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Abstract. In this article we deal with homogeneous pseudo-Kähler manifolds of abso-

lutely simple Lie groups and find out ones having non-constant holomorphic functions

from among the pseudo-Kähler manifolds.
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1. Introduction

It is a fundamental problem to judge whether O(M) ∼= C or O(M) ̸∼= C for a given

connected complex manifold M = (M,J), where O(M) stands for the complex vector

space of holomorphic functions onM andO(M) ∼= Cmeans that all holomorphic functions

on M are constant. For example, one knows

(1) O(M) ∼= C if M is compact;

(2) O(M) ̸∼= C if M is a domain in some Cn.

In this article we solve the problem for a given homogeneous pseudo-Kähler manifold G/L

of connected absolutely simple Lie group G and establish

Theorem 1.1 (cf. Borel [B], Matsushima [M], Wolf [W]). Let G be a connected abso-

lutely simple Lie group, and G/L a homogeneous pseudo-Kähler manifold of G. Suppose

that G acts on G/L effectively and dimG/L ̸= 0. Then, the following conditions (A) and

(B) are equivalent:
1
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(A) O(G/L) ̸∼= C.
(B) The Lie group G is non-compact and G/L is a homogeneous Kähler manifold of

G.

Here we refer to Remark 2.1 for the complex structure J on G/L (see p.3).

Here are comments on Theorem 1.1.

Remark 1.2. By results of Borel [B] and Matsushima [M] one can show that the (B)

is equivalent to the following condition (C):

(C) The Lie group G is of Hermitian type, L is included in a maximal compact sub-

group K of G and the fibering of G/L by K/L over G/K is holomorphic.

In addition, Wolf [W] asserts that the (A) is equivalent to the (C) above. These imply

that Theorem 1.1 is not new.

At any rate, the main purpose of this article is to prove the part (A) ⇒ (B) of Theorem

1.1.

2. A complex structure and homogeneous holomorphic line bundles

Let G be a connected absolutely simple Lie group, and let G/L be a homogeneous

pseudo-Kähler manifold of G such that G acts on G/L effectively and dimG/L ̸= 0. Here

a Lie group is said to be absolutely simple, if its Lie algebra is a real form of a complex

simple Lie algebra.

2.1. An invariant complex structure on G/L. In general, there are several kinds of

complex structures on the pseudo-Kähler manifold G/L. In order to study the vector

space O(G/L) one has to fix a complex structure on G/L. We fix a G-invariant complex

structure J on G/L by means of the following way. Since G/L is a homogeneous pseudo-

Kähler manifold of connected (semi)simple Lie group G and dimG/L ̸= 0, there exists a

non-zero elliptic element T ∈ g satisfying

L = CG(T )

by Dorfmeister-Guan [DG1, DG2].1 This assures that the center Z(G) is trivial because

G acts on G/L effectively, and the Lie group G is isomorphic to the adjoint group of g.

Accordingly there exists a connected complex simple Lie group GC such that

(1) Z(GC) is trivial,

(2) G is a connected closed subgroup of GC,

(3) g is a real form of gC

1Also see Chapter 10 in [Bm] if necessary.
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because G is absolutely simple. Setting

gλ := {A ∈ gC | adT (A) = iλA} for λ ∈ R, Q− := NGC(
⊕

µ≥0 g
−µ),

we know that (i) Q− is a connected closed complex parabolic subgroup of GC, (ii) L =

G ∩Q− and (iii) the mapping

ι : G/L → GC/Q
−, gL 7→ gQ−

is a G-equivariant diffeomorphism of G/L onto a domain in the complex flag manifold

GC/Q
−. Since GC/Q

− is a complex homogeneous space, one can transfer the complex

structure of Cm to GC/Q
− by means of charts, and fix a GC-invariant complex structure

on GC/Q
−, where m := dimGC/Q

−. Identifying G/L with ι(G/L), one may assume

that G/L is a domain in GC/Q
−. Then, we induce a G-invariant complex structure J on

G/L = ι(G/L) from GC/Q
−.

Remark 2.1. In the same way as above, we fix a G-invariant complex structure J on

the pseudo-Kähler manifold G/L in Theorem 1.1.

2.2. Homogeneous holomorphic line bundles and O(G/L). We obey the setting

of §§2.1. In this subsection we understand the complex vector space O(G/L) from the

viewpoint of homogeneous holomorphic line bundles.

For any holomorphic homomorphism χ : Q− → C∗ we denote by GC ×χ C the homoge-

neous holomorphic line bundle over the complex flag manifold GC/Q
− associated with χ,

and by ι♯(GC ×χ C) the restriction of GC ×χ C to the domain G/L ⊂ GC/Q
−. Note that

GQ− is a domain in GC and set

V := {h : GQ− → C, holomorphic |h(xq) = χ(q)−1h(x) for all (x, q) ∈ GQ− ×Q−}.

Then one can regard V as the complex vector space of holomorphic cross-sections of the

bundle ι♯(GC ×χ C), where we endow G/L with the complex structure J induced from

ι : G/L → GC/Q
−. In case of χ = id (the trivial representation) we have

(2.2) O(G/L) =

{
h : GQ− → C

(1) h is holomorphic,

(2) h(xq) = h(x) for all (x, q) ∈ GQ− ×Q−

}
.

3. Proof of Theorem 1.1

The setting of §2 remains valid here. In this section we will prove Theorem 1.1. Our

first aim is to prepare some notation and a lemma. Since the element T ∈ g is elliptic,

there exists a Cartan involution θ of g satisfying T = θ(T ). Set k := {X ∈ g | θ(X) = X},
p := {Y ∈ g | θ(Y ) = −Y } and denote by G = K × P the Cartan decomposition of the

Lie group G corresponding to g = k⊕ p. Here we remark that

T ∈ k,
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and that K is a connected compact subgroup of G because G is connected and Z(G) is

finite. Let kC and pC be the complex subalgebra and complex vector space of gC generated

by k and p, respectively, and let KC be the connected Lie subgroup of GC corresponding

to the subalgebra kC ⊂ gC. Then, it turns out that

gC = kC ⊕ pC, [kC, pC] ⊂ pC.

Moreover, one can show

Lemma 3.1.

(i) KC is a connected closed complex (Lie) subgroup of GC.

(ii) The orbit KCQ
−/Q− of KC through the origin o ∈ GC/Q

− is a connected com-

pact complex submanifold of the complex flag manifold GC/Q
− and KCQ

−/Q− ⊂
ι(G/L). Here KC acts on GC/Q

− as follows:

KC ×GC/Q
− ∋ (k, aQ−) 7→ kaQ− ∈ GC/Q

−.

(iii) K/(K∩L) is a connected compact complex submanifold of G/L, where we identify

K/(K ∩ L) with KL/L via K/(K ∩ L) ∋ y(K ∩ L) 7→ yL ∈ KL/L (⊂ G/L).

Proof. (i) We only confirm that KC is closed in GC. Extend θ to gC as a C-linear invo-
lution. By virtue of Z(GC) = {e} one can lift the θ to GC as a holomorphic involutive

automorphism, and KC coincides with the identity component of its fixed point set. So,

KC ⊂ GC is closed.

(ii) It follows from L = G ∩ Q− and (i) that the mapping K/(K ∩ L) ∋ y(K ∩ L) 7→
y(KC ∩ Q−) ∈ KC/(KC ∩ Q−) is a diffeomorphism. KC/(KC ∩ Q−) is homeomorphic to

KCQ
−/Q−. These imply that KCQ

−/Q− is a connected compact subset of GC/Q
−. Since

KCQ
−/Q− is locally closed in GC/Q

−, the orbit KCQ
−/Q− is a regular submanifold of

GC/Q
−; moreover, it is complex because the tangent space To(KCQ

−/Q−) is stable under

the complex structure on GC/Q
− and the action of KC on GC/Q

− is holomorphic. Now,

the rest of proof is to confirm KCQ
−/Q− ⊂ ι(G/L). From K(KC ∩Q−) = KC we obtain

KCQ
−/Q− = KQ−/Q− ⊂ GQ−/Q− = ι(G/L).

(iii) is a consequence of (ii) and ι(KL/L) = KCQ
−/Q−. □

Our second aim is to introduce a subset m− ⊂ gC and clarify some properties of m−

(see Proposition 3.2). Take A ∈ gC, h ∈ O(G/L) and define a mapping A∗h : GQ− → C
as follows:

(A∗h)(x) :=
d

dt

∣∣∣
t=0

f
(
exp(−tA)x

)
+ i

d

dt

∣∣∣
t=0

g
(
exp(−tA)x

)
for x ∈ GQ−,

where f and g are the real and imaginary parts of h, respectively. Remark that A∗h is

holomorphic because h satisfies the Cauchy-Riemann differential equations, and that the

mapping A 7→ A∗ gives rise to a representation of the complex Lie algebra gC on the
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complex vector space O(G/L). Now, let

m− := {A ∈ gC | (A∗h)(e) = 0 for all h ∈ O(G/L)}.

Then, we demonstrate

Proposition 3.2.

(i) m− is a complex subalgebra of gC.

(ii) kC ⊂ m−, q− ⊂ m−.

(iii) m− = kC ⊕ (pC ∩m−).

(iv) gC ⊂ m− if and only if O(G/L) ∼= C.

Proof. (i) comes from the mapping gC ∋ A 7→ A∗ ∈ gl(O(G/L)) being a homomorphism.

(ii) For an arbitrary holomorphic function onG/L = ι(G/L), its restriction toKCQ
−/Q−

is always constant due to Lemma 3.1-(ii); and thus the inclusion kC ⊂ m− holds, where

we remark that KCQ
− is a closed complex submanifold of GC and KCQ

− ⊂ GQ−. It is

immediate from (2.2)-(2) that q− ⊂ m−.

(iii) Denote the lift in the proof of Lemma 3.1-(i) by the same notation θ. Then it turns

out that θ(Q−) ⊂ Q−, θ(GQ−) ⊂ GQ−, so that h ◦ θ ∈ O(G/L) for all h ∈ O(G/L). This

assures θ(m−) ⊂ m−, and hence m− = kC ⊕ (pC ∩m−) follows by kC ⊂ m−.

(iv) One has (iv), since every holomorphic function on the domain GQ− is determined

by its derivatives at a point. □

From now on, let us investigate the following three cases individually:

(c1) G is compact;

(c2) G is non-compact

(c2.1) G is not of Hermitian type;

(c2.2) G is of Hermitian type.

3.1. Case (c1). If G is compact, then G/L is a connected compact complex manifold.

This provides us with

Lemma 3.3 (c1). Suppose that the Lie group G is compact. Then O(G/L) ∼= C.

3.2. Case (c2.1). Let us construct a compact real form gu ⊂ gC from gu := k⊕ ip, and

denote by τ the conjugation of gC with respect to gu. By use of this τ we prove

Lemma 3.4 (c2.1). Suppose that the Lie group G is non-compact and is not of Hermitian

type. Then O(G/L) ∼= C.

Proof. Since GC is simple, the supposition allows us to assert that the linear isotropy

representation kC → gl(pC), A 7→ adA|pC , is irreducible. Therefore Proposition 3.2-(i),

(iii) tells us that either pC ∩ m− = {0} or pC ∩ m− = pC holds. If pC ∩ m− = {0}, then
one deduces q− ⊂ kC by Proposition 3.2-(ii), (iii). From q− ⊂ kC we obtain

gC = q− + τ(q−) ⊂ kC + τ(kC) ⊂ kC,
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which is a contradiction since G is non-compact. For this reason pC ∩ m− = pC holds.

Then one concludes gC = kC ⊕ pC ⊂ m−, O(G/L) ∼= C by Proposition 3.2. □

3.3. Case (c2.2). Suppose that the Lie group G is of Hermitian type. Then, G/K is an

effective, irreducible Hermitian symmetric space of non-compact type, and there exists a

non-zero elliptic element W ∈ g such that

(1) the eigenvalue of adW is ±i or zero,

(2) K = CG(W ).

Here the existence of W is unique up to sign ±. Setting p+ := {A ∈ gC | adW (A) = iA},
p− := {B ∈ gC | adW (B) = −iB} one has

gC = kC ⊕ p+ ⊕ p−, [kC, p
±] ⊂ p±, pC = p+ ⊕ p−.

Remark 3.5 (c2.2). The Hermitian symmetric space G/K admits a unique G-invariant

complex structure up to sign ±, which is induced by either adW or − adW . Moreover,

G/K admits a unique G-invariant Kähler metric up to positive multiplicative constant.

In the setting above, let us give two lemmas and deduce Proposition 3.8 from them.

Lemma 3.6 (c2.2). Suppose that there exists a maximal compact subgroup K̃ of G such

that (s1) L ⊂ K̃ and (s2) the fibering of G/L by K̃/L over G/K̃ is holomorphic. Then,

G/L is biholomorphic to G/K̃ × K̃/L and O(G/L) ̸∼= C.

