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Abstract

The general framework of statistical transformation models is considered with the Fisher-Rao
(semi-definite) metric and the Amari-Chentsov cubic tensor. The geodesic flows on compact semi-
simple Lie groups with respect to a class of Fisher-Rao semi-definite metrics are studied and the
Euler-Poincaré and the Lie-Poisson equations are explicitly found.
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1 Introduction

This is a brief summary of an on-going project on statistical transformation models in relation to
dynamical systems theory carried out so far by the the authors. It is based on a talk delivered by
the first author in the workshop “Submanifold Geometry and Lie Group Actions 2021” held on
the 20th and 21st of March, 2022.

As is well known, one of the typical framework of the information geometry appears in the
statistical inference on the smooth manifold M of data, equipped with a suitable volume form
dvolM , on which one considers a parametrized family of probability density functions ρ(u, x) with
the parameter u ∈ U in another smooth manifold U . The Fisher-Rao metric is the (semi-definite)

metric on U , which is in local coordinates (u1, . . . , un) of U described as
∑
i,j

gijdu
i ⊗ duj with

gij = E

[
∂ log ρ

∂ui

∂ log ρ

∂uj

]
=

∫
M

∂ log ρ(u, x)

∂ui

∂ log ρ(u, x)

∂uj
ρ(u, x)dvolM (x).

Here, E [f ] stands for the expectation of a random variable f : M → R with respect to ρ. The
importance of the Fisher-Rao metric lies on the famous Cramer-Rao Theorem, as its inverse gives
a lower bound of the variant and covariant matrix, when it is positive-definite. (See e.g. [1, 2].)

Similarly, the Amari-Chentsov tensor is the cubic tensor on U which given in local coordinates

(u1, . . . , un) on U as
∑
i,j,k

cijkdu
i ⊗ duj ⊗ duk with

cijk = E

[
∂ log ρ

∂ui

∂ log ρ

∂uj

∂ log ρ

∂uk

]
=

∫
M

∂ log ρ(u, x)

∂ui

∂ log ρ(u, x)

∂uj

∂ log ρ(u, x)

∂uk
ρ(u, x)dvolM (x).
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This leads the notion of α-connections, in relation to which one of the most well-investigated
geometric structures are the so-called dually flat structures. (See e.g. [1, 2, 3].)

In this summary, one considers a rather special case where the parameter manifold U is a Lie
group G acting smoothly on the data manifold M and the family of probability density functions
satisfies a certain invariance property. Such a statistical model is called a statistical transformation
model and has been studied by Barndorff-Nielsen and his coauthors in [4]. (See also [3].) Although
the statistical transformation models have been studied by many authors, one considers them in
the present summary from the viewpoint of Lagrangian and Hamiltonian mechanics. The authors
expect that the present research leads further developments over the earlier studies [8, 9, 10, 11]
by Nakamura where the relation between information geometry and the (integrable) Hamiltonian
systems are studied.

The structure of the subsequent sections is as follows:
Section 2 deals with the general framework of statistical transformation models and the description
of the Fisher-Rao (semi-definite) metric and the Amari-Chentsov cubic tensor is given as left-
invariant covariant tensors on the Lie group G.

In Section 3, one considers a specific family of probability density functions motivated by
the study [5] on the double bracket equations for Toda lattice equations. The geodesic flow is
considered on a certain homogeneous manifold O = G/H of G with respect to a Lie subgroup
H ⊂ G compatible with the Fisher-Rao semi-definite metric. The descriptions are given in view of
geometric mechanics in the framework of Lagrangian and Hamiltonian systems. In accordance to
these Lagrangian and Hamiltonian formalism, the explicit description of the Euler-Poincaré and
Lie-Poisson equations are found. The Euler-Poincaré equation in Section 3 is also dealt with in
the previous paper [15] by the authors.

2 General framework of statistical transformation models

In this section, we describe the general framework of statistical transformation models in the line
of [4] and [3, §8.3].

Consider a smooth manifold M of data on which a Lie group G smoothly acts. The Lie algebra
of G is denoted by g. We assume that the manifold M has an invariant volume form dvolM with
respect to the Lie group action. Now, suppose that we are given a family of probability density
functions parametrized by the Lie group G:

ρ : G×M ∋ (g, x) 7→ ρ(g, x) ∈ R.

Besides the trivial condition

∫
M

ρ(g, x)dvolM (x) = 1 for any g ∈ G, we require the following

invariance of the family of probability density functions with respect the action by G:

ρ(gh, x) = ρ(g, hx), ∀g, h ∈ G, , ∀x ∈ M. (2.1)

As is well known, one can think about the standard framework of information geometry, where
the Fisher-Rao metric and the Amari-Chentsov cubic tensor play important rôles. See [1, 2, 3] for
the general theories of information geometry. By virtue of the symmetry (2.1), these tensors on
the Lie group G turn out to be left-invariant and they are hence reasonably described as explained
below.

Using (2.1), we obtain the following formula:

XM
x [ρ(g, x)] = −X(L)

g [ρ(g, x)] (2.2)
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for arbitrary g ∈ G, x ∈ M , X ∈ g. Here, XM ∈ X(M) stands for the vector field on M induced
by X through

XM
x [f ] =

d

dt

∣∣∣∣
t=0

f (exp(−tX) · x) , x ∈ M,

where f ∈ C∞(M) is any smooth function on M , whereas X(L) ∈ X(G) is the left-invariant vector
field corresponding to X.

For a random variable f : M → R, which is assumed to be a smooth function, we denote the
expectation with respect to the density function ρ by

E [f ] :=

∫
M

f(x)ρ(g, x)dvolM (x).

We can verify the following formulae by (2.2):

E
[
XM [ρ]

]
= 0,

E
[
XM [ρ]Y M [ρ]

]
+ E

[
XM

[
Y M [ρ]

]]
= 0

for any X,Y ∈ g. Note that, if one fixes X,Y , then E
[
XM [ρ]Y M [ρ]

]
= E

[
X(L) [ρ]Y (L) [ρ]

]
does

not depend on g ∈ G.

Definition 2.1. The positive-semi-definite bilinear form

⟨X,Y ⟩ := E
[
XM [ρ]Y M [ρ]

]
, X, Y ∈ g,

on g is called the Fisher-Rao bilinear form and the associated left-invariant (0, 2)-tensor, denoted
by the same symbol ⟨·, ·⟩, is called the Fisher-Rao semi-definite metric on G. □

Note that the Fisher-Rao bilinear form,as well as the Fisher-Rao semi-definite metric, is not
necessarily positive-definite.

Similarly, the cubic multi-linear form

E
[
XM [ρ]Y M [ρ]ZM [ρ]

]
can be shown to be independent of g ∈ G.

Definition 2.2. The left-invariant (0, 3) tensor field

C(X,Y, Z) := E
[
XM [ρ]Y M [ρ]ZM [ρ]

]
, X, Y, Z ∈ g,

on G is called the Amari-Chentsov cubic tensor on G. □

Now, assume that the Fisher-Rao semi-definite metric is positive-definite. Then, we call it
the Fisher-Rao Riemannian metric on G. In this case, we can naturally associate the Levi-Civita
connection ∇ on G. Following the standard arguments in information geometry, we can consider
the α-connection ∇(α) on G defined through⟨

∇(α)
X Y, Z

⟩
= ⟨∇XY, Z⟩+ α

2
C (X,Y, Z) ,

where X,Y, Z ∈ g are arbitrary. Note that the connection ∇(α), as well as ∇, is left-invariant.
Even though the Fisher-Rao tensor ⟨·, ·⟩ is not necessarily positive-definite in general, we can

still consider the induced Riemannian metric, which we also call Fisher-Rao Riemannian metric,
on the quotient manifold of G by a Lie subgroup under some additional conditions. Although the
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Amari-Chentsov cubic tensor is of much interest, we focus on the geodesic flow with respect to the
Fisher-Rao Riemannian metric below.

For simplicity, we now suppose that the Lie group G is a compact semi-simple Lie group and
the Lie algebra g is equipped with the Killing form κ which is negative-definite as is well known.
Now, we further assume that there exists a Lie subgroup H ⊂ G whose Lie algebra h gives rise to
the orthogonal decomposition g = h+̇m into the direct sum of two vector subspaces with respect to
κ. Here, m denotes the κ-orthogonal complement to h. If the Fisher-Rao semi-definite metric ⟨·, ·⟩
is definite when restricted to m, then we can associate the positive-definite Riemannian metric on
G/H.

Using a theorem in [12, Theorem 13.1], we can describe the induce Levi-Civita connection on
G/H with respect to the Fisher-Rao Riemannian metric as

∇XY =
1

2
[X,Y ]m + U(X,Y ), X, Y ∈ m, (2.3)

where U(X,Y ) is defined through ⟨U(X,Y ), Z⟩ = 1

2
(⟨[X,Z]m , Y ⟩+ ⟨X, [Y, Z]m⟩) for any Z ∈ m.

Here, for any W ∈ g = h+̇m, Wm stands for its m-component.

3 Euler-Poincaré and Lie-Poisson equations for a class of
geodesic flows

Now, we focus on the special case where the sample manifold M coincides with the compact semi-
simple Lie group G, whose Lie algebra g is equipped with the negative-definite Killing form κ, and
the family of probability density functions ρ are concretely given as

ρ(g, h) := c · exp (F (gh)) , g, h ∈ G.

