Krust の定理の拡張と極小曲面の変形について Extension of Krust theorem and deformations of minimal surfaces

Shintaro Akamine (Nihon Univ., Japan)

March 27th, 2023

部分多様体幾何とリー群作用 2022 於 東京理科大学

This talk is based on the joint work with Hiroki Fujino (Nagoya Univ.)

イロト イポト イヨト イヨト

Aim: We discuss geometry of zero mean curvature surfaces via harmonic function theory.

Concept: We focus on the benefits and interesting aspects of considering minimal and maximal surfaces <u>at the same time</u>.

Contents:

- ${\rm (I)}~{\rm Krust-type}$ theorems for zero mean curvature surfaces (main topic):
 - "Graphness" of surfaces and "univalence" of harmonic functions -

with H. Fujino, *Extension of Krust theorem and deformations of minimal surfaces*, Ann. Mat. Pura Appl. **201** 2583–2601 (2022), DOI: 10.1007/s10231-022-01211-z.

- (II) Duality of boundary value problems of minimal and maximal surfaces:
 - "Boundary behaviors" of surfaces and harmonic functions -
 - with H. Fujino, *Duality of boundary value problems for minimal and maximal surfaces*, to appear in Comm. Anal. Geom., arXiv:1909.00975.

イロト イポト イヨト イヨト

§ Minimal surfaces and maximal surfaces

・ロト ・回ト ・ヨト ・ヨト

MINIMAL SURFACES IN \mathbb{E}^3

$$\triangleright \mathbb{E}^3 = (\mathbb{R}^3, \langle , \rangle_E = dx^2 + dy^2 + dt^2)$$
: 3-dim. Euclidean space

▷ A surface in \mathbb{E}^3 : immersion $X: D \subset \mathbb{R}^2 \to \mathbb{E}^3$, ▷ $D \subset \mathbb{R}^2$: simply connected

- \triangleright A surface X is called **minimal** if its mean curvature H vanishes identically.
- ▷ Weierstrass representation formula: Any minimal surface X can be represented by

$$X = \operatorname{Re} \int_{-i(1+G^2)}^{w} \left(\begin{array}{c} 1-G^2\\ -i(1+G^2)\\ 2G \end{array}\right) Fdw,$$

where F is a holomorphic function and G is a meromorphic function on D such that FG^2 is holomorphic. (F, G) is called the **Weierstrass data** (or W-data, for short) of X.

MAXIMAL SURFACES IN \mathbb{L}^3

 $\triangleright \mathbb{L}^3 = (\mathbb{R}^3, \langle , \rangle_L = dx^2 + dy^2 - dt^2)$: 3-dim. Lorentz-Minkowski space

▷ A surface $X: D \subset \mathbb{R}^2 \to \mathbb{L}^3$ is called maximal if it is spacelike (i.e. $X^* \langle , \rangle_L$ is positive definite) and the mean curvature H vanishes identically.

▷ Weierstrass-type representation formula by 0. Kobayashi 1983: Any maximal surface X can be represented by

$$X = \operatorname{Re} \int_{-i(1-G^2)}^{w} \begin{pmatrix} 1+G^2 \\ -i(1-G^2) \\ 2G \end{pmatrix} Fdw,$$

where F is a holomorphic function and G is a meromorphic function on D such that FG^2 is also holomorphic. (F, G) is called the Weierstrass data (W-data, for short) of X.

(1) Associated family/Bonnet transformation: The transformation of a minimal surface $X = X_0$ with W-data (F, G) to X_{θ} with W-data $(e^{i\theta}F, G)$ is called the Bonnet transformation of X, and $\{X_{\theta}\}_{\theta \in \mathbb{R}/2\pi\mathbb{Z}}$ is called the associated family of X.

