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Sym formula in Euclidean 3-space

Sym-Bobenko formula - - -

immersion formula of non-zero constant mean
curvature (CMC in short) surfaces

A. Sym(1985) constant negative Gaussian curvature surfaces in
Euclidean space E?

A. |. Bobenko(1994) CMC surfaces in space forms

T. Taniguchi(1997) spacelike CMC surfaces in Minkowski space IL3
Dorfmeister-Inoguchi-Toda(2003),

. . . 3
K-Kobayashi(2022) timelike CMC surfaces in L.



Sym formula in Euclidean 3-space

D C C; simply connected domain
f=(f1, f2, f3) : D — E3; immersion

fis (locally) conformal on a Riemann surface. First fundamental

form of fis
If = e*dzdz.
m 0= % — i%g the differentiation w.r.t. z

5 s
m Of = (91,92, ¢3)

conformality <= (¢1)? + (¢2)* + (¢3)* =0
non — degeneracy <= |¢1|> + [¢o|> + |¢3]> = €“/2 > 0



Sym formula in Euclidean 3-space

There exists a pair of functions 1) = (¢1,12) on D s.t.

¢ =1 (%2 + ¢12)  bo=tn — % ¢z = 2. (1)

m ) is called the generating spinors.

m ¢ describes the amounts of surfaces, e.g.
2
e =4 ([ + [2f?)”,

g=moN =11/,
Q =2 (V201 — 10¢) .



Sym formula in Euclidean 3-space

1 satisfies the non-linear Dirac equation;

(5 )+ (4 DY) -0 v =t

m Non-linear Dirac equation (2) is equivalent to the Kenmotsu
formula,

_ g = _
H (889 1T ’9’28gag> = 0HOdg.

m " = (=i, 1) also satisfies (2).

m H =0 = 11; holomorphic, 12; anti-holomorphic



Sym formula in Euclidean 3-space

Theorem

Let 1) be a solution of the non-linear Dirac equation (2):

0 8\, (U O\ (¥ _
W o) (6 2y ()=
Set ¢; as (1):
br=i (%’ +917), do=02 —%i% ¢o=2rda.

Then
r=([retond, [ Re(oats), [ Re(oas))

is a surface of the first fundamental form 4 (|¢1]* + |¢2|2)2 dzdz,
the mean curvature U (|i1]? + |1/;2|2)_1.



Sym formula in Euclidean 3-space

F = —1 ( wl— @
VIUiE+ a2 \—%2 ¥

(2) < OF = FU, OF =FV

> : D — SU(2)

where

U du/d  e“?HJ2 vV — —Ou/4 Qe V2
T\ —Qe 2 —ou/4 )’ T\ —e"?H/2  Ou/4
00u/2 +U? — |Q*e ™ =0
0Q = e“OH /2

CMC <= @; holomorphic

Compatibility condition {




Sym formula in Euclidean 3-space

Q — A71Q (X € S') does not change the Gauss equation.
OF =FU, OF =FV

U ou/4  e“?H/2 v — —du/4 Qe v/?
S \—Qe? —ou/a )’ T T \—e"?H/2  Qu/4

J
OF* = FAUA, 9F* = FAV?

U — ou/4 A le/2H /2 VA —Ou/4 Qe /2
T\ Qe v/ —0u/4 ’ T\ Xe¥2H/2  Ou/4

m F* D x S! — SU(2) is called extended frame of CMC
surface.



Sym formula in Euclidean 3-space

a*: Maurer-Cartan form of F*

Following statements are equivalent;

m I is constant
m () is holomorphic
m d + o’ defines flat connections on D x SU(2)

m g:D — S? is harmonic map



Sym formula in Euclidean 3-space

Let su(2) be the Lie algebra of SU(2).

e ={(3 )

Define an inner product on su(2) as (X,Y) = —2tr(XY'). Then
[E3 is identified with su(2) isometrically.

1/0 1 1 /0 ¢ 1/¢ 0
5(_1 0)9(1,0,0),5(2. 0)9(0,1,0),5<0 _i)<—>(0,0,1)

Theorem (Sym-Bobenko)

Let H be a constant. Then

Pyl (e

describe an isometric family of CMC H surfaces.

aeR,be(C}




Sym formula in Euclidean 3-space

CMC surfaces Gauss maps
in Euclidean space <= harmonic into sphere S?

harmonic into hyperbolic plane

spacelike in Minkowski space <= 2

harmonic into de-Sitter sphere
Si

Sym formula of spacelike/timelike surfaces in Minkowski space
can be constructed as in Euclidean case.

timelike in Minkowski space <~—




Application to timelike surfaces in Heisenberg group

Thurston's conjecture proposed a complete characterization of
geometric structures on three-dimensional manifolds.

