3次元ハイゼンベルグ群の時間的極小曲面に対 する Sym の公式

北海道大学大学院 理学院 数学専攻清原悠貴 (Hirotaka KIYOHARA)

部分多様体幾何とリー群作用 2022 2023/03/27

本講演は小林真平氏(北海道大学)との共同研究の内容を含む

Contents

1 Sym-Bobenko formula in Euclidean 3-space

2 Application to timelike surfaces in Heisenberg group

3 Recent research

Sym-Bobenko formula · · ·

immersion formula of non-zero constant mean curvature (CMC in short) surfaces

- A. $\mathsf{Sym}(1985)$ constant negative Gaussian curvature surfaces in Euclidean space \mathbb{E}^3
- A. I. Bobenko(1994) CMC surfaces in space forms
- T. Taniguchi(1997) spacelike CMC surfaces in Minkowski space \mathbb{L}^3 Dorfmeister-Inoguchi-Toda(2003), K-Kobayashi(2022) timelike CMC surfaces in \mathbb{L}^3

 $\mathbb{D}\subset\mathbb{C};$ simply connected domain $f=(f_1,f_2,f_3):\mathbb{D}\to\mathbb{E}^3;$ immersion

f is (locally) conformal on a Riemann surface. First fundamental form of f is

$$I^f = e^u dz d\bar{z}.$$

Notation

$$\begin{aligned} & \textbf{conformality} \Longleftrightarrow (\phi_1)^2 + (\phi_2)^2 + (\phi_3)^2 = 0 \\ & \textbf{non} - \textbf{degeneracy} \Longleftrightarrow |\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 = e^u/2 > 0 \end{aligned}$$

Proposition

There exists a pair of functions $\psi = (\psi_1, \psi_2)$ on $\mathbb D$ s.t.

$$\phi_1 = i\left(\overline{\psi_2}^2 + {\psi_1}^2\right), \quad \phi_2 = \overline{\psi_2}^2 - {\psi_1}^2, \quad \phi_3 = 2\psi_1\overline{\psi_2}.$$
 (1)

- lacksquare ψ is called the **generating spinors**.
- lacktriangledown ψ describes the amounts of surfaces, e.g.

$$e^{u} = 4 (|\psi_{1}|^{2} + |\psi_{2}|^{2})^{2},$$

$$g = \pi \circ N = \psi_{1}/\overline{\psi_{2}},$$

$$Q = 2 (\overline{\psi_{2}}\partial\psi_{1} - \psi_{1}\partial\overline{\psi_{2}}).$$

Proposition

 ψ satisfies the non-linear Dirac equation;

$$\left\{\begin{pmatrix} 0 & \partial \\ -\overline{\partial} & 0 \end{pmatrix} + \begin{pmatrix} \mathcal{U} & 0 \\ 0 & \mathcal{U} \end{pmatrix}\right\} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = 0 \quad \textit{where} \quad \mathcal{U} = \frac{1}{2}e^{u/2}H \quad \text{(2)}$$

 Non-linear Dirac equation (2) is equivalent to the Kenmotsu formula,

$$H\left(\partial\overline{\partial}g - \frac{\partial\overline{g}}{1 + |g|^2}\overline{\partial}g\partial g\right) = \partial H\overline{\partial}g.$$

- $\psi^* = (-\overline{\psi_2}, \overline{\psi_1})$ also satisfies (2).
- $\blacksquare H = 0 \Longrightarrow \psi_1$; holomorphic, ψ_2 ; anti-holomorphic

Theorem

Let ψ be a solution of the non-linear Dirac equation (2):

$$\left\{ \begin{pmatrix} 0 & \partial \\ -\overline{\partial} & 0 \end{pmatrix} + \begin{pmatrix} \mathcal{U} & 0 \\ 0 & \mathcal{U} \end{pmatrix} \right\} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = 0.$$

Set ϕ_i as (1):

$$\phi_1 = i \left(\overline{\psi_2}^2 + {\psi_1}^2 \right), \quad \phi_2 = \overline{\psi_2}^2 - {\psi_1}^2, \quad \phi_3 = 2{\psi_1}\overline{\psi_2}.$$

Then

$$f = \left(\int \operatorname{Re}(\phi_1 dz), \quad \int \operatorname{Re}(\phi_2 dz), \quad \int \operatorname{Re}(\phi_3 dz) \right)$$

is a surface of the first fundamental form $4\left(|\psi_1|^2+|\psi_2|^2\right)^2dzd\bar{z}$, the mean curvature $\mathcal{U}\left(|\psi_1|^2+|\psi_2|^2\right)^{-1}$.

$$F := \frac{1}{\sqrt{|\psi_1|^2 + |\psi_2|^2}} \begin{pmatrix} \psi_1 \\ -\psi_2 \end{pmatrix} : \mathbb{D} \to SU(2)$$

$$(2) \iff \partial F = FU, \quad \overline{\partial} F = FV$$

where

$$U = \begin{pmatrix} \partial u/4 & e^{u/2}H/2 \\ -Qe^{-u/2} & -\partial u/4 \end{pmatrix}, \quad V = \begin{pmatrix} -\overline{\partial}u/4 & \overline{Q}e^{-u/2} \\ -e^{u/2}H/2 & \overline{\partial}u/4 \end{pmatrix}$$

Compatibility condition
$$\begin{cases} \partial \partial u/2 + \mathcal{U}^2 - |Q|^2 e^{-u} = 0 \\ \overline{\partial} Q = e^u \partial H/2 \end{cases}$$

Fact

 $CMC \iff Q$; holomorphic

 $Q \longmapsto \lambda^{-1} Q \ (\lambda \in \mathbb{S}^1)$ does not change the Gauss equation.

$$\partial F = FU, \quad \overline{\partial}F = FV$$

$$U = \begin{pmatrix} \partial u/4 & e^{u/2}H/2 \\ -Qe^{-u/2} & -\partial u/4 \end{pmatrix}, \quad V = \begin{pmatrix} -\overline{\partial}u/4 & \overline{Q}e^{-u/2} \\ -e^{u/2}H/2 & \overline{\partial}u/4 \end{pmatrix}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\partial F^{\lambda} = F^{\lambda}U^{\lambda}, \quad \overline{\partial}F^{\lambda} = F^{\lambda}V^{\lambda}$$

$$U^{\lambda} = \begin{pmatrix} \partial u/4 & \lambda^{-1}e^{u/2}H/2 \\ -\lambda^{-1}Qe^{-u/2} & -\partial u/4 \end{pmatrix}, \quad V^{\lambda} = \begin{pmatrix} -\overline{\partial}u/4 & \lambda\overline{Q}e^{-u/2} \\ -\lambda e^{u/2}H/2 & \overline{\partial}u/4 \end{pmatrix}$$

■ $F^{\lambda}: \mathbb{D} \times \mathbb{S}^1 \to \mathrm{SU}(2)$ is called **extended frame** of CMC surface.

 α^{λ} : Maurer-Cartan form of F^{λ}

Theorem

Following statements are equivalent;

- H is constant
- Q is holomorphic
- $d + \alpha^{\lambda}$ defines flat connections on $\mathbb{D} \times \mathrm{SU}(2)$
- lacksquare $g:\mathbb{D} o\mathbb{S}^2$ is harmonic map

Let $\mathfrak{su}(2)$ be the Lie algebra of SU(2).

$$\mathfrak{su}(2) = \left\{ \begin{pmatrix} ia & \bar{b} \\ b & -ia \end{pmatrix} \middle| a \in \mathbb{R}, b \in \mathbb{C} \right\}$$

Define an inner product on $\mathfrak{su}(2)$ as $\langle X,Y\rangle=-2\mathrm{tr}(XY)$. Then \mathbb{E}^3 is identified with $\mathfrak{su}(2)$ isometrically.

$$\frac{1}{2}\begin{pmatrix}0&1\\-1&0\end{pmatrix}\leftrightarrow(1,0,0),\ \frac{1}{2}\begin{pmatrix}0&i\\i&0\end{pmatrix}\leftrightarrow(0,1,0),\ \frac{1}{2}\begin{pmatrix}i&0\\0&-i\end{pmatrix}\leftrightarrow(0,0,1)$$

Theorem (Sym-Bobenko)

Let H be a constant. Then

$$f^{\lambda} = -\frac{1}{2H} \left\{ i\lambda \left(\frac{\partial}{\partial \lambda} F^{\lambda} \right) (F^{\lambda})^{-1} + \frac{i}{2} F^{\lambda} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} (F^{\lambda})^{-1} \right\}$$

describe an isometric family of CMC H surfaces.

CMC surfaces Gauss maps $\text{in Euclidean space} \qquad \Longleftrightarrow \text{ harmonic into sphere } \mathbb{S}^2$ $\text{spacelike in Minkowski space} \Longleftrightarrow \underset{\mathbb{H}^2}{\text{harmonic into hyperbolic plane}}$ $\text{timelike in Minkowski space} \Longleftrightarrow \underset{\mathbb{S}^2_1}{\text{harmonic into de-Sitter sphere}}$

Remark

Sym formula of spacelike/timelike surfaces in Minkowski space can be constructed as in Euclidean case.

Thurston's conjecture proposed a complete characterization of geometric structures on three-dimensional manifolds.

Fact (Thurston, Perelman)

Every three-dimensional manifold is locally isometric to just one of a family of eight distinct types.

Model spaces for Thurston's geometry are

$$\mathbb{S}^3$$
, \mathbb{E}^3 , \mathbb{H}^3 , $\mathbb{S}^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$, $\mathbb{N}il_3$, $\widetilde{SL_2\mathbb{R}}$, Sol_3 .

Heisenberg group Nil₃;

$$\operatorname{Nil}_{3} = \left\{ \begin{pmatrix} 1 & x_{1} & x_{3} + \frac{1}{2}x_{1}x_{2} \\ 0 & 1 & x_{2} \\ 0 & 0 & 1 \end{pmatrix} \middle| x_{i} \in \mathbb{R} \right\} \cong \left(\mathbb{R}^{3}(x_{1}, x_{2}, x_{3}), \cdot \right),$$

$$(x_{1}, x_{2}, x_{3}) \cdot (y_{1}, y_{2}, y_{3}) = \left(x_{1} + y_{1}, x_{2} + y_{2}, x_{3} + y_{3} + \frac{1}{2}(x_{1}y_{2} - x_{2}y_{1}) \right)$$

Left invariant **Riemannian** metric g;

$$g = dx_1^2 + dx_2^2 + \left\{ dx_3 + \frac{1}{2}(x_2dx_1 - x_1dx_2) \right\}^2$$

Left invariant non-flat Lorentzian metric g;

$$g = \mp dx_1^2 + dx_2^2 \pm \left\{ dx_3 + \frac{1}{2} (x_2 dx_1 - x_1 dx_2) \right\}^2$$

Isometry group $Iso(Nil_3)$;

$$Iso_{\circ}(Nil_3) = Nil_3 \rtimes U_1$$

Lie algebra \mathfrak{nil}_3 ;

$$\mathfrak{nil}_3=\left(\mathbb{R}^3,[\ ,\]\right),\quad [e_1,e_2]=e_3,\quad [e_2,e_3]=[e_3,e_1]=0$$

$$(e_1,e_2,e_3); \text{ standard orthonormal basis of }\mathbb{R}^3$$

Notation

- E_1, E_2, E_3 ; ONB of left-invariant vector fields
- $e_1 \leftrightarrow E_1 = \frac{\partial}{\partial x_1} \frac{1}{2} \frac{\partial}{\partial x_3}, \quad e_2 \leftrightarrow E_2 = \frac{\partial}{\partial x_2} + \frac{1}{2} \frac{\partial}{\partial x_3},$ $e_3 \leftrightarrow E_3 = \frac{\partial}{\partial x_3}$

(Nil₃, g) with
$$g = -dx_1^2 + dx_2^2 + \left\{ dx_3 + \frac{1}{2}(x_2 dx_1 - x_1 dx_2) \right\}^2$$

Definition

 $f: M^2 \to \mathrm{Nil}_3$; immersion from orientable connected 2-manifold f; timelike surface $\stackrel{def}{\Longleftrightarrow} f^*g$; Lorentzian metric

Para-complex number \mathbb{C}' ;

$$\mathbb{C}' = \mathbb{R} \otimes \mathbb{R} = \langle 1, i' \rangle$$
 with $(i')^2 = 1$, $1 \cdot i' = i' \cdot 1 = i'$

Remark

- \blacksquare \mathbb{C}' is NOT a field.
- $z\bar{z}$ does not always become positive for $z\in\mathbb{C}'$.

 $\mathbb{D}\subset\mathbb{C}';$ simply connected domain $f=(f_1,f_2,f_3):\mathbb{D} o\operatorname{Nil}_3;$ timelike surface

f is (locally) conformal immersion from Lorentz surface into ${\rm Nil}_3.$ First fundamental form of f is

$$e^u dz d\bar{z}$$
.

Notation

- lacksquare $\partial = rac{1}{2} rac{\partial}{\partial x} + i' rac{1}{2} rac{\partial}{\partial y};$ differentiation w.r.t. conformal coordinate z

$$\begin{aligned} & \textbf{conformality} \Longleftrightarrow -(\phi^1)^2 + (\phi^2)^2 + (\phi^3)^2 = 0 \\ & \textbf{non} - \textbf{degeneracy} \Longleftrightarrow -\phi^1 \overline{\phi^1} + \phi^2 \overline{\phi^2} + \phi^3 \overline{\phi^3} = e^u/2 \end{aligned}$$

Proposition

There exist a pair of \mathbb{C}' -valued functions $\psi=(\psi_1,\psi_2)$ on \mathbb{D} and $\epsilon\in\{\pm i'\}$ s.t.

$$\phi^1 = \epsilon \left(\overline{\psi_2}^2 + {\psi_1}^2\right), \quad \phi^2 = \epsilon i' \left(\overline{\psi_2}^2 - {\psi_1}^2\right), \quad \phi^3 = 2\psi_1\overline{\psi_2}$$

Proposition

 ψ satisfies the non-linear Dirac equation:

$$\begin{cases} \begin{pmatrix} 0 & \partial \\ -\overline{\partial} & 0 \end{pmatrix} + \begin{pmatrix} \mathcal{U} & 0 \\ 0 & \mathcal{U} \end{pmatrix} \end{cases} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = 0$$
$$\mathcal{U} = \tilde{\epsilon}e^{w/2} = -\frac{1}{2}e^{u/2}H + \frac{i'}{4}h, \quad \tilde{\epsilon} \in \{\pm 1, \pm i'\}$$

$$h = -e^{u/2}g(N, E_3)$$
; support function of f

Definition

timelike surface is called **non-vertical** if $h \neq 0$ anywhere.

Fact (c.f. Daniel, Inoguchi)

The normal Gauss maps of (spacelike/timelike) non-vertical surfaces with H=0 in the 3-dimensional Heisenberg group define harmonic maps into the hyperbolic plane (\mathbb{S}^2 /de-Sitter sphere).

$$\{-x_1^2 + x_2^2 + x_3^2 = 1\} \subset \mathfrak{nil}_3$$

$$\left\{x_1^2 - x_2^2 + x_3^2 = 1\right\} \subset \mathbb{L}^3_{(+,-,+)}$$

For simplicity, $\epsilon = i', h > 0$. The extended frame is obtained from

$$\partial F^{\mu} = F^{\mu}U^{\mu}, \quad \overline{\partial} F^{\mu} = F^{\mu}V^{\mu} \quad \mu \in \{e^{i't} | t \in \mathbb{R}\}$$

$$U^{\mu} = \begin{pmatrix} \partial w/4 + \tilde{\epsilon}e^{-w/2 + u/2} \partial H/2 & -\mu^{-1}\tilde{\epsilon}e^{w/2} \\ \mu^{-1}Q\tilde{\epsilon}e^{-w/2} & -\partial w/4 \end{pmatrix}$$

$$V^{\mu} = \begin{pmatrix} -\overline{\partial}w/4 & -\mu\overline{Q}\tilde{\epsilon}e^{-w/2} \\ \mu\tilde{\epsilon}e^{w/2} & \overline{\partial}w/4 + \tilde{\epsilon}e^{-w/2 + u/2}\overline{\partial}H/2 \end{pmatrix}$$

Remark

Qdz²; Abresch-Rosenberg differential,

$$Q = \frac{1}{4}(2H - i')g(\nabla_{\partial}\partial f, N) - \frac{\phi^{32}}{4}$$

 \blacksquare H; constant $\Longrightarrow Q$; para-holomorphic

 α^{μ} ; Maurer-Cartan form of F^{μ}

Theorem (K-Kobayashi, 2022)

The following statements are equivalent;

- $\blacksquare H = 0$
- $d + \alpha^{\mu}$ defines flat connections on $\mathbb{D} \times \mathrm{SU}'_{1,1}$
- lacksquare $\pi_{\mathbb{L}^3}\circ\pi_{\mathfrak{nil}}^{-1}\circ N$ is a harmonic map into $\mathbb{S}^2_1=\mathrm{SU}_{1,1}'/\mathrm{U}_1'$

Notation

$$\mathrm{SU}_{1,1}' = \left\{ \begin{pmatrix} \alpha & \beta \\ \bar{\beta} & \bar{\alpha} \end{pmatrix} \middle| \alpha, \beta \in \mathbb{C}', \alpha \bar{\alpha} - \beta \bar{\beta} = 1 \right\}$$

$$\mathfrak{su}_{1,1}' = \left\{ \begin{pmatrix} i'r & -p - i'q \\ -p + i'q & -i'r \end{pmatrix} \middle| p, q, r \in \mathbb{R} \right\}$$

The Lie alg. $\mathfrak{su}'_{1,1}$ can be identified with \mathfrak{nil}_3 as vector spaces.

$$\frac{1}{2} \begin{pmatrix} 0 & -i' \\ i' & 0 \end{pmatrix} \leftrightarrow e_1, \ \frac{1}{2} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \leftrightarrow e_2, \ \frac{1}{2} \begin{pmatrix} i' & 0 \\ 0 & -i' \end{pmatrix} \leftrightarrow e_3$$

Notation

For $X \in \mathfrak{su}'_{1,1}$

- $(X)^o$; off-diagonal part of X
- \bullet $(X)^d$; diagonal part of X

Theorem (K-Kobayashi, 2022)

$$f^{\mu} = \exp\left\{ \left(f_{\mathbb{L}^3} \right)^o - \frac{i'}{2} \mu \left(\frac{\partial}{\partial \mu} f_{\mathbb{L}^3} \right)^d \right\}$$

describe timelike minimal surfaces in Nil_3 where the map $f_{\mathbb{L}^3}:\mathbb{D} \to \mathfrak{su}_{1,1}'$ is given by

$$f_{\mathbb{L}^3} = - \left\{ i' \mu \left(\frac{\partial}{\partial \mu} F^\mu \right) (F^\mu)^{-1} + \frac{i'}{2} F^\mu \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} (F^\mu)^{-1} \right\}.$$

Remark

The normalized Gauss map N^{μ} of f^{μ} defines harmonic map into de-Sitter sphere $S^2_1 \subset \mathbb{L}^3$

$$\frac{i'}{2}F^{\mu}\begin{pmatrix}1&0\\0&-1\end{pmatrix}(F^{\mu})^{-1}$$

through the stereographic projections.

Compatibility conditions for non-vertical surfaces;

$$\begin{split} \frac{1}{2}\partial\overline{\partial}w + e^w - Q\overline{Q}e^{-w} + \frac{1}{2}(\partial\overline{\partial}H + p)\tilde{\epsilon}e^{-w/2}e^{u/2} &= 0\\ \partial\overline{Q} &= -\frac{1}{2}\overline{Q}\partial H\tilde{\epsilon}e^{-w/2}e^{u/2} - \frac{1}{2}\overline{\partial}H\tilde{\epsilon}e^{w/2}e^{u/2}\\ \overline{\partial}Q &= -\frac{1}{2}Q\overline{\partial}H\tilde{\epsilon}e^{-w/2}e^{u/2} - \frac{1}{2}\partial H\tilde{\epsilon}e^{w/2}e^{u/2} \end{split}$$

In the case of non-vertical, H; constant, and $Q\overline{Q}=0$

$$\frac{1}{2}\partial\overline{\partial}w+e^w=0\quad\text{and}\quad\overline{\partial}Q=0$$

For $w:\mathbb{D}\to\mathbb{C}'$, denote w=u+i'v. Then the Liouville equation

$$\partial \overline{\partial} w = ce^{dw} \tag{3}$$

for real constants $c,d\in\mathbb{R}$ is equivalent to the system

$$\partial \overline{\partial} u = ce^{du} \cosh dv, \quad \partial \overline{\partial} v = ce^{du} \sinh dv$$

The solution of (3) is given by

$$w = \frac{u_1 + u_2}{2} + i' \frac{u_1 - u_2}{2}$$

where u_1, u_2 are the solutions of the Liouville equation for real function.

Problem

Specify the minimal surfaces of the Abresch-Rosenberg differential Qdz^2 with $Q\overline{Q}=0$ and $Q\neq 0$.

Definition

null-scroll is the surface in Nil_3 of the form

$$\gamma \cdot \exp(tB)$$

where $\gamma:I\to \mathrm{Nil}_3$ is a null curve and $B:I\to \mathfrak{nil}_3$ is a null vector field.

Remark

- The null-scroll is a natural generalization of the ruled surface with a null-ruler $\gamma + tB$.
- Null-scroll is timelike.

Definition (L. Graves, 1979)

Let $\gamma:I\to\mathbb{L}^3$ be a null Frenet curve with (A,B,C). Then the map $f(s,t):=\gamma(s)+tB(s)$ is called B-scroll.

Null curve $\gamma:I\to\mathbb{L}^3$ is called **null Frenet curve** if $\exists (A\ B\ C);$ frame along γ , $\exists \kappa, \exists \tau:I\to\mathbb{R}$ s.t.

$$A = \gamma', \qquad \langle A, