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Abstract

In this paper, we characterize the Fourier-Lebesgue type wave front set by using
the wave packet transform. We apply this to the propagation of singularities for the
first order hyperbolic partial differential equations with constant coefficient.
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1 Introduction

The notion of wave front set, introduced by Hérmander [9], is a main tool of mi-
crolocal analysis. There are many kinds of wave front sets such as C'*° type, analytic
type, Sobolev type, Fourier-Lebesgue type and so on (see, for example, Sato-Kawai-
Kashiwara [18], Hormander [10], [11], Treves [19], Pilipovié-Teofanov-Toft [15], [16]).
In this paper, we focus on the Fourier-Lebesgue type wave front sets.

For 1 < ¢ < oo and s € R, the Fourier-Lebesgue space FLI(R"™) is the set
of all distributions v € &'(R") such that U(¢) = [p. u(z)e ™4dz is a function
and \|<g)sa(§)||Lg < o0 (see [8, Definition 2.2.1]). In the last several years, the

Fourier-Lebesgue spaces have been studied extensively (Cordero-Nicola-Rodino [2],
Okoudjou [14], Ruzhansky-Sugimoto-Toft-Tomita [17]). The Fourier-Lebesgue type
wave front set W Fr q is defined as follows.

Definition 1.1. (Pilipovié-Teofanov-Toft [15]) Let 1 < ¢ < o0, s € R, (0,&0) €
R™ x (R"\{0}) and u € S'(R"). Then (x0,&) ¢ W Frrq(u) means that there exist
a conic neighborhood I" of §y and a function a € C§°(R") with a(zg) # 0 satisfying
that

I (€)(€) @€ < oo, (1)

where (€) = (1 + |£]?)"/2 and xr is a characteristic function of T.



For u € §'(R™), W Fzp2(u) coincides with Sobolev type wave front set W Fps (u).
Pilipovi¢, Teofanov and Toft have shown that W F 4 (u) coincides with modulation
type wave front set W Fyp.a(u) ([15, Proposition 6]). We refer to Feichtinger [4] and
Grochenig [7] for the definition and basic properties on modulation spaces.

On the other hand, the wave packet transform has been introduced by Cérdoba-
Fefferman [1]. Let v € S'(R") and ¢ € S(R™) with ¢(0) # 0. The wave packet
transform Wyu of u with respect to ¢ is defined by

Wiula.§) = | 3ly=au(ye <y, 6

which has the information of frequency of u around z. Folland [5, Theorem 3.22]
and Okaji [13, Theorem 2.2] gave a characterization of C™ type wave front set and
Sobolev type wave front set in terms of the wave packet transform, respectively. In
Gérard [6, Proposition 1.1], similar a characterization of Sobolev type wave front
set is given by using the FBI transform (see also Delort [3, Theorem 1.2]). By using
the wave packet transform, we give a characterization of the Fourier-Lebesgue type
wave front set.

Proposition 1.2. Let 1 < p,g < oo, s € R, (z9,&) € R* x (R"\ {0}) and
u € §'(R™). The following conditions are equivalent.

(1) (z0,&0) ¢ WFrps(u)
(ii) There exist a neighborhood K of xg, a conic neighborhood T of & and a func-
tion ¢ € C°(R) with ¢(0) # 0 satisfying that

1P (@) xr (E)(€)* Wou(z, ) pll g < oo (3)

Using the above proposition, we obtain the following theorem concerning the
propagation of singularity in the framework of Fourier-Lebesgue type wave front
set.

Theorem 1.3. Let 1 < g < oo, r € R. Suppose that u € C(R; S'(R™)) satisfies

{(at +i|D\u(t,z) =0, (t,z)€ RV, n

u(0, ) = up(z), x € R",

where i = /=1 and |D| = F~YE|F. If (z0, &) ¢ W Frpa(uo), then (zo + %t,ﬁo) ¢
W Ezpa(u(t,-)) for allt € R.

Remark 1.4. (i) Let a(§) € C°(R™ \ {0}) be a homogeneous function of degree
1, ie., a(A§) = Aa(§) for A > 0. For the equation (9; + ia(D))u(t,z) = 0, the
conclusion of Theorem 1.3 holds if we replace (z¢ £ é—glt, o) ¢ WFgpa(u(t,-)) with
(w0 £ Va(&o)t,&0) ¢ W Frpa(u(t,-)) (refer to Appendix A).