 $\triangleright X^* := X_{\pi/2}$ is called the **conjugate surface** of X_0 because

$$X_0 = \operatorname{Re} \int^w \left(\begin{array}{c} 1 - G^2 \\ -i(1+G^2) \\ 2G \end{array} \right) Fdw, \quad X_{\pi/2} = -\operatorname{Im} \int^w \left(\begin{array}{c} 1 - G^2 \\ -i(1+G^2) \\ 2G \end{array} \right) Fdw.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Deformations of minimal surfaces in \mathbb{E}^3

(1) Associated family/Bonnet transformation: The transformation of a minimal surface $X = X_0$ with W-data (F, G) to X_{θ} with W-data $(e^{i\theta}F, G)$ is called the Bonnet transformation of X, and $\{X_{\theta}\}_{\theta \in \mathbb{R}/2\pi\mathbb{Z}}$ is called the associated family of X.

 $\triangleright X^* := X_{\pi/2}$ is called the **conjugate surface** of X_0 because

$$X_0 = \operatorname{Re} \int^w \left(\begin{array}{c} 1 - G^2 \\ -i(1+G^2) \\ 2G \end{array} \right) Fdw, \quad X_{\pi/2} = -\operatorname{Im} \int^w \left(\begin{array}{c} 1 - G^2 \\ -i(1+G^2) \\ 2G \end{array} \right) Fdw.$$

・ロト ・回 ト ・ヨト ・ヨ

(1) Associated family/Bonnet transformation: The transformation of a minimal surface $X = X_0$ with W-data (F, G) to X_{θ} with W-data $(e^{i\theta}F, G)$ is called the Bonnet transformation of X, and $\{X_{\theta}\}_{\theta \in \mathbb{R}/2\pi\mathbb{Z}}$ is called the associated family of X.

 $\triangleright X^* := X_{\pi/2}$ is called the **conjugate surface** of X_0 because

$$X_0 = \operatorname{Re} \int^w \left(\begin{array}{c} 1 - G^2 \\ -i(1 + G^2) \\ 2G \end{array} \right) Fdw, \quad X_{\pi/2} = -\operatorname{Im} \int^w \left(\begin{array}{c} 1 - G^2 \\ -i(1 + G^2) \\ 2G \end{array} \right) Fdw.$$

- ▷ Properties of $\{X_{\theta}\}_{\theta \in \mathbb{R}/2\pi\mathbb{Z}}$:
 - {X_θ}_{θ∈ℝ/2πℤ} is an isometric deformation i.e. it preserves the first fundamental form I = |F|² (1 + |G|²)² dwdw.
 - curvature line of $X_0 \longleftrightarrow$ asymptotic line of $X_{\pi}/2$ asymptotic line of $X_0 \longleftrightarrow$ curvature line of $X_{\pi}/2$
 - (H.A. Schwarz 1890): If two simply connected minimal surfaces are isometric, then one of them is congruent in \mathbb{E}^3 to an associated surface of the other.

イロト 不得下 イヨト イヨト 二日

(2) López-Ros deformation/Goursat transformation: The deformation of a minimal surface $X = X_0$ with W-data (F, G) to X_{λ} with W-data $(\frac{1}{\lambda}F, \lambda G)$, $\lambda > 0$ is called the López-Ros deformation of X:

$$X_{\lambda} = \operatorname{Re} \int^{w} \left(egin{array}{c} 1 - \lambda^{2} G^{2} \ -i(1 + \lambda^{2} G^{2}) \ 2\lambda G \end{array}
ight) rac{F}{\lambda} dw.$$

▷ Properties of $\{X_{\lambda}\}_{\lambda>0}$:

- $\{X_{\lambda}\}_{\lambda>0}$ preserves the second fundamental form $II = -Re(FG')dw^2$.
- $\{X_{\lambda}\}_{\lambda>0}$ preserves the "height function" (the third coordinate of X_{λ}).

イロト イヨト イヨト イヨト 三日

CLASSICAL DUALITY CORRESPONDENCE

(3) Classical duality correspondence: The transformation of a minimal surface X with W-data (F, G) to the following maximal surface X^d is called the classical duality correspondence (Calabi correspondence, or fluid mechanical duality) of X:

$$X = \operatorname{Re} \int^{w} \left(\begin{array}{c} 1 - G^{2} \\ -i(1 + G^{2}) \\ 2G \end{array} \right) Fdw \quad \longleftrightarrow \quad X^{d} = \operatorname{Re} \int^{w} \left(\begin{array}{c} 1 - G^{2} \\ -i(1 + G^{2}) \\ 2iG \end{array} \right) Fdw.$$

By using the duality, Calabi 1970 proved the Bernstein problem for maximal surfaces in \mathbb{L}^3 , that is, any entire maximal graphs are spacelike planes.

Topic I: Graphness of zero mean curvature surfaces

Graphness = the property that the surface is whether the graph of a function (defined on the xy-plane) or not.

Fact 1 (Bernstein 1915, Calabi 1970)

- Any entire minimal graphs in \mathbb{E}^3 are planes.
- Any entire maximal graphs in \mathbb{L}^3 are spacelike planes.

Therefore, in general, non-planar minimal or maximal surface cannot be globally represented by the graph of a function of the form t = f(x, y), $(x, y) \in \mathbb{R}^2$. How large can a surface be represented as a graph of a function?

> To construct (complete) embedded minimal surfaces, the following **Krust theorem** played an important role:

FACT 2 (KARCHER, 1989 (KNOWN AS THE Krust Theorem))

If a minimal surface is a graph over a convex domain, then each surface of its associated family is also a graph.

Minimal graph by Jenkins-Serrin 1966 and Saddle tower by Karcher 1988.

Remark 1

• In this talk, "graph" means the graph $t = \varphi(x, y)$ of a function $\varphi = \varphi(x, y)$ defined on a domain in the xy-plane. Graph \Rightarrow embedded.

・ロト ・回ト ・ヨト ・ヨト

If a minimal surface is a graph over a **convex domain**, then each surface of its associated family is also a graph.

Question | What is this assumption? Do we need it?

イロト イヨト イヨト イヨト

If a minimal surface is a graph over a **convex domain**, then each surface of its associated family is also a graph.

Question | What is this assumption? Do we need it?

cf. Rado (1930-1932): If an (embedded rectifiable) closed curve Γ in \mathbb{E}^3 can be projected onto a convex curve in a plane, then Γ bounds a unique embedded minimal disk which is a graph over the plane.

・ロト ・回ト ・ヨト ・ヨト

If a minimal surface is a graph over a **convex domain**, then each surface of its associated family is also a graph.

Question | What is this assumption? Do we need it?

▷ The convexity assumption is only a sufficient condition for the surface to be a graph. : If we consider the Enneper-type surface X, its associated surface X_{θ} is nothing but the rotation of X in \mathbb{E}^3 .

Why is the graphness of the above Enneper-type example preserved?

・ロト ・回ト ・ヨト ・ヨト

If a minimal surface is a graph over a convex domain, then each surface of its **associated** *family* is also a graph.

Question Can we consider other deformations preserving the "graphness"?

イロト イヨト イヨト イヨト

§ Weierstrass-type representation in different ambient spaces

• • = • • = •

C-DEFORMATION

Based on Weierstrass-type representations

in
$$\mathbb{E}^3$$
: Re $\int^w \begin{pmatrix} 1-G^2\\ -i(1+G^2)\\ 2G \end{pmatrix}$ Fdw, in \mathbb{L}^3 : Re $\int^w \begin{pmatrix} 1+G^2\\ -i(1-G^2)\\ 2G \end{pmatrix}$ Fdw,

we first introduce the following *c*-deformation

$$X_{c} = \operatorname{Re} \int_{-i(1+cG^{2})}^{w} \left(\begin{array}{c} 1-cG^{2} \\ -i(1+cG^{2}) \\ 2G \end{array}\right) Fdw, \quad c \in \mathbb{R}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

C-DEFORMATION

Based on Weierstrass-type representations

in
$$\mathbb{E}^3$$
: Re $\int^w \begin{pmatrix} 1-G^2\\ -i(1+G^2)\\ 2G \end{pmatrix}$ Fdw, in \mathbb{L}^3 : Re $\int^w \begin{pmatrix} 1+G^2\\ -i(1-G^2)\\ 2G \end{pmatrix}$ Fdw,

we first introduce the following *c*-deformation

$$X_{c} = \operatorname{Re} \int^{w} \left(\begin{array}{c} 1 - cG^{2} \\ -i(1 + cG^{2}) \\ 2G \end{array} \right) Fdw, \quad c \in \mathbb{R}$$

- When c = 1, X_1 is a minimal surface in \mathbb{E}^3 .
- When c = -1, X_{-1} is a maximal surface in \mathbb{L}^3 .
- When c = 0, $X_0 = \operatorname{Re} \int_{-\infty}^{\infty} f(1, -i, 2G) F dw$ is a zero mean curvature surface in the isotropic 3-space $\mathbb{I}^3 = (\mathbb{R}^3, dx^2 + dy^2)$.

PROPOSITION 3

If FG^2 is holomorphic and $c|G|^2 \not\equiv -1$, then X_c is a zero mean curvature surface with positive definite induced metric (except singularities) in $\mathbb{R}^3(c) := (\mathbb{R}^3, dx^2 + dy^2 + cdt^2)$.

DEFORMATION FAMILY

We give a unified form of the above deformations as follows:

$$X_{\theta,\lambda,c} = \operatorname{Re} \int^{w} \left(\begin{array}{c} 1 - c\lambda^{2}G^{2} \\ -i(1 + c\lambda^{2}G^{2}) \\ 2\lambda G \end{array} \right) \frac{e^{i\theta}}{\lambda} F dw.$$

§ Results

Let us recall the questions of this talk.

FACT (KRUST THEOREM)

If a minimal surface is a graph over a convex domain, then each surface of its associated family is also a graph.

Question Question

Question Do we need the convexity assumption?

Question Can we consider other deformations preserving the graphness?

・ロト ・回ト ・ヨト ・ヨト

THEOREM 4 (FUJINO-A., 2021)

For the Weierstrass data (F, G) of $X_{\theta,\lambda,c}$, suppose that G is not constant and |G| < 1. If there exists $(\theta_0, \lambda_0, c_0)$ such that $|c_0\lambda_0^2| \le 1/||G||_{\infty}^2$ and $S_{\theta_0,\lambda_0,c_0} := X_{\theta_0,\lambda_0,c_0}(D)$ is a graph over a convex domain, then $S_{\theta,\lambda,c} := X_{\theta,\lambda,c}(D)$ is a graph over a close-to-convex domain whenever $|c\lambda^2| \le |c_0\lambda_0^2|$.

イロト イヨト イヨト イヨト

THEOREM 4 (FUJINO-A., 2021)

For the Weierstrass data (F, G) of $X_{\theta,\lambda,c}$, suppose that G is not constant and |G| < 1. If there exists $(\theta_0, \lambda_0, c_0)$ such that $|c_0\lambda_0^2| \le 1/||G||_{\infty}^2$ and $S_{\theta_0,\lambda_0,c_0} := X_{\theta_0,\lambda_0,c_0}(D)$ is a graph over a convex domain, then $S_{\theta,\lambda,c} := X_{\theta,\lambda,c}(D)$ is a graph over a close-to-convex domain whenever $|c\lambda^2| \le |c_0\lambda_0^2|$.

 \triangleright Here, a domain $\Omega \subset \mathbb{C}$ is called **close-to-convex** if $\mathbb{C} \setminus \Omega$ is a union of half lines that are disjoint except possibly for initial points.

 $\Omega \subset \mathbb{C} \text{ is } \dots \quad \text{convex} \quad \Rightarrow \quad \text{starlike} \quad \Rightarrow \quad \text{close-to-convex}$

イロト イヨト イヨト イヨト 三日

Theorem 4 (Fujino-A., 2021)

For the Weierstrass data (F, G) of $X_{\theta,\lambda,c}$, suppose that G is not constant and |G| < 1. If there exists $(\theta_0, \lambda_0, c_0)$ such that $|c_0\lambda_0^2| \le 1/||G||_{\infty}^2$ and $S_{\theta_0,\lambda_0,c_0} := X_{\theta_0,\lambda_0,c_0}(D)$ is a graph over a convex domain, then $S_{\theta,\lambda,c} := X_{\theta,\lambda,c}(D)$ is a graph over a close-to-convex domain whenever $|c\lambda^2| \le |c_0\lambda_0^2|$.

