, T MP®") | Jlullx, = sup Jult, s <24},
te[0,77] et

The mapping F' is well defined on Xp 4 for small T > 0. In fact, the above fact (14)
for multiplication on MP'(R") yields that

T ~
1Py < les + [ €6 Flulzy s,

where C(s) is a positive continuous function of s and f(u) is a polynomial of u and u
which is made from f(u) replacing all the coefficients to their absolute value. Hence we
have

1P (u)][x, < A+ F(A)CIT
with Cy = sup;cp. 7 C(s), which implies F'(u) € X7, 4 for small 7' > 0.
The same argument as above yields that F' is a contraction mapping from Xy 4 to itself
for small 7" > 0. Picard’s fixed point theorem for a contraction mapping on Xz 4 implies

the conclusion.

O
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