(i) Since the wave operator is factorized as 87 — 1" | 92, = (0 — i|D|) (s + | D|),
we can apply Theorem 1.3 to the wave equation.



This paper is organized as follows. In Section 2, we prepare several lemmas to
prove Proposition 1.2 and Theorem 1.3. In Section 3, we prove Proposition 1.2. In
Section 4, we prove Theorem 1.3.

Notatzon For z € R" and r > 0, B,(z) stands {y € R™; |y — x| < r}. F[f](&) =

f]R" —1 €y is the Fourier transform of f. For a subset A of R", we
denote the complement of A by A€, the set of all interior points of A by A° and
the closure of A by A. x4 is the characteristic function of A, that is, xa(x) = 1 for
x € A and xa(z) =0 for z € A°. Throughout this paper, C' and C; (i =1,2,3,...)
serve as positive constants, if the precise value of which is not needed and Cy denote
positive constants depending on N.

2 Preliminaries

In this section, we give some lemmas to prove Proposition 1.2 and Theorem 1.3.

Lemma 2.1. Let ¢ be a measurable function on R™ such that (-)*¢ € LY(R™) for all
keR, FeS'(R"),1<q< o0, andT',T" be open conic sets satisfying T’ C T C R™.
Assume that pr(£)<£>sF(£)||Lg < o0 and H<5>_NF(§)HLE < o0 for some s € R and
N € N. Then we have

I (€61 (C * FYE)l52 < Cunvg <||XF<5><5>SF< iy + || H )

for some positive constant Cs n¢.

Proof. To prove (5), we set

X EE°(C * P
G / <& =mFdn + (O | (€= n)Fdn=1+1

For any £, € R® and s € R, (£)*(¢€ —n)~I*l(n)=* < C; holds and thus Young’s
inequality yields

Ity < | [ = Ste = aicte - e P

Le
< CSH<£>'S'C(£)HL% I\xf(§)<£>5F(£)lng :

If n¢ T and £ € TV, then | — n| > C|¢| and |€ — n| > C|n| for some C > 0. So we



have by Young’s inequality

_ \Is|+N
IRl < Con |rr(€(e)* [ icte =l Pl
i
F
<cwlerae], |5
5 :
Therefore we obtain the conclusion. O

Lemma 2.2. Let 1 <p,qg < o0, s € R, u € §'(R") and (xp,&) € R" x (R™\{0}).
Assume that

1P (2)xr ()6 Wou(z, )z [l g < oo

for a neighborhood K of xg, a conic neighborhood I' of §y and a function ¢ € C3°(R™)
with ¢(0) # 0. If ¢p € CP(R™) and I' is a conic neighborhood of & such that
¥(0) # 0, supp? C (supp ¢)® and I' C T, then

Il (2)xr (€){€) Wyu(a, €)ll 2]l s < 0.

Proof. Since |¢(z)| > C > 0 on supp ), we have

Wyu(z,§) = /]R" Xsupp (Y — ) <m>¢@—@uw)6_w§dy
= [ (€ —mWsu(z,n)dn, (6)

R

where ((£) = Fy—e¢[Xsuppy (y — 2)¥(y — 2)/d(y — x)](£). By Lemma 2.1 and (6), we
have

1Pz (@)xr ()6 Wayula, ) 1zl g

< | terer [ it = ity a

1
< Coe (i 1xr O Wot Ol g+ | g i@t | ).
L
¢
We note that the support of x i is compact and |[Wyu(z,£)| is majored by a constant
times (€)M for sufficiently large Ny. By taking N > Np sufficiently large, we have
the conclusion. O

Lq

LY ¢

Lemma 2.3. Let 1 < ¢ < o0, s € R, u € §'(R™) and (x¢, &) € R™ x (R™\{0}).
Assume that (z0,80) ¢ WEgrpa(u), ie., pr(g)(f)s@(&)HLZ < oo for some open
conic set T and a function a satisfying the condition of Definition 1.1. Ifb € C§°(R™)
satisfies b(xg) # 0 and supp b C (suppa)®, then ||X[‘(£)<€>Sg’l:(f)||Lg < 00.

We can prove Lemma 2.3 in the same way as in the proof of Lemma 2.2, but we
give a proof in Appendix B for reader’s convenience.
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3 Proof of Proposition 1.2

In this section, we prove Proposition 1.2.

Proof of Proposition 1.2. We prove (i) implies (ii). Since (zo,&0) ¢ W Frpa(u),
there exist a function a € C§°(R™) with a(xg) # 0 and a conic neighborhood I" of
&o satisfying that ||Xp(£)<£>86ﬂ(£)|\Lg < oo. Take r > 0 and b € C§°(R") satistying
suppb C Byy(z9) C suppa and b = 1 in By, (xg). It follows from Lemma 2.3 that
||XF(§)(§>5@(£)||LZ < o0o. Take a neighborhood K of z¢ and a function ¢ € C§°(R")
satisfying K C B,(xg), ¢(0) # 0 and supp¢ C B,(0). Note that 2 € K and
y —x € B,(0) imply y € Bar(x0). So xk(x)d(y — x)uly) = xx (x)d(y — 2)b(y)u(y).
Let I” be a conic neighborhood of &y such that I C I'. Since Wy(bu)(z,§) =
(e7E Fp)(€)) ag]:[bu] (&) we have by Lemma 2.1

s (@)xrr ()€ Woulz, )l 1zl o
= [Pz (2)xr (€) (€)W (bu) (2, )| gl g

< |||erc (@ @) (Tl |FTeull)(6)]

LZIILE
< Cunautolly (oo mee)], + | 752 )
13

Since |EE(§)| has at most polynomial growth we obtain the desired result if we take
an integer N sufficiently large.

Conversely, we prove (ii) implies (i). By Lemma 2.2, we can choose I' being a
conic neighborhood of &y, R € R and ¢ € C§°(R™) which satisfy ¢ = 1 in Byr(0)
and |[[[X By (o) ()X (E)(E)*Wou(z, §) [ pllLg < oo, Put K = Bg(w) and take a &
C3°(R™) satisfying a(zg) # 0 and suppa C Br(xo). Since ¢p(y —z) =1 for x € K
and y € supp a, we have

Xk (z)au(€) = xk (v) - oy — x)a(y)u(y)e ¥ dy

— (o) [ (e~ n)Wola,n)dn,
So we obtain by Lemma 2.1

I @)z I (€€ T
(1) [ fale =~ )l @) Woute il do|
R™ Lg

é ‘

<y (n|xK<x>xF<s><s>SW¢u<x,£>||Lgr|Lg + g I @mete, Ol )
i



for a conic neighborhood I'" of &, satisfying IV C T'. Since xx has compact support
and |[Wyu(z,€)| is majored by a constant times (£)™0 for sufficiently large Ny, we
obtain the desired result if we take an integer N > Ny sufficiently large. 0

4 Proof of Theorem 1.3

In the sequel, for a function f(¢,z) on RxR"™, we denote f(t, &) = [on f(t,z)e ™ 4da
and W¢f(t7$a€) = W¢(f(t7 ))(‘Tvé)

Proof of Theorem 1.3. Here, we only treat the initial value problem

{(at _ Z’DDU(ta 1‘) =0, (t,x) S Rn-l—l’ (7>

u(0,z) = up(x), x € R,
since we can treat the case (0; +i|D|)u(t, z) = 0 in the same way. Let ¢ € C§°(R")

with ¢(0) 7 0. Since [n] = [¢]+ (1= &) - &/I€[+[nl —n-&/[¢], we have by integration
by parts

WalDlu)(t,2.) = [ Sl [ Inlate e ane vy
= <|§| + z|££| : Vx> Wyu(t,z, &) + Ry (u; t, ,€),

where dn = (27)"dn and

&n
€]

So the initial value problem (7) is transformed to

Ry(ut,z, &) = /R2n oy — ) <!77\ — ) a(t, n)e” O dandy.

(@ Ve i|5|> Woult,z,€) = iRo(ui t,,€),

(8)
Weu(0,z,§) = Wyuo(w, §).
It is easy to see that (8) is equivalent to the integral equation
_ il §
Weu(t,z,§) = e~ Wyuo [z + mt,f
t g

+¢/ ct=OlIR, (u; 0, + m(t — 9),5) do. (9)

0

Let T be a positive number. We show by induction (zg — é—glt, o) ¢ WFrpa(ul(t,-))
for t € [T, T7.



Since u(t,-) € S'(R™), there exists s € R” such that ||(-)*au(t,-)||ra < oo for all
a € Cg°(R") and t € [-T,T]. Thus (zg — |§ Téert o) ¢ WFxpa(u(t,-)) holds for all

te[-T,T).
Next we show (g — 5—Ot,fo WFErra (u(t,:)) forallt € [-T,T] and s < o <
€0l ]:La+1

r — 1 under the assumption (xg — é—ot,fo WFrra(u(t,-)) for all t € [-T,T|. It
[€o] FLs

is clear that there exist a neighborhood K of xy — é—glt, a conic neighborhood I' of
o0, ¢ € C°(R™) with ¢(0) # 0 such that

HHXK(ﬂC)Xm{mgl}(§)<f>a+1W¢u(t,$,§)HL£HLg < o0.

Put T = I'N{|¢| > 1}. From the equation (9), it is enough to show that

Ié(l)l‘@ HHXK z)xp(§ )<5>U|5|W¢UO<$+|§|15,§> ol < 00, (10)
z 3
Ig,)f@ﬂp = HHXK(JU)XP R¢ Yu; 0, x + |£|( 9),5)’d9 Ll < 00
C oy
and
Il (@)xp()(E)°
KF,¢¢ Xk (2) X3 (E)(€)7[€]
t | ¢
X/O R¢><(1—¢)u,9,x+m(t—&),g)‘de el <oo (12)

for some ¢ € C§°(R™) and all t € [T, T.

From the assumption (xo,&0) ¢ W Fzpa(ug) and Proposition 1.2, there exist
a constant € > 0, a function ¢; € C§°(R"™) with ¢1(0) # 0 and a conic neigh-
borhood I’ of & stuch that [z, (ag) (@)1 (€)(€) Woy o, )l pzlze < 0. Let

K1 = Bo(z9 — % ) and I'; be a conic neighborhood of &y satisfying e T~ > d; =

supgepldlst(lgl |€°|) and Ty C TV, If x € Ky and € € Ty then = + If\t € B (x0).
Thus we have
1 r
Tt = (st @a @@ Wom@ o) [, <o

€

where T'y =Ty N {|¢] > 1}
Next we show (11). By the assumption of induction we can take a conic
neighborhood I of & and ¥, € C§°(R™) such that ¢y = 1 near zy — |§ ‘t and

HXF,,(-)()"@(L-)HLE < oo for all t € [-T,T]. Take ¢’ > 0 satisfying ¢» = 1 on
Bger(xg — é—g‘t) Let ¢o € C§°(R™) with ¢2(0) # 0 and supp ¢2 C Bas(0), Ko =

7



B (xo— ‘5 | t) and Ty be a conic neighborhood of & satisfying Ty C T and &’ T~ >

dy = supgemdlst(m, H)' Since (1 — A,)NHtlew (=8 = (5 — £)2N+2ew- (1= for an
integer N > 0, we have by integration by parts

(W‘ AT !é\ "“)

N & _9)< _€-n> dou(® e O
= =m0 (v o) (i = S ) M e
Put Ty = Iy N {|¢| > 1}. Using the fact that
1) €linl - o M-t _ 1
(=) 17" = e e = 5y < i~ 26 = T
we have
(2) _
IK22f2,¢2,% = HHXKQ(:U)XFQ R¢2 ou; 0, x + ‘5’( 9)75>‘d9 el
X7, (6)(€)°
< Clixgllp |1 = ANy H F27I¢W(9 n)ldn
t L / (n =€) Lg
S CKQ,(bQ(Jl + J2)7
where
T
£° —
J1 = — 0 d do
1 /0 /F TR
and
T Xg, (6)(§)7 —
Jo = — 0 d de.
o= [\, e @i )
€
Since (&) < 2(n — &) or (£) < 2(n) hold, we have
() < ¢ (13)

(n =& (M7 = (n—&)2N-ll

for 2N > |o|. Thus if we take an integer N sufficiently large, then Young’s inequality,
(13) and the assumption of induction yield

=[] =S o | a
1 T — £
<¢| g [ woieriio.o], < o




On the other hand, if ¢ I/, € € T'y and 2N > |o| then we have
w _ ¢ _ ¢
(n =N = (n— &Nl = (n = M ()™

where N; + Ny = 2N — |o|. Since ]@(9,5)\ has at most polynomial growth with
respect to &, Young’s inequality and the inequality (14) yield

(14)

1 7| gu(6,€)
Jo < C H <_>N1 I /0 <§>N2 Lg df < oo,

if we take integers N1 and N, sufficiently large. Thus we obtain I @ _ bait
27 27 2,%0

Finally we show (12). Let ¢; be a C* function on R" satisfying (;(n) = 0 for
In| <1 and ¢1(n) =1 for |n| > 2 and put (2(n) =1 — (1(n). It suffices to show that

t
3) _ o ,
LEED ) s, (€[ 1ok <
where
ri= v [ (y—a = &e=0) (1n = S )pmma )
< (1= () ul, D)plhad)e 1159 dzdndy.
and

f}QTo// - cbg —x— !f\ )(\77! - ﬂén)@(n)

x (1= p(2))u(0, 2)b(ho@)e " 1Y) di dndy

for b € S(R™) with b(0) = 1. From the structure theorem of S’ (see, for example,
[12, Theorem 2.14]), there exist constants [,m > 0 and functions f,(6,-) € L?(R")
for multi-indices a such that

)Y DO fa(6, 7). (15)
|| <m
Since
Ns —i(i—y)- N il
e—iE—y)n _ (—A,)Nsemi@=y)m i -6 _ (1= Ay)Naeiv(=9)
|T — y|>Ns (n — £)2Ns

for positive integers N3 and Ny, we have by (15) and integration by parts

x-S (t—
Ry = lim /// N4 oy — €] (t—6))
h1,h2—>0 3n |j§ _ y|2N3

X W( AN {(W |€| >b(h177)C1(77)}
X (1 — hg(&))(@) D fo (0, Z)b(ho@)e " ENY 1490 dzdndy.




We note that

LA {@(y —‘x — &t 9))} _baly —’fc— G- »

R R

where ¢o(y) = (1 — Ay)Nipo(y) and A is a finite sum of o(|Z — y[2M3) times CF°
function of y. Put

f= g & ff s e o)

o m( AN {(\ | - |€|> b(hm)Cl(Tl)}
x (1= 4 ())(2)'b(hai) D fu (0, &) TV didndy.

Since supp ¢; N B1(0) = 0 we have

o { (= T | < v < e )

on the support of (1. If x € Ky = Bos(xg — % ), & € 1~“2 and y —x — (t —0)&/[¢| €
Bs./(0) then y € Bs.r(xg— e |9) and if T € supp (1—1y(Z)) then x ¢ BGEI(‘/IJO—%H)_
Thus |Z —y| > €’ > 0 holds on the support of xx, (z)xr,(§)d(y — z — é|( 0))(1—

@) Pt gy, (x) = (1 = o)) (x) b — i3 18 7y > & > 0 and
Yy € Bser(zg — & ‘9) then we have |z — y| > C1(Z — y) > C2(Z) and, hence,

e [ 10 82 g (@)lde

for N > a+n and a positive constant C which is not depending on y and 6 € [0,T7.
By (17) and (18) we have

, Baly — 7 — & (t— )
|7y < C’hhglo Zm//R% (1 — €)2Na (77)2N—1
x / Goa (1 — 1)1117 12 Fo B, o @y

| Galy — 2 — £t —0))
SC,}QIEOZ //R% (n — €)2Na( §2N3 -

laj<m

lim
h1—0

<C (18

i 1% Gyny () < lim

Ll

[Ole

e

dndy

TR
S A (19)

10



Thus, from (16) and (19), we have

2N3 1— |a|<€ n>2N4

On the other hand, since (3 € Co (R") we have

- 8)" { (- ")l } < g (20)
For g, (x) = (1 V(@) (@) b(hse) & — 32
T 1077, Ol < 1)

where C is not depending on y and 8 € [0,T]. Since

(1 —A,)Nsem? @y (1 — Ay)Naeiv (=€)