FIGURE: The highlighted part indicates the region on which the ZMC surfaces $S_{\theta,\lambda,c}$ are graphs.

イロト イヨト イヨト イヨト

Putting $(\theta_0, \lambda_0, c_0) = (0, 1, \pm 1)$, we obtain the following.

COROLLARY 5

If |G| < 1 and $S_{min} := S_{0,1,1}$ (or $S_{max} := S_{0,1,-1}$) is a graph over a convex domain, then

 $S_{\theta,\lambda,c}$ is a graph over a close-to-convex domain whenever $|c\lambda^2| \leq 1$.

This corollary includes the following known results:

- the original Krust's theorem for minimal surfaces [Karcher 1989],
- Krust-type theorem for maximal surfaces [López 2021],
- Krust-type theorem for López-Ros deform. of minimal surfaces [Dorff 2004].

GRAPHNESS AND PLANAR HARMONIC MAPPING

Put
$$h := \int^w F dw$$
, $g := -\int^w G^2 F dw$, $T := \int^w 2GF dw$.

Then, under the identification that xy-plane $\cong \mathbb{C}$, $(x, y) \mapsto x + iy$,

$$X_{\theta,\lambda,c} = \operatorname{Re} \int^{w} \left(\begin{array}{c} 1 - c\lambda^{2}G^{2} \\ -i(1 + c\lambda^{2}G^{2}) \\ 2\lambda G \end{array} \right) \frac{e^{i\theta}}{\lambda} Fdw = \left(\begin{array}{c} \frac{e^{i\theta}}{\lambda} (h + c\lambda^{2}e^{-2i\theta}\overline{g}) \\ \operatorname{Re}(e^{i\theta}T) \end{array} \right).$$

PROPOSITION 6

Under the above notations, let us define the planar harmonic mapping

$$f_{\theta,\lambda,c} := \mathbf{h} + c\lambda^2 e^{-2i\theta} \overline{\mathbf{g}}.$$

Then, $S_{\theta,\lambda,c} := X_{\theta,\lambda,c}(D)$ is a graph if and only if $f_{\theta,\lambda,c}$ is univalent (i.e. injective).

Any planar harmonic mapping $f: D \to \mathbb{C}$ has unique (up to constants) decomposition

$$f = h + \overline{g}, \quad h, g \in \mathcal{O}(D).$$

By the above proposition, the graphness of each deformation belonging to $\{X_{\theta,\lambda,c}\}$ reduced to the univalence of the planar harmonic mapping of the form

$$f_{\varepsilon} = h + \varepsilon \overline{g}, \quad \varepsilon \in \mathbb{C}.$$

Theorem 7 (Fujino-A., 2021)

For the Weierstrass data (F, G) of $X_{\theta,\lambda,c}$, suppose that G is not constant and |G| < 1. If there exists $(\theta_0, \lambda_0, c_0)$ such that $|c_0\lambda_0^2| \le 1/\|G\|_{\infty}^2$ and $S_{\theta_0,\lambda_0,c_0}$ is a graph over a convex domain, then $S_{\theta,\lambda,c}$ is a graph over a close-to-convex domain whenever $|c\lambda^2| \le |c_0\lambda_0^2|$.

To prove the result, we use recent developments of planar harmonic mapping theory:

THEOREM 8 (KALAJ 2010)

Let $f = h + \overline{g} : D \to \mathbb{C}$ be a univalent sense-preserving harmonic mapping. If f is convex, then $f_{\varepsilon} := h + \varepsilon \overline{g}$ is close-to-convex and sense-preserving for all ε with $|\varepsilon| \leq 1$.

