Equivariant realizations of Hermitian symmetric space of noncompact type

Toru Kajigaya (Tokyo University of Science)

joint work with Takahiro Hashinaga (Saga University)

Mar. 21. 2021

部分多様体幾何とリー群作用 2021

§1. Introduction

ヘロト ヘ団ト ヘヨト ヘヨト

Ξ.

Hermitian symmetric space

 $M^{2n} = G/K$: Hermitian symmetric space of noncompact type (HSSNT).

- Riemannian symmetric space $\Leftrightarrow \exists$ geodesic symmetry $\sigma_p \in \text{Isom}(M)$ at each point $p \in M$.
 - \Rightarrow $G := \text{Isom}_0(M)$ transitively acts on M, i.e. $M \simeq G/K$.
 - If M is non-cpt type, K becomes a max cpt subgp of G.
- Hermitian symmetric space \Leftrightarrow Riem. sym. sp. admitting a Kähler structure (J, ω) s.t. $\sigma_p \in Aut(M, \omega, J)$.

HSSs provide nice examples of homogeneous Kähler-Einstein mfds.

M = G/K (noncpt)	$M^* = G^*/K$ (cpt)
$SU(p,q)/S(U(p) \times U(q))$	$SU(p+q)/S(U(p) \times U(q))$
$SO^{\circ}(2,q)/SO(2) \times SO(q)$	$SO(2+q)/SO(2) \times SO(q)$
$SO^*(2n)/U(n)$	SO(2n)/U(n)
$Sp(n,\mathbb{R})/U(n)$	Sp(n)/U(n)
$E_6^{-14}/T \cdot Spin(10)$	$E_6/T \cdot Spin(10)$
$E_7^{-25}/T \cdot E_6$	$E_7/T \cdot E_6$

Table: Irreducible Hermitian symmetric spaces

Let $M^{2n} = G/K$ be an HSSNT.

Then, ${\cal M}$ is realized in a vector space of the same dimension by several ways.

Fact 1. M is a simply-connected, complete, Riemannian manifold of non-positive sectional curvature.

 \implies The Cartan-Hadamard theorem shows that

 $\log_o: M \to T_o M$

is a diffeomorphism i.e. M is realized as the vector space \mathbb{R}^{2n} as a manifold.

e.g. $M = \mathbb{C}H^n$.

$$\operatorname{Log}_{o}: \mathbb{C}H^{n} \xrightarrow{\sim} T_{o}M \simeq \mathbb{C}^{n}, \quad [1:z] \mapsto \tanh^{-1}|z| \cdot \frac{z}{|z|}$$

Holomorphic realization

Fact 2. There exists a holomorphic diffeomorphism

 $\psi: (M, J) \to D \subset \mathbb{C}^n,$

where D is a bounded domain in \mathbb{C}^n , i.e. (M, J) is realized as a bounded domain $D \subset \mathbb{C}^n$ as a complex manifold.

$$\underline{\mathsf{e.g.}}\ M = \mathbb{C}H^n.$$

$$\psi: \mathbb{C}H^n \xrightarrow{\sim} D \subset \mathbb{C}^n, \quad [1:z] \mapsto z$$

- É. Cartan (1935); in his theory of bounded symmetric domain.
- Harish-Chandra (1956); first a priori proof based on the representation theory of semi-simple Lie groups.
- The Bergman metric g_B on the bounded symmetric domain D coincides with the Kähler metric of HSSNT M. Therefore, HSSNT is often identified with (D, J_0, g_B) .

ロト (雪) (ヨ) (ヨ)

Symplectic realization

Fact 3. There exists a symplectic diffeomorphism

 $\varphi: (M, \omega) \to \mathbb{R}^{2n},$

where $\mathbb{R}^{2n} = (\mathbb{R}^{2n}, \omega_0)$ is the standard symplectic vector space, i.e. the global version of Darboux thm holds.

 $\underbrace{ \textbf{e.g.}}_{\varphi} M = \mathbb{C}H^n.$ $\varphi: \mathbb{C}H^n \xrightarrow{\sim} \mathbb{C}^n \simeq \mathbb{R}^{2n}, \quad [1:z] \mapsto \sqrt{\frac{1}{1-|z|^2}} \cdot z$

- **McDuff** (1988); the existence theorem when *M* is a simply-connected, complete Kähler mfd of non-positive sectional curvature.
- Di Scala-Loi (2008); first discovery of the explicit formula of the symplectomorphism for general HSSNT M.
 <u>Remark:</u> Di Scala-Loi's formula was independently defined by G. Roos. He proved that the map preserves the volume form.