—i(E—y)n _ iy-(n—§) _
R S R R
for positive integers N3 and Ny, we have by (15), (20), (21) and integration by parts
[ACRIE
|Ra| < C/ )2Ny—1- |o¢|<§ n>2N4d’7‘
Since

(€7 e 3 ¢
<77>2N3717|a|<§ _ 77>2N4 - <77>2N3727|a|70' <§ _ ,r]>2N4fo'71
for N3 > (2+ |a] + 0)/2 and Ny > (0 + 1)/2, we have by Young’s inequality

(€)71€] 1
’/n (n>2N3‘1“°"<§—n>2N4dn e

<,>2N4—O’—1 L
Thus if we take integers N3 and N, sufficiently large, we obtain

Y L€l fa (0, )| 2
Xro (%)X, (€ / /n \2Ns—1—Jal (¢ _ 77§2N dndy
L

< Clhvcl [ 1| [ o S

1
<,>2N3—2—|o¢|—0 11

(3)
IKz,Fz,tbzﬂlﬂe ¢

q
L&

q
LE
< CKz,N37N4 /

0

Hence we get the inequality (12). Taking K C KiNK, I' C I'1NI'y and ¢ € C§°(R™)
with ¢(0) # 0 and supp¢ C supp i N supp ¢, we obtain (zo — &ot/|éol, &) ¢
WF!  (u) for t € [-T,T)]. Since T is an arbitrary positive number, we obtain the
desired result. O

ﬁﬁmmw<w
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Appendix A

We give a sketch of proof on Remark 1.4 (i). Let ¢ € C§°(R™) with ¢(0) # 0.
Applying the wave packet transform to the equation (9, — ia(D))u(t,z) = 0, we
have

OWoult,z,6) —i [ oy~ 95)/ a(n)a(n)e?dn eV Edy = 0.
R n

Since a(n) is a homogeneous function of degree 1, Va(n) - n = a(n) holds. So we

have

a(n) = a(§) +Va(§) - (n—&) +r(&n), (22)
where r(£,n) = a(n) — Va(§) - n. By Taylor’s theorem, we have

n 1
&) = 3 Cyl&—ml& —n) | 0c0gale+0tn—€) (1~ 0)db.

ij=1
From the equation (22) we have by integration by parts

o) [ amatneraye vy

= a(f)Wdﬂ’L(t? xz, 6) - Zva(g) : V$W¢>u(t7 z, g) + R(u(ta ‘); xz, 5)7

Rn

where

R(ult,)iz.§) = | d(y—a) /IR r(&,m)a(n)e 1 dndy.
If [£]/2 < |€ — n|, then |n| < |€ —n| + |£] < 3|¢ —n|. Since a(n) is a homogeneous
function of degree 1, if |£]/2 < |£ — 7], then we have by Cauchy-Schwarz’s inequality

~—a_ [€la(n) = [€]Va(€) - n
€ —n""= € n7e]
_ [€él(Va(n) = Va(§)) - n
(€ —m2¢l
< [nllVa(n) = Va(§)]
B (€ —mn)?
C
< —.
~ 1l

If |€ —n| < |£]/2, then we have

n 1
rEmle=m < Y Cy [ 106k alé +00 - )I(1 = 0)a0
ij—1
= 19
ij ——df
SZ;CJ/O €+ 00-9)
C
<.

12



So we can regard R(u(t,-); z, ) as lower order term with respect to £. Thus the equa-
tion (0 —ia(§) —Va(&) - Vi) Wyu(t, z, &) = R(u(t,-); x, &) implies (xo—Va(&o)t, &o) ¢
W Fzpa(u(t,-)) in the same way as in the proof of Theorem 1.3.

Appendix B

We prove Lemma 2.3. Since |a(z)| > C > 0 on supp b, we have

(€)= [ Xowmile >b<(§ (2)u(z)e " du

/ca W)@ (€)dn,

where ((£) = FXsuppp(®)b(z)/a(x)](§). By Lemma 2.1, we have

(o)
o > - =

Since au(€) has at most polynomial growth, we obtain the conclusion if we take an
integer N sufficiently large.

IXE(E)E) Bu(©)l] < Cone (IXF(@(&)S@(&)IILg +
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