This is related to the following theorem:

FACT 9 (CLUNIE AND SHEIL-SMALL, 1984)

Let $f = h + \overline{g}$ be locally univalent. If there exists ε such that $|\varepsilon| \le 1$ and $h + \varepsilon g$ is convex, then f is univalent close-to-convex.

Question Can we obtain/recover the "graphness" of minimal (or maximal) surfaces from ZMC surfaces in the isotropic 3-space \mathbb{I}^3 ?

・ロト ・回ト ・ヨト ・ヨト

Question Can we obtain/recover the "graphness" of minimal (or maximal) surfaces from ZMC surfaces in the isotropic 3-space \mathbb{I}^3 ?

THEOREM 10 (FUJINO-A., 2021)

If |G| < 1 and $S_{\theta_0,\lambda_0,0}$ in \mathbb{I}^3 is a graph over a convex domain for some (θ_0,λ_0) , then $S_{\theta,\lambda,c}$ is a graph over a close-to-convex domain whenever $|c\lambda^2| \le 1/\|G\|_{\infty}^2$. In particular, the minimal and the maximal surfaces $S_{\theta,1,\pm1}$ are graphs.

イロト イヨト イヨト イヨト

THEOREM 10 (FUJINO-A., 2021)

If |G| < 1 and $S_{\theta_0,\lambda_0,0}$ in \mathbb{I}^3 is a graph over a convex domain for some (θ_0,λ_0) , then $S_{\theta,\lambda,c}$ is a graph over a close-to-convex domain whenever $|c\lambda^2| \leq 1/\|G\|_{\infty}^2$. In particular, the minimal and the maximal surfaces $S_{\theta,1,\pm 1}$ are graphs.

FIGURE: The region on which $S_{\theta,\lambda,c}$ is a graph.

<ロ> (日) (日) (日) (日) (日)

THEOREM 11 (FUJINO-A., 2021)

If |G| < 1 and $S_{\theta_0,\lambda_0,0}$ in \mathbb{I}^3 is a graph over a convex domain for some (θ_0,λ_0) , then $S_{\theta,\lambda,c}$ is a graph over a close-to-convex domain whenever $|c\lambda^2| \leq 1/\|G\|_{\infty}^2$. In particular, the minimal and the maximal surfaces $S_{\theta,1,\pm 1}$ are graphs.

We use recent developments of planar harmonic mapping theory again:

FACT 12 (PARTYKA-SAKAN, 2022)

Let $h, g: D \to \mathbb{C}$ be holomorphic functions such that |h'| > |g'| and $\omega = g'/h'$ is not constant. If there exists $\varepsilon_0 \in \mathbb{C}$ such that $|\varepsilon_0| \|\omega\|_{\infty} \le 1$ and $h + \varepsilon_0 g$ is a conformal mapping and its image is convex, then $f_{\varepsilon} := h + \varepsilon \overline{g}$ is a close-to-convex univalent harmonic mapping for any $\varepsilon \in \mathbb{C}$ with $|\varepsilon| \|\omega\|_{\infty} \le 1$.

(日) (部) (注) (注) (三)

THEOREM 11 (FUJINO-A., 2021)

If |G| < 1 and $S_{\theta_0,\lambda_0,0}$ in \mathbb{I}^3 is a graph over a convex domain for some (θ_0,λ_0) , then $S_{\theta,\lambda,c}$ is a graph over a close-to-convex domain whenever $|c\lambda^2| \leq 1/\|G\|_{\infty}^2$. In particular, the minimal and the maximal surfaces $S_{\theta,1,\pm 1}$ are graphs.

We use recent developments of planar harmonic mapping theory again:

FACT 12 (PARTYKA-SAKAN, 2022)

Let $h, g: D \to \mathbb{C}$ be holomorphic functions such that |h'| > |g'| and $\omega = g'/h'$ is not constant. If there exists $\varepsilon_0 \in \mathbb{C}$ such that $|\varepsilon_0| \|\omega\|_{\infty} \le 1$ and $h + \varepsilon_0 g$ is a conformal mapping and its image is convex, then $f_{\varepsilon} := h + \varepsilon \overline{g}$ is a close-to-convex univalent harmonic mapping for any $\varepsilon \in \mathbb{C}$ with $|\varepsilon| \|\omega\|_{\infty} \le 1$.