Di Scala-Loi-Roos realization

Di Scala-Loi-Roos's formula is described by associated Jordan triple system (JTS) (therefore M is regarded as a bounded symmetric domain D).

• Any HSSNT $M \simeq D$ is associated with JTS $(T_o D, \{\cdot, \cdot, \cdot\})$;

$$\{u, v, w\} := -\frac{1}{2} \{R_o(u, v)w + J_o R_o(u, J_o v)w\},\$$

where R_o is the curvature tensor at o.

• The Bergman operator B is defined by

$$B(u,v) := Id - D(u,v) + Q(u)Q(v),$$

where $D(u,v)(w) := \{u,v,w\}, \quad Q(u)v := \{u,v,u\}.$

Theorem (Di Scala-Loi '08)

The map

$$\varphi: D \to T_o D, \quad \varphi(z) := B(z, z)^{-1/4} z$$

is a symplectomorphism.

• The symplectomorphism from M to \mathbb{R}^{2n} is not unique.

In fact, Di Scala-Loi-Roos (2008) constructed many symplectomorphisms from M to \mathbb{R}^{2n} by determining a special type of map so-called the *symplectic duality map*. Nevertheless, we call the canonical symplectomorphism $\varphi(z) = B(z, z)^{-1/4} z$ *Di Scala-Loi-Roos realization*

We shall reconstruct the Di Scala-Loi-Roos realization by a different method, and show the Di Scala-Loi-Roos realization is characterized as a "canonical" (K-equivariant) symplectic realization of HSSNT as well as Harish-Chandra realization.

§2. Equivariant realizations of HSSNT

Image: A matrix and a matrix

Recall that any HSSNT M = G/K is realized as \mathbb{R}^{2n} , (D, J_0) and $(\mathbb{R}^{2n}, \omega_0)$ as a mfd, a complex mfd and a symplectic mfd, respectively. Each realization is regarded as a chart of M.

e.g. $M = \mathbb{C}H^n$.

• Logarithm map (diffeomorphism):

$$\operatorname{Log}_o: \mathbb{C}H^n \xrightarrow{\sim} \mathbb{C}^n \simeq T_o M, \quad [1:z] \mapsto \frac{\tanh^{-1}|z|}{|z|} \cdot z.$$

• Harish-Chandra realization (holomorphic diffeomorphism):

$$\psi: \mathbb{C}H^n \xrightarrow{\sim} D \subset \mathbb{C}^n, \quad [1:z] \mapsto z.$$

• Di Scala-Loi-Roos realization (symplectic diffeomorphism):

$$\varphi: \mathbb{C}H^n \xrightarrow{\sim} \mathbb{C}^n \simeq \mathbb{R}^{2n}, \quad [1:z] \mapsto \sqrt{\frac{1}{1-|z|^2}} \cdot z.$$

Summary of results:

- Unified description; The above realizations are described by a unified and geometric framework for any HSSNT by using the *polarity of K-action* and the *polydisk theorem*.
 In particular, they have some common properties.
- 2 Characterization of the Harish-Chandra/Di Scala-Loi-Roos realization; by means of the polarity of *K*-action.
- 3 **Duality;** an analogous map for compact dual M^* is naturally defined. In particular, we define a notion of *duality* of the maps.
- 4 Realizations of totally geodesic submfds; the maps are "hereditary" for a special type of totally geodesic submfd such as
 - totally geodsic submfd of maximal rank
 - complex totally geodesic submfd
 - real forms (totally geodesic Lagrangian submfds)

Polarity and Polydisk theorem

Our stating point is that the above realizations are obtained by K-equivariant embeddings.

Recall that K is a maximal cpt subgp of $G = \text{Isom}_0(M)$.

Let

- M = G/K: HSSNT.
- $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: the Cartan decomposition. We use the identification $\mathfrak{p} \simeq T_o M$.
- K acts on \mathfrak{p} via the isotropy representation.

Theorem (Polarity of K-action)

The K-action on \mathfrak{p} is a polar action, and any maximal abelian subspace \mathfrak{a} in \mathfrak{p} becomes its section, i.e.