Proof. The supposition enables us to construct a Cartan decomposition G = P̃ × K̃ from

K̃ and to define a biholomorphism Ψ : G/L → G/K̃ × K̃/L by

Ψ(gL) := (gK̃, kL) for gL ∈ G/L,

where g = pk ∈ G = P̃×K̃, and we remark that Ψ−1(pkK̃, k̃L) = pk̃L. Now, we are going

to conclude O(G/L) ̸∼= C. Since the Hermitian symmetric space G/K̃ is biholomorphic to

a domain in some Cn, we have O(G/K̃) ̸∼= C; therefore O(G/L) ̸∼= C because Ψ : G/L →
G/K̃ × K̃/L is biholomorphic. □

Lemma 3.7 (c2.2). Let u+ :=
⊕

λ>0 g
λ, u− :=

⊕
λ>0 g

−λ. Then, the following items (i)

and (ii) hold:

(i) p+ ⊂ u+ if and only if p− ⊂ u−.

(ii) p+ ⊂ u− if and only if p− ⊂ u+.

Proof. From τ(p±) ⊂ p∓ and τ(u±) ⊂ u∓ we get the conclusion. □

Proposition 3.8 (c2.2). The following three items hold for u± =
⊕

λ>0 g
±λ :

(i) If p+ ⊂ u+, then (i.1) O(G/L) ̸∼= C, (i.2) L ⊂ K and (i.3) G/L is a homogeneous

Kähler manifold of G such that the mapping

p : G/L → G/K, gL 7→ gK
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is a G-equivariant Kählerian submersion, where the complex structure on G/K is

induced by adW .

(ii) If p+ ⊂ u−, then (ii.1) O(G/L) ̸∼= C, (ii.2) L ⊂ K and (ii.3) G/L is a homogeneous

Kähler manifold of G such that p : G/L → G/K, gL 7→ gK, is a G-equivariant

Kählerian submersion, where the complex structure on G/K is induced by − adW .

(iii) If p+ ̸⊂ u+ and p+ ̸⊂ u−, then O(G/L) ∼= C. Moreover, there never exists any

maximal compact subgroup K̃ of G such that (s1) L ⊂ K̃ and (s2) the fibering of

G/L by K̃/L over G/K̃ is holomorphic.

Proof. (i) Suppose that p+ ⊂ u+. Then, Lemma 3.7-(i) yields p− ⊂ u−. In view of

p± ⊂ u± we see that L ⊂ K, and that the mapping

p : G/L → G/K, gL 7→ gK

is holomorphic when the complex structure on G/K is induced by adW . Since G/K is

biholomorphic to a domain in Cn, one has O(G/K) ̸∼= C. Consequently O(G/L) ̸∼= C
follows by p : G/L → G/K being surjective holomorphic. Now, let u := [T, g]. Then we

obtain g = l⊕ u and AdL(u) ⊂ u, so the homogeneous space G/L is reductive. Defining

G-invariant Riemann metrics g on G/L, and h on G/K by

go(X1, X2) := −Bg(X1, θ(X2)) for X1, X2 ∈ To(G/L) = u, and

ho(Y1, Y2) := Bg(Y1, Y2) for Y1, Y2 ∈ To(G/K) = p,

respectively, we conclude that g is a G-invariant Kähler metric on G/L and p : G/L →
G/K, gL 7→ gK, is a G-equivariant Kählerian submersion. Here Bg stands for the Killing

form of g.

(ii) Similarly, one can conclude (ii).

(iii) On the one hand; it follows from p+ ̸⊂ u+ (resp. p+ ̸⊂ u−) that {0} ̸= p+ ∩ q− ⊂
p+ ∩ m− (resp. {0} ̸= p− ∩ m−). On the other hand; the representations kC → gl(p±),

A 7→ adA|p± , are irreducible. Consequently, Proposition 3.2 enables us to see that p+ =

p+∩m− and p− = p−∩m−; and furthermore, gC = kC⊕p+⊕p− ⊂ m−, and O(G/L) ∼= C.
Then we complete the proof, by the contraposition of Lemma 3.6. □

Lemma 3.1-(iii) and Proposition 3.8 lead to

Corollary 3.9 (c2.2). Suppose that the Lie group G is of Hermitian type.