Outline of the proof: Put $\varepsilon_0 = 0$ and consider

$$f_{\theta,\lambda,c} = h + c\lambda^2 e^{-2i\theta} \overline{g} =: h + \varepsilon g, \quad -G^2 = \omega = \frac{g'}{h'} \text{ (analytic dilatation of } f_{0,1,1}\text{)}.$$

Then the condition $|\varepsilon| \|\omega\|_{\infty} = |c\lambda^2| \|G^2\|_{\infty} \le 1$ is a sufficient condition for $f_{\theta,\lambda,c}$ to be univalent, which is equivalent to the condition that $S_{\theta,\lambda,c}$ is a graph.

Summary of Topic I: Graphness

By using recent developments of univalent harmonic function theory, we obtain the following results of geometry of ZMC surfaces:

- We can extend Krust's theorem for minimal surfaces to various deformations of ZMC surfaces in different ambient spaces.
- We can recover the graphness of minimal and maximal surfaces from ZMC surfaces in the isotropic 3-space $\mathbb{I}^3 = (\mathbb{R}^3, dx^2 + dy^2)$.
- As a corollary, we can relax the convexity assumption of Krust's theorem. This gives a reason why the graphness is preserved under the isometric deformations even for non-convex minimal graphs like as Enpper-type minimal surfaces.

Topic II: Duality of boundary value problems for minimal and maximal surfaces

同下 4 三下 4 三

The following boundary value problem for maximal surfaces was geometrically unknown. How can we solve the Lightlike line boundary value problem for the maximal surfaces?

Lightlike line segment : a straight line segment $L = \operatorname{span}\{\vec{v}\}$ satisfying $\langle \vec{v}, \vec{v} \rangle_L = 0$. By definition, the induced metric on surface degenerates along Lightlike line segment. This has made solving this boundary value problem difficult until now.

< ロト < 同ト < ヨト < ヨト

 $\begin{array}{l} \mbox{Minimal surface equation:} & (1+\varphi_y^2)\varphi_{xx} - 2\varphi_x\varphi_y\varphi_{xy} + (1+\varphi_x^2)\varphi_{yy} = 0, \\ \mbox{Maximal surface equation:} & (1-\psi_y^2)\psi_{xx} + 2\psi_x\psi_y\psi_{xy} + (1-\psi_x^2)\psi_{yy} = 0, \ |\nabla\psi(p)|^2 < 1. \end{array}$

FACT 13 (CF. BERS 1958, CALABI 1970: **Duality**)

Let Ω be a simply connected domain. For any solution $\varphi \colon \Omega \to \mathbb{R}$ to the minimal surface equation, there exists a unique (up to an additive constant) solution ψ to the maximal surface equation satisfying the relation:

Conversely, for any solution $\psi: \Omega \to \mathbb{R}$ to the maximal surface equation, there exists unique solution φ to the minimal surface equation satisfying (\bigstar) . We call such ψ (resp. φ) as the dual of φ (resp. ψ).

Example 14

The dual of $\varphi(x, y) = \log (\cos x / \cos y)$ (Scherk surface) is $\psi(x, y) = -\arcsin (\sin x \sin y)$.

H. Lee (2011) (cf. Fujino-A., arXiv:1909.00975): The duality (★) corresponds to

$$X_{\min} = (x, y, t) \longmapsto X_{\max} = (x, y, t^*),$$

where $X_{\min} = (x, y, t)$ is a minimal surface, whose coordinates functions are harmonic, and t^* is the conjugate of t. Where is dual in the deformation family?

THEOREM 15 (A.-FUJINO, ARXIV:1909.00975)

Let Ω be a bounded simply connected Jordan domain whose boundary contains a line segment I. We let φ be a solution of the minimal surface equation over Ω , ψ its dual solution of the maximal surface equation. Then the following statements (I) and (II) are equivalent.

- (I) φ tends to plus (resp. minus) infinity on I, and
- (II) ψ tamely degenerates to a future-directed (resp. past-directed)

lightlike line segment on I.

イロト イポト イヨト イヨ

THEOREM 15 (A.-FUJINO, ARXIV:1909.00975)

Let Ω be a bounded simply connected Jordan domain whose boundary contains a line segment I. We let φ be a solution of the minimal surface equation over Ω , ψ its dual solution of the maximal surface equation. Then the following statements (I) and (II) are equivalent.

- (I) φ tends to plus (resp. minus) infinity on I, and
- (II) ψ tamely degenerates to a future-directed (resp. past-directed)

lightlike line segment on I.

イロト イポト イヨト イヨ

THEOREM 15 (A.-FUJINO, ARXIV:1909.00975)

Let Ω be a bounded simply connected Jordan domain whose boundary contains a line segment I. We let φ be a solution of the minimal surface equation over Ω , ψ its dual solution of the maximal surface equation. Then the following statements (I) and (II) are equivalent.

(I) φ tends to plus (resp. minus) infinity on I, and

(II) ψ tamely degenerates to a future-directed (resp. past-directed) lightlike line segment on I.

Remarks:

• Tamely degenerateness defines a degeneration of $graph(\psi)$ to a lightlike line segment on the boundary with an asymptotic estimate.

・ロト ・日ト ・ヨト ・ヨト

FIGURE: Key observation in [A.-Fujino, arXiv:1909.00975]: Boundary behaviors of a minimal surface and its dual maximal surface around a discontinuous point w_0 of the harmonic mapping f = x + iy.

FACT 16 (JENKINS-SERRIN 1966)

 $\Omega \subset \mathbb{R}^2$: polygonal domain whose boundary consists of A_i and B_i , \mathcal{P} : simple closed polygon whose vertices chosen from among the endpoints of A_i and B_i . $\alpha := \sum_i |A_i|$ for $A_i \subset \mathcal{P}$, $\beta := \sum_i |B_i|$ for $B_i \subset \mathcal{P}$, γ : perimeter of \mathcal{P} . Assume that no two segments of A_i and no two segments of B_i have a common endpoint. Then, $\exists^{l}\varphi$: solution of the min. surf. eq. on Ω satisfying $\varphi \to \infty$ on A_i and $\varphi \to -\infty$ on $B_i \iff 2\alpha < \gamma$ and $2\beta < \gamma$ for each polygon $\mathcal{P} \neq \overline{\Omega}$ and $\alpha = \beta$ when $\mathcal{P} = \overline{\Omega}$.

As a direct corollary of previous theorem and Jenkins-Serrin's result, we obtain existence and uniqueness of solutions of maximal surface equation with lightlike line boundary.

THEOREM 17 (A.-FUJINO, EXISTENCE AND UNIQUENESS)

Let $\Omega \subset \mathbb{R}^2$ be a polygonal domain whose boundary consists of line segments A_i and B_i . Then, there <u>exists</u> a solution of <u>maximal surface equation</u> which tamely degenerates to future-directed lightlike line segments on A_i and past-directed lightlike line segments on B_i if and only if

- (I) the polygon $\Gamma \subset \mathbb{L}^3$ whose edges consist of above lightlike line segments is a closed curve, and
- (II) each line segment L connecting vertices of Γ are spacelike when the projection of L to the xy-plane is in Ω .

Moreover, such solution is unique (up to a constant vector)

Summary of Topic II: Duality of boundary value problems

- Infinite boundary value problem for the minimal surface equation $\underset{1-1}{\longleftrightarrow}$ lightlike line boundary value problem for the maximal surface equation.
- It is closely related to discontinuous boundary behavior of harmonic functions.

■ with H. Fujino, *Reflection principle for lightlike line segments on maximal surfaces*, Ann. Global Anal. Geom. **59** (2021), 93–108. DOI: 10.1007/s10455-020-09743-4.

with H. Fujino, *Reflection principles* for zero mean curvature surfaces in the simply *isotropic 3-space*, Result Math. **74(4)** (2022), DOI: 10.1007/s00025-022-01718-0.