- Any $\operatorname{Ad}(K)$ -orbit in $\mathfrak p$ intersects to $\mathfrak a$ orthogonally.
- $\operatorname{Ad}(K)\mathfrak{a} = \mathfrak{p}$ and $K \cdot A = M$, where $A = \operatorname{Exp}_o \mathfrak{a}$.

We say \mathfrak{a} (resp. A) a section of \mathfrak{p} (resp. M) of the K-action.

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Polarity and Polydisk theorem

 ${\cal A}$ is a flat totally geodesic submanifold in ${\cal M},$ and has a complexification in the following sense:

Theorem (Polydisk theorem)

 $A^{\mathbb{C}} := \operatorname{Exp}_o(\mathfrak{a} \oplus J_o \mathfrak{a})$ is a complex totally geodesic submanifold in M, and have a canonical splitting

$$A^{\mathbb{C}} \simeq A_1^{\mathbb{C}} \times \cdots \times A_r^{\mathbb{C}} \simeq \mathbb{C}H^1(-C) \times \cdots \times \mathbb{C}H^1(-C)$$

as a Kähler manifold, where r is the rank of M, i.e. $r = \dim_{\mathbb{R}} \mathfrak{a}$.

Remark M: HSSNT.

- \Rightarrow The associated restricted root system Σ is either type C_r or BC_r .
- ⇒ The long roots $\{2e_1, \ldots, 2e_r\}$ consists of strongly orthogonal roots (i.e., $\alpha, \beta \in \Sigma \Rightarrow \alpha \pm \beta \notin \Sigma$). Moreover, $\{H_i := 2e_i^*\}_{i=1}^r$ is an orthogonal basis of \mathfrak{a} . $\Rightarrow A_i^{\mathbb{C}} = \operatorname{Exp}_o(\mathfrak{a}_i \oplus J_o \mathfrak{a}_i)$, where $\mathfrak{a}_i = \operatorname{span}_{\mathbb{R}}\{H_i\}$.

(日) (四) (日) (日)

Recall

• $\mathfrak{a} \subset \mathfrak{p}$: maximal abelian subsp \Longrightarrow $\mathrm{Ad}(K)\mathfrak{a} = \mathfrak{p}$.

•
$$A := \operatorname{Exp}_o \mathfrak{a} \subset M \Longrightarrow K \cdot A = M.$$

Take

$$\Omega_A: A \to \mathfrak{a}$$

and put

$$\Omega: M \to \mathfrak{p}, \quad \Omega(k \operatorname{Exp}_o v) := \operatorname{Ad}(k) \Omega_A(\operatorname{Exp}_o v)$$

for $k \in K$ and $v \in \mathfrak{a}$.

Then, Ω is K-equivariant map satisfying that $\Omega(A) \subseteq \mathfrak{a}$ if Ω is well-defined. Conversely, any K-equiv. map satisfying $\Omega(A) \subseteq \mathfrak{a}$ is obtained in this way.

A natural construction of K-equivariant emb. (2/5)

Lemma

 Ω is well-defined $\iff \Omega_A$ is \mathcal{W} -equivariant, where \mathcal{W} is the Weyl group associated with the restricted root system Σ .

Example: $M = \mathbb{C}H^1$.

A natural construction of K-equivariant emb. (3/5)

Recall that the associated restricted root system Σ of HSSNT is either type C_r or BC_r . Using the explicit description of \mathcal{W} , we can determine the K-equivariant map in an algebraic way.

Proposition

Let M be an irreducible HSSNT, and $h:\mathfrak{a}\to\mathbb{R}$ be a function satisfying that

- (a) h is an odd function with respect to the first variable x_1 .
- (b) h is an even function with respect to the variable x_i for i > 1 and symmetric with respect to x_i and x_j for i, j > 1, i.e. $h = h \circ p_{ij}$ for any i, j > 1.

Then, the function h yields a well-defined K-equivariant map $\Omega_h: M \to \mathfrak{p}$ such that $\Omega_h(A) \subseteq \mathfrak{a}$, which is defined by

$$\Omega_h(k \operatorname{Exp}_o v) := \operatorname{Ad}(k) \circ \Omega_{h,A}(\operatorname{Exp}_o v), \quad \text{where}$$
$$\Omega_{h,A}\left(\operatorname{Exp}_o\left(\sum_{i=1}^r x_i \widetilde{H}_i\right)\right) = \sum_{i=1}^r h \circ p_{1i}(x_1, \dots, x_r) \widetilde{H}_i.$$

for $k \in K$ and $v = \sum_{i=1}^{r} x_i \widetilde{H}_i \in \mathfrak{a}$. Conversely, any K-equivariant map $\Omega: M \to \mathfrak{p}$ satisfying $\Omega(A) \subseteq \mathfrak{a}$ is obtained in this way.