(c2.2.1) If p+ ⊂ u+ or p+ ⊂ u−, then (1) O(G/L) ̸∼= C, (2) L ⊂ K and (3) G/L is a

homogeneous Kähler manifold of G such that the fibering of G/L by K/L over

G/K is holomorphic.

(c2.2.2) If p+ ̸⊂ u+ and p+ ̸⊂ u−, then O(G/L) ∼= C. Moreover, there never exists any

maximal compact subgroup K̃ of G such that (s1) L ⊂ K̃ and (s2) the fibering of

G/L by K̃/L over G/K̃ is holomorphic.
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3.4. Summary. Let us prove Theorem 1.1.

Proof of Theorem 1.1. There are four cases where

(c1) G is compact;

(c2) G is non-compact

(c2.1) G is not of Hermitian type;

(c2.2) G is of Hermitian type

(c2.2.1) p+ ⊂ u+ or p+ ⊂ u−;

(c2.2.2) p+ ̸⊂ u+ and p+ ̸⊂ u−.

Needless to say, the cases (c1), (c2.1), (c2.2.1) and (c2.2.2) are mutually exclusive and

one of them necessarily occurs. Lemma 3.3, Lemma 3.4 and Corollary 3.9 imply that

(c1) O(G/L) ∼= C;
(c2.1) O(G/L) ∼= C;

(c2.2.1) O(G/L) ̸∼= C, L ⊂ K and G/L is a homogeneous Kähler manifold of G

such that the fibering of G/L by K/L over G/K is holomorphic;

(c2.2.2) O(G/L) ∼= C. Moreover, there never exists any maximal compact sub-

group K̃ of G such that (s1) L ⊂ K̃ and (s2) the fibering of G/L by

K̃/L over G/K̃ is holomorphic.

(A) ⇒ (B): Suppose that O(G/L) ̸∼= C. Then (c2.2.1) only occurs, and so G is non-

compact and G/L is a homogeneous Kähler manifold of G.

(B) ⇒ (A): Suppose that G is non-compact and G/L is a homogeneous Kähler manifold

of G. Then, Borel [B] and Matsushima [M] show that G is of Hermitian type, L is included

in a maximal compact subgroup K ′ of G and the fibering of G/L by K ′/L over G/K ′ is

holomorphic. Hence (c2.2.1) only occurs, and so O(G/L) ̸∼= C. □

Remark 3.10. We have proven Theorem 1.1 by slightly modifying the proof of Zierau

[Z, Proposition 3.16].

3.5. How to determine homogeneous pseudo-Kähler manifolds having non-

constant holomorphic functions. First, we recall the setting of §§3.3 and give a nec-

essary and sufficient condition for the pseudo-Kähler manifold G/L to satisfy

(c2.2.1) p+ ⊂ u+ or p+ ⊂ u−,

cf. Lemma 3.12. Fix a maximal torus t of k containing the element T . Here the element

W automatically belongs to t due to K = CG(W ). Let tC be the complex subalgebra of

gC generated by t, and let △ = △(gC, tC) be the root system of gC relative to tC. Take a

fundamental root system Π = {αj}ℓj=1 ⊂ △ such that

αj(−iW ) ≥ 0 for all 1 ≤ j ≤ ℓ.

In addition, let α̃ =
∑ℓ

j=1mjαj (∈ △) and {Zj}ℓj=1 (⊂ it) be the highest root with respect

to Π = {αj}ℓj=1 and the dual basis of {αj}ℓj=1, respectively. Then, there exists a unique
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index 1 ≤ p ≤ ℓ such that

mp = 1, W = iZp,

because the eigenvalue of adW is ±i or zero. Taking this p into account, we set

Πp := Π− {αp}, Wk := {H ∈ t | β(−iH) ≥ 0 for all β ∈ Πp}.

It follows from T ∈ t that there exists a k ∈ K satisfying Ad k(T ) ∈ Wk. The invariant

complex structure on G/K is induced by either adW or − adW . These, together with

K = CG(W ), allow us to assume that

(3.11) T ∈ Wk.

On the assumption (3.11) we establish

Lemma 3.12. αp(−iT ) > 0 if and only if p+ ⊂ u+.

Proof. Let gα denote the root subspace of gC for α ∈ △, and let △1 := {γ =
∑ℓ

j=1 njαj ∈
△ |np = 1}. First, let us suppose that αp(−iT ) > 0. Then, it follows from (3.11) that

γ(−iT ) > 0 for all γ ∈ △1, so that p+ =
⊕

γ∈△1
gγ ⊂ u+. Now, we suppose that p+ ⊂ u+.

Then gαp ⊂ p+ ⊂ u+ holds, and hence there exist a non-zero X ∈ gαp and a λ > 0

satisfying adT (X) = iλX; besides, iλX = [T,X] = αp(T )X = iαp(−iT )X. This assures

αp(−iT ) > 0. □

Lemma 3.12 provides a necessary and sufficient condition for the G/L to satisfy (c2.2.1)

p+ ⊂ u+ or p+ ⊂ u−, because one can substitute p+ for p− by changing the sign of the

complex structure on G/K and further p− ⊂ u− implies p+ ⊂ u+ (cf. Lemma 3.7). There-

fore, we can determine homogeneous pseudo-Kähler manifolds satisfying the condition

(c2.2.1) by means of the following three steps:

(S1) Fix an irreducible root system △(gC, tC) and a fundamental root system Π =

{αj}ℓj=1 ⊂ △(gC, tC), provided that {m1,m2, . . . ,mℓ} contains 1 for the highest

root α̃ =
∑ℓ

j=1mjαj with respect to Π.

(S2) If mp = 1, then we put Πp := Π−{αp} and define a compact Lie algebra k so that

Πp is a fundamental root system of △(k, t), and define a non-compact real form

g ⊂ gC so that k is a maximal compact subalgebra of g.

(S3) Take any subset S ⊂ Πp and define a compact Lie algebra l so that S is a funda-

mental root system of △(l, t).

In Example 3.13, let us take the three steps.

Example 3.13. Let gC = so(7,C). Assume that the Dynkin diagram of △(gC, tC) is as

follows (cf. Plate II in Bourbaki [Br]):

Π
α1

e1
α2

e2
α3

e2@@
��

Then α̃ = α1 + 2α2 + 2α3 is the highest root with respect to Π = {αj}3j=1. Therefore we

put Π1 := Π− {α1}, and obtain k = so(5)⊕ so(2), g = so(5, 2) from Π1.
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Π1α1
×

α2

e
α3

e@@
��

All subdiagrams of Π1 = {α2, α3} are

(i) α1
×

α2

e
α3,
e@@

�� (ii) α1
×

α2

e
α3,
×

(iii) α1
×

α2
×

α3,
e

(iv) α1
×

α2
×

α3.
×

These give rise to

(i) l1 = so(5)⊕ so(2), (ii) l2 = u(2)⊕ so(2), (iii) l3 = u(2)⊕ so(2),

(iv) l4 = u(1)⊕ u(1)⊕ so(2).

Note that k = cg(W ) for W = iZ1, and that (i) l1 = cg(T1) for T1 = λiZ1, (ii) l2 = cg(T2)

for T2 = λiZ1 + νiZ3, (iii) l3 = cg(T3) for T3 = λiZ1 + µiZ2 and (iv) l4 = cg(T4) for

T4 = λiZ1 + µiZ2 + νiZ3, where {Zj}3j=1 is the dual basis of {αj}3j=1 and λ, µ, ν are

positive real numbers. Consequently,

SO0(5, 2)/(SO(5) · SO(2)), SO0(5, 2)/(U(2) · SO(2)), SO0(5, 2)/(U(1) · U(1) · SO(2))

are homogeneous pseudo-Kähler manifolds of SO0(5, 2) satisfying the condition (c2.2.1)

p+ ⊂ u+ or p+ ⊂ u−; besides, they exhaust all the homogeneous pseudo-Kähler manifolds

G/L of G = SO0(5, 2) such that G acts on G/L effectively, dimG/L ̸= 0 and G/L satisfy

the condition (c2.2.1). Here SO0(5, 2) is the adjoint group of g = so(5, 2).

Furthermore, Corollary 3.9 implies that SO0(5, 2)/(SO(5) · SO(2)), SO0(5, 2)/(U(2) ·
SO(2)) and SO0(5, 2)/(U(1) · U(1) · SO(2)) exhaust all the homogeneous pseudo-Kähler

manifolds G/L of G = SO0(5, 2) such that G acts on G/L effectively, dimG/L ̸= 0 and

O(G/L) ̸∼= C.

Remark 3.14. There is a homogeneous pseudo-Kähler manifold G/L of G = SO0(5, 2)

such that G/L and SO0(5, 2)/(U(1) · U(1) · SO(2)) look the same, but O(G/L) ∼= C.

By taking the three steps (S1), (S2) and (S3) we determine all the homogeneous pseudo-

Kähler manifolds G/L of connected absolutely simple Lie groups G of Hermitian type such

that G act on G/L effectively, dimG/L ̸= 0 and O(G/L) ̸∼= C; and then we make List 1.

In fact, the manifolds G/L in List 1 exhaust all the homogeneous pseudo-Kähler manifolds

G′/L′ of connected absolutely simple Lie groups G′ such that G′ act on G′/L′ effectively,

dimG′/L′ ̸= 0 and O(G′/L′) ̸∼= C.

List 1

type G/L, where we assume the center Z(G) to be trivial.

AIII

SU(k, ℓ+1− k)/S
(
U(i1)×U(i2 − i1)×· · ·×U(in − in−1)×U(k − in)

×U(j1 − k)×U(j2 − j1)×· · ·×U(jm − jm−1)×U(ℓ+ 1− jm)
)
,

where ℓ ≥ 1, 1 ≤ k ≤ ℓ, 0 ≤ n ≤ k − 1, 0 ≤ m ≤ ℓ − k, 1 ≤ i1 < i2 <

· · · < in ≤ k − 1 and k + 1 ≤ j1 < j2 < · · · < jm ≤ ℓ.
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BI SO0(2ℓ−1, 2)/
(
U(i1−1)·U(i2−i1) · · ·U(in−in−1)·SO(2ℓ+1−2in)·SO(2)

)
,

where ℓ ≥ 2, 0 ≤ n ≤ ℓ− 1 and 2 ≤ i1 < i2 < · · · < in ≤ ℓ.

CI Sp(ℓ,R)/
(
U(i1) · U(i2 − i1) · · ·U(in − in−1) · U(ℓ− in)

)
,

where ℓ ≥ 3, 0 ≤ n ≤ ℓ− 1 and 1 ≤ i1 < i2 < · · · < in ≤ ℓ− 1.

DI SO0(2ℓ−2, 2)/
(
U(i1−1)·U(i2−i1) · · ·U(in−in−1)·SO(2ℓ−2in)·SO(2)

)
,

where ℓ ≥ 4, 0 ≤ n ≤ ℓ− 1 and 2 ≤ i1 < i2 < · · · < in ≤ ℓ.

DIII SO∗(2ℓ)/
(
U(j1) · U(j2 − j1) · · ·U(jm − jm−1) · U(ℓ− jm)

)
,

where ℓ ≥ 4, 0 ≤ m ≤ ℓ− 1 and 1 ≤ j1 < j2 < · · · < jm ≤ ℓ− 1.

EIII

G = E6(−14) and L is one of the following twelve groups:

SO(10) · T 1,

SO(8) · T 2, SU(5) · T 2, SU(4) · SU(2) · T 2,

SU(3) · SU(2) · SU(2) · T 2,

SU(4) · T 3, SU(3) · SU(2) · T 3, SU(2) · SU(2) · SU(2) · T 3,

SU(3) · T 4, SU(2) · SU(2) · T 4,

SU(2) · T 5,

T 6.

EVII

G = E7(−25) and L is one of the following seventeen groups:

E6 · T 1,

SO(10) · T 2, SU(6) · T 2, SU(5) · SU(2) · T 2,

SU(3) · SU(3) · SU(2) · T 2,

SO(8) · T 3, SU(5) · T 3, SU(4) · SU(2) · T 3, SU(3) · SU(3) · T 3,

SU(3) · SU(2) · SU(2) · T 3,

SU(4) · T 4, SU(3) · SU(2) · T 4, SU(2) · SU(2) · SU(2) · T 4,

SU(3) · T 5, SU(2) · SU(2) · T 5,

SU(2) · T 6,

T 7.

Here for integers m, p, i1, i2, . . . , im, the notation 0 ≤ m, p ≤ i1 < i2 < · · · < im means

i1 = i2 = · · · = im = p− 1 whenever m = 0.
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Remark 3.15. One can also make List 1 from Xu’s results [X] that determine all the

homogeneous Kähler manifolds G′/L′ on which connected, non-compact absolutely simple

Lie groups G′ act effectively.
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