Here, F (θ) = κ (Q,AdθN), θ ∈ G, with Q, N being fixed elements in g. We write the Harr
measure on G as dvolG. The positive constant c is determined in order for ρ to be a probability
density function:

1 = c ·
∫
G

exp (F (gh)) dvolG(h), g ∈ G.

Remark 3.1. The motivation to introduce the above concrete probability density functions comes
from the work [5] on the description of the Toda lattice equations as double bracket equations on
the split real forms of complex semi-simple Lie algebras. In fact, the double bracket equation is
obtained as the gradient flow with the function F being the cost function when restricted to special
orbits called Jacobi orbits. ♦

Following the arguments in the previous section, the Fisher-Rao semi-definite bilinear form ⟨·, ·⟩
on g can be calculated as

⟨X,Y ⟩ = −c · κ ([X,Q] , [Y,N ′]) , X, Y ∈ g,

where N ′ :=

∫
G

AdghNρ(g, h)dvolG(h) =

∫
G

AdhNρ(e, h)dvolG(h). Assuming that N ′ and Q are

regular elements of the same Cartan subalgebra h ⊂ g, whose corresponding Cartan subgroup
is denoted by H ⊂ G, we see that the the Fisher-Rao bilinear form ⟨·, ·⟩ is positive-definite on
m = h⊥κ and that the Fisher-Rao semi-definite metric ⟨·, ·⟩ induces the Fisher-Rao Riemannian
metric on O := G/H.
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To clarify the mechanical structure of the settings, we consider the Lagrangian and the Hamil-
tonian formalisms of the geodesic flow on O with respect to the induced Riemannian metric. It
should be pointed out that these methods are essentially the same as the geodesics of the Levi-
Civita connection (2.3) appearing in the last part of Section 2.

The Lagrangian formalism can be carried out through the Euler-Poincaré reduction of the
Lagrangian system on TG ∼= G× g with respect to the Lagrangian function

L(X) :=
1

2
⟨X,X⟩ = − c

2
κ ([X,Q], [X,N ′]) , X ∈ g. (3.1)

Note that TG is identified with G × g through the left-translation and that the Lagrangian L in
(3.1) is left-invariant. By the Euler-Poincaré reduction, the system can essentially be described by
the Euler-Poincaré equation on the Lie algebra g as in the following theorem.

Theorem 3.1. The Euler-Poincaré equation for the geodesic flow with respect to the above La-
grangian L in (3.1) is written as

d

dt
[[X,Q] , N ′] = c · [X, [[X,Q] , N ′]] . (3.2)

□

We see that the right-hand side of (3.2) coincides with the description of the covariant derivative
∇XX for the Levi-Civita connection as described in (2.3), setting Y = X.

Remark 3.2. In [15], there is an unfortunate typo in the main theorem, where the expression of
the Euler-Poincaré equation should be read as (3.2) in Theorem 3.1. ♦

See e.g. [6, 13] for the details on the Euler-Poincaré reduction.

On the Hamiltonian side, the geodesic flow on the homogeneous manifold O = G/H equipped
with the Fisher-Rao Riemannian metric is given as the Hamiltonian system on T ∗G ∼= G×g∗ with
respect to the canonical symplectic form for the Hamiltonian function

H(X) :=
1

2c
κ
(
Xm, ad

−1
Q ◦ ad−1

N ′Xm

)
, X ∈ g. (3.3)

Here, the cotangent bundle T ∗G is identified with the product G× g via the left-translations and
the Killing form κ. In (3.3), Xm stands for the m-component of X ∈ g = h+̇m.

The Hamiltonian H in (3.3) is left-invariant and hence the Lie-Poisson reduction procedure
applies. This yields the Lie-Poisson equation on g∗ ∼=κ g as in the following theorem.

Theorem 3.2. The Lie-Poisson equation for the geodesic flow with respect to the above Hamilto-
nian H in (3.3) is written as

d

dt
X =

1

c
·
[
X, ad−1

Q ◦ ad−1
N ′Xm

]
, X ∈ g. (3.4)

□

See e.g. [6, 13] for the details on the Lie-Poisson reduction.

Note that the Hamiltonian system (3.4) has a resemblance to the Euler equation for the in-
tegrable geodesic flow on semi-simple Lie groups with respect to the left-invariant metric of rigid
body type as was introduced by Mishchenko and Fomenko [7]. (See also [14] for the analysis around
the equilibrium points of this integrable geodesic flow.) As we also observe the difference between
the two systems, however, the integrability of (3.4) is unknown so far. The detailed analysis of the
systems in (3.2) and (3.4) will be carried out in future works.
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