A natural construction of K-equivariant emb. (4/5)

Recall that the polydisk

$$A^{\mathbb{C}} \simeq A_1^{\mathbb{C}} \times \cdots \times A_r^{\mathbb{C}} \simeq \mathbb{C}H^1 \times \cdots \times \mathbb{C}H^1$$

lies in M.

Proposition

Let $\Omega: M \to \mathfrak{p}$ be a *K*-equivariant map s.t. $\Omega(A) \subseteq \mathfrak{a}$. $\Longrightarrow \exists$ a single odd function $\eta: \mathbb{R} \to \mathbb{R}$ s.t.

$$\Omega|_{A_i^{\mathbb{C}}} = \Omega_{\eta,0} \quad \forall i = 1, \dots, r$$

under the identification $A_i^{\mathbb{C}} \simeq \mathbb{C}H^1$.

Conversely, we obtain the following simple way of construction of K-equivariant embedding of M into $T_oM \simeq \mathfrak{p}$:

・ロト ・ 一 マ ・ コ ・ ・ 日 ・

A natural construction of K-equivariant emb. (5/5)

(1) First, we take a \widehat{K} -equivariant embedding $\widehat{\Omega} : \mathbb{C}H^1(-C) = \widehat{G}/\widehat{K} \to \widehat{\mathfrak{p}} \simeq T_o \mathbb{C}H^1$ such that $\widehat{\Omega}(\widehat{A}) \subset \widehat{\mathfrak{a}}$. Such an embedding is obtained by a "radial map" associated with any injective odd function $\eta : \mathbb{R} \to \mathbb{R}$:

$$\widehat{\Omega}(\mathrm{Exp}_o z) = \Omega_{\eta,0}(\mathrm{Exp}_o z) := \eta(|z|) \frac{z}{|z|}.$$

(2) Extend $\Omega_{\eta,0}$ to the polydisk $A^{\mathbb{C}} \simeq \mathbb{C}H^1(-C) \times \cdots \times \mathbb{C}H^1(-C)$ by the direct product:

$$\Omega_{\eta,A^{\mathbb{C}}} := \Omega_{\eta,0} \times \cdots \times \Omega_{\eta,0} : A^{\mathbb{C}} \to \mathfrak{a}^{\mathbb{C}}.$$

We put $\Omega_{\eta,A} := \Omega_{\eta,A^{\mathbb{C}}}|_A$. Then, $\Omega_{\eta,A}(A) \subseteq \mathfrak{a}$.

(3) Extending $\Omega_{\eta,A}$ (or $\Omega_{\eta,A^{\mathbb{C}}}$) to M by the K-action, we finally obtain a well-defined K-equivariant embedding

$$\Omega_{\eta}: M \to \mathfrak{p}, \quad \Omega_{\eta}(k \operatorname{Exp}_{o} v) = \operatorname{Ad}(k) \Omega_{\eta, A}(\operatorname{Exp}_{o} v)$$

such that $\Omega_{\eta}(A) \subseteq \mathfrak{a}$, where $k \in K$ and $v \in \mathfrak{a}$. We call the resulting embedding Ω_{η} strongly diagonal realization.

Remark

A corresponding map has been appeared in another context in terms of the Jordan triple system. [cf. Loos '77, Di Scala-Loi-Roos '08, Loi-Mossa '11]. Our construction above is regarded as a geometric reconstruction of it.
Ω_η(M) = p if and only if η is surjective. Otherwise,

 $\Omega_\eta(M) = \operatorname{Ad}(K) \Box_{\eta,\mathfrak{a}}$ (a K-invariant bounded domain)

where

$$\Box_{\eta,\mathfrak{a}} := \left\{ \sum_{i=1}^{r} x_i \widetilde{H}_i \mid |x_i| < \sup \eta \right\}$$

This is a generalization of the picture of Harish-Chandra realization.

(日) (同) (三) (三) (二)

Dual maps

The above construction can be applied to the compact dual $M^* = G^*/K$ with a slight modification.

•
$$U^* \subseteq (M^*)^o := M^* \setminus \operatorname{Cut}_o(M^*)$$
: K-invariant open nbd of o .

•
$$\eta:(-R^*,R^*)\to\mathbb{R}$$
: odd fct.

$$\Longrightarrow \Omega^*_\eta: U^* \to \mathfrak{p}^*, \quad \Omega^*_\eta(k \mathrm{Exp}_o v^*) = \mathrm{Ad}(k) \Omega_{\eta,A^*}(\mathrm{Exp}_o v^*).$$

We define a notion of dual map of Ω_{η} as follows if the odd function η is a real analytic function:

 $\bullet\,$ Define a dual function of η by

$$\eta^* : (-R, R) \to \mathbb{R}, \ \eta^*(x) := -\sqrt{-1}\eta(\sqrt{-1}x),$$

where $R \in (0, \pi/2]$.

• We call the corresponding K-equivariant map $\Omega^*_{\eta^*}$ the dual map of Ω_{η} . Note that $U^*_{\eta^*} = (M^*)^o = M^* \setminus \operatorname{Cut}_o(M^*)$ iff $R = \pi/2$.

・ロッ ・雪 ・ ・ ヨ ・ ・

Holomorphic/symplectic realization

An advantage of this construction is that the map is obtained from a radial map on $\mathbb{C}H^1$:

$$\Omega_{\eta,0}: \mathbb{C}H^1(-C) \to \widehat{\mathfrak{p}} \simeq \mathbb{C}, \quad \operatorname{Exp}_0 z \mapsto \eta(|z|) \frac{z}{|z|}.$$

e.g. By taking $\Omega_{\eta,0} = \mathrm{Log}_o^{\mathbb{C}H^1}$, or equivalently, $\eta = id$, we recover the Logarithm map of M, i.e.

 $\Omega_{id} = \operatorname{Log}_o: M \to \mathfrak{p} \simeq T_o M.$

The dual function of $\eta = id$ is given by $\eta^* = id$. The dual map of $\Omega_{id} = \text{Log}_o: M \to \mathfrak{p}$ is the logarithm map of M^* :

$$\Omega_{id}^* = \operatorname{Log}_o^* : (M^*)^o \to \mathfrak{p}^* \simeq T_o M^*.$$

By solving an O.D.E., it is easy to see that

- $\Omega_{\eta,0}$ is holomorphic $\iff \eta(x) = \tanh x$ (up to constant multiple).
- $\Omega_{\eta,0}$ is symplectic $\iff \eta(x) = \sinh x$ (up to sign).

Moreover, the holomorphic/symplectic $\Omega_{\eta,0}$ is extended to a holomorphic/symplectic embedding of M and its compact dual $M_{\underline{a}}^*$;

Holomorphic/symplectic realization

Theorem (Hashinaga-K.)

Let M = G/K be an irreducible HSSNT. Then,

- $\Psi := \Omega_{tanh} : M \to D$ is a K-equivariant holomorphic diffeomorphism onto a bounded domain $D \subset \mathfrak{p}$.
- $\Phi := \Omega_{\sinh} : M \to \mathfrak{p}$ is a K-equivariant symplectic diffeomorphism onto $\mathfrak{p} \simeq T_o M$.

Moreover, Ψ (resp. Φ) is the unique *K*-equivariant holomorphic (resp. symplectic) embedding from *M* to p such that *A* is mapped into a (up to appropriate constant multiple).

The dual function of $\eta = \tanh$ (resp. \sinh) is $\eta^* = \tan$ (resp. \sin) on $(-\pi/2, \pi/2)$.

Theorem

Let $M^* = G^*/K$ be the compact dual of M. Then,

- The dual map $\Psi^* := \Omega^*_{tan} : (M^*)^o \to \mathfrak{p}^*$ of Ψ is a *K*-equivariant holomorphic diffeomorphism onto $\mathfrak{p}^* \simeq T_o M^*$.
- The dual map $\Phi^* := \Omega^*_{sin} : (M^*)^o \to D^*$ of Φ is a *K*-equivariant symplectic diffeomorphism onto a bounded domain $D^* \subset \mathfrak{p}^*$.

Remark

• We use the restricted root system for the proof. This provides an alternative and unified proof of the results due to É. Cartan, Harish-Chandra and Di Scala-Loi. In fact,

Proposition

Under appropriate identification of spaces, we see

- Ψ coincides with the Harish-Chandra realization.
- Φ coincides with the Di Scala-Loi-Roos realization.
- $(\Psi^*)^{-1} \circ \Psi$ coincides with the Borel embedding.

Remark

- The uniqueness may not hold in general if we drop the assumption that "A is mapped into α". In fact, Di Scala-Loi-Roos (2008) constructed many K-equivariant symplectic diffeomorphisms from M to p.
- Ψ and Ψ^* (resp. Φ and Φ^*) may be regarded as a "canonical" *K*-equivariant holomorphic (resp. symplectic) chart of *M* and *M*^{*}, respectively. The induced Kähler structure on an open dense subset of the image in \mathfrak{p} (or \mathfrak{p}^*) can be described explicitly by using the restricted root system.
- Another example of the pair of strongly diagonal realization and its dual map is given by Loi-Mossa (2011) by using the JTS. They construct "diastatic exponential maps" for M and M^* .
- The fact that Φ and Φ^* are symplectomorphisms of each other is equivalent to the remarkable property of Di Scala-Loi-Roos realization so-called the *symplectic duality*.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Theorem (Ciriza '93)

The symplectomorphism $M \to \mathbb{C}^n$ constructed by McDuff sends any totally geodesic <u>complex</u> submfd N through the origin to a <u>complex</u> linear subspace in \mathbb{C}^n .

Theorem (Di Scala-Loi '08)

The same property holds for the Di Scala-Loi-Roos realization φ . Indeed, φ satisfies the following property:

$$\varphi|_N = \varphi_N$$

for any totally geodesic complex submfd N in M through the origin, where $\varphi_N:N\to \mathfrak{p}_N$ is the symplectomorphism associated with N.

This is generalized to any strongly diagonal realization:

- 4 同 ト 4 ヨ ト 4 ヨ ト

Theorem (Hashinaga-K.)

- $\bullet~N:$ totally geodesic submfd N in M through the origin.
- \mathfrak{a}_N : maximal abelian subsp in $\mathfrak{p}_N \simeq T_o N$.

If $\operatorname{Exp}_o(\mathfrak{a}_N \oplus J_o\mathfrak{a}_N) \subset M$ splits into a polydisk ($\iff \mathfrak{a}_N \oplus J_o\mathfrak{a}_N$ is a complex Lie triple system in \mathfrak{p}), then

- K_N -equiv. emb. $\Omega_{\eta,N}: N \to \mathfrak{p}_N$ can be defined similar to the strongly diagonal realization of M.
- $\Omega_{\eta}|_{N} = \Omega_{\eta,N}$ for any injective odd function $\eta : \mathbb{R} \to \mathbb{R}$.

In particular, we have the following commutative diagram:

Conversely, if (N, A_N) is mapped onto $(D_{\eta,N}, \Box_{\eta,\mathfrak{a}_N})$ by $\Omega_\eta \times \Omega_\eta$ for any injective odd function $\eta : \mathbb{R} \to \mathbb{R}$, then \mathfrak{a}_N has a complexification as LTS in \mathfrak{p} .

Examples

Examples of totally geodesic submfds whose maximal abelian subspace a_N has a complexification as LTS in p:

- totally geodesic submfds of maxmal rank. e.g. any totally geodesic submfd in $\mathbb{C}H^n$.
- totally geodesic complex submfds.
- real forms (totally geodesic Lagrangian submfds).

Thus, these submfds are always realized as either linear subspaces of bounded domains in linear subspaces in \mathfrak{p} by any strongly diagonal realizations.

< ロ > < 同 > < 回 > < 回 >

Summary of results:

1 **Unified description**; The above realizations are described by a unified and geometric framework for any HSSNT by using the *polarity of K-action* and the *polydisk theorem*.

In particular, they have some common properties.

2 Characterization of the Harish-Chandra/Di Scala-Loi-Roos realization; by means of the polarity of *K*-action.

3 **Duality;** an analogous map for compact dual M^* is naturally defined. In particular, we define a notion of *duality* of the maps.

- (4) Realizations of totally geodesic submfds; the maps are "hereditary" for a special type of totally geodesic submfd such as
 - totally geodsic submfd of maximal rank
 - complex totally geodesic submfd
 - real forms (totally geodesic Lagrangian submfds)

Thank you for your attention!