Fact (Thurston, Perelman)

Every three-dimensional manifold is locally isometric to just one of
a family of eight distinct types.

Model spaces for Thurston's geometry are
S?, E®, WP,

S? x R, H? x R,

Nils, SLoR, Sols.




Application to timelike surfaces in Heisenberg group

Heisenberg group Nils;

1 =1 3+ %.%'1.%2
Nilz=< [0 1 T2 zi €ERp = (R (2,29, 23), ),
0 0 1

1
(z1, v2,73) - (Y1,Y2,Y3) = <x1 + Y1, T2 + Y2, 23 + Y3 + i(xlyZ - $2y1))

Left invariant Riemannian metric g;

1 2
g =dz% + dzo® + {d:vg + i(azgd:nl — :Uldxg)}

Left invariant non-flat Lorentzian metric g;

1 2
g= Fda? + doy’+ {dl‘g + 5(!172611‘1 — l‘ldl'g)}



Application to timelike surfaces in Heisenberg group

Isometry group Iso(Nils);
Iso, (Nllg) = Nllg X U1

Lie algebra nils;

l‘li[g = (R3,[ s ]) s [61,62] = €3, [62,63] = [63,61] =0

(e1, ez, e3); standard orthonormal basis of R?

m [, Es, E3; ONB of left-invariant vector fields

_ 0 0
ma e Bi=gt -1 ao b=+,
2

63(—>E3:



Application to timelike surfaces in Heisenberg group

(Nils, g) with g = —dx1? + dxo? + {dm3 + %(xgdxl - xldxg)}2

Definition

f : M? — Nils; immersion from orientable connected 2-manifold
T def . .

f; timelike surface <= f*g; Lorentzian metric

Para-complex number C’;
C=R®R=(1,i) with ()?=1, 1-/=4-1=4

m C' is NOT a field.

m 2Z does not always become positive for z € C'.




Application to timelike surfaces in Heisenberg group

D c C’; simply connected domain
f = (f1, f2, f3) : D — Nilg; timelike surface

f is (locally) conformal immersion from Lorentz surface into Nils.
First fundamental form of f is

edzdz.

Notation

m 0= %6% + 4 %a%? differentiation w.r.t. conformal coordinate z
m Of = ¢'Ey + ¢°Es + $*Es

conformality <= —(¢')% 4 (¢?)* + (¢3)> =0
non — degeneracy < —qﬁlﬁ + ¢2@ + ¢33 = e"/2



Application to timelike surfaces in Heisenberg group

There exist a pair of C'-valued functions 1 = (11,13) on D
and e € {£i'} s.t.

o' =e (B +u?), @ =e (B —wi?), 6 =20

Proposition

1 satisfies the non-linear Dirac equation:

(% +@ @)} ()=

1 2
U= e = —=e"I?H + Zzh, £ {+1,+i'}

h = —e%/%g(N, FEs3); support function of f



Application to timelike surfaces in Heisenberg group

timelike surface is called non-vertical if h # 0 anywhere.

Fact (c.f. Daniel, Inoguchi)

The normal Gauss maps of (spacelike/timelike) non-vertical
surfaces with H = 0 in the 3-dimensional Heisenberg group define
harmonic maps into the hyperbolic plane (S? /de-Sitter sphere).

{—x?—‘,—x%—i—x% :1} C nilz {x?—x%—kx%zl} CL?+,—,+)



Application to timelike surfaces in Heisenberg group

For simplicity, e = ', h > 0. The extended frame is obtained from

OFF = FRUF, JFF = FPVE e {et € R}

Uk — Ow/4 + ée V229 H 2 —pléew/?
N plQéew/? —0w/4
Vi —Ow/4 —puQée—w/?
T\ pée/? w4 + éemv/2H29H 2

Remark

m (Qdz?; Abresch-Rosenberg differential,
1 .
Q = ;(2H —)g(Va0f, N)

¢%°
S

m H; constant = @Q; para-holomorphic



Application to timelike surfaces in Heisenberg group

a”; Maurer-Cartan form of F*

Theorem (K-Kobayashi, 2022)

The following statements are equivalent;
m H=0
m d + o defines flat connections on D x SU

m s 0 Tyt o N is a harmonic map into ST = SU' ; /U}



Application to timelike surfaces in Heisenberg group

SUy, = {(% &) a,ﬁe@',aa—ﬂﬁzl}

i —p—1iq
iy = {(—p—H”q —ir

The Lie alg. suj ; can be identified with nil3 as vector spaces.

Lo =ity o oLfo <1y oL 0N
2 ’l:/ O 617 2 71 O 627 2 0 77;1 63
For X € su) ;

m (X)°; off-diagonal part of X
m (X)? diagonal part of X

p,q,TER}




Application to timelike surfaces in Heisenberg group

Theorem (K-Kobayashi, 2022)

. d
f* = exp {(fm)o ~5n <8%fm) }

describe timelike minimal surfaces in Nilg where the map
fus : D — suy s given by

O A S

RENEILS

The normalized Gauss map N* of f* defines harmonic map into
de-Sitter sphere 57 C L3

7 1 0 1
Y pu m
2t (0 —1) (F%)

through the stereographic projections.




Recent research

Compatibility conditions for non-vertical surfaces;
1, = — 1
F00w+e" — QQe™" + _(90H + plée /22 = 0
_ 1— 1-
0Q = —§Q3H€e_w/2e“/2 — §3H€ew/26“/2

0Q = —%QéHée_w/Qe”/Q - %8H€ew/2e“/2

In the case of non-vertical, H; constant, and Q@ =0

%8511}4—6“’:0 and 0Q =0



Recent research

For w : D — C’, denote w = u + i'v. Then the Liouville equation
Dow = ce®™ (3)

for real constants ¢,d € R is equivalent to the system

90u = ce™ coshdv, 9v = ce™ sinh dv

The solution of (3) is given by

U + U2 i'ul — U9
2 2

where w7, us are the solutions of the Liouville equation for
real function.



Recent research

Specify the minimal surfaces of the Abresch-Rosenberg differential

Qdz? with QQ =0 and Q # 0.

Definition

null-scroll /s the surface in Nils of the form

7 - exp(tB)

where v : I — Nils is a null curve and B : I — nils is a null vector
field.

m The null-scroll is a natural generalization of the ruled surface
with a null-ruler v + tB.

m Null-scroll is timelike.



Recent research

Definition (L. Graves, 1979)

Let v : I — L3 be a null Frenet curve with (A, B,C). Then the
map f(s,t) :=~(s) +tB(s) is called B-scroll.

Null curve 7 : I — L3 is called null Frenet curve if
(A B C); frame along v, Fk,77: T — R s.t.

A=+, (4,B) =(C,C) =1,

<A7A> = <B7B> = <A,C> = <B7C> =0,
0 0 —71
(A,B,C)/:(A,B,C) 0 0 —x
k 7 O

Remark

The mean curvature of B-scroll is 7.



Recent research

For arbitrary functions k # 0 and T, there exists a null Frenet
curve v with (A, B,C) s.t.

0 0 -7
(A,B,C)’ =(A,B,C)|0 0 —k
k 7™ 0

Null Frenet curve v is given by

v = </ Alds, / A2ds/ A3ds>

where A = (A, A% A3).



Recent research

Theorem (K)

The non-vertical timelike minimal surfaces with QQ = 0,Q # 0
are null-scrolls with the mean curvature H = 0.

(«) Denote the conformal coordinate for null-scroll by
z =lx + ly, where [ = 1%1/ and the ruler as B. The [-part of the
Abresch-Rosenberg differential can be computed as

, -1
IQ =15(t,)"9(B,e3)*H,

that means () = 0 if and only if H =0 or g(B,e3) = 0.

(=) The minimal surfaces induce the B-scrolls with 7 = 1/2. By
the relation between f* and fﬁ, we can see that the null curve and
null vector field of B-scroll derive a null curve and null vector field

of Nﬂg.



SIS

m Construction of the null-scroll with the mean curvature 0 by
the curve theory in Nils.

m Classify the CMC surfaces in Nil3 by QQ = 0.
m Details of “ruled surfaces” v - exp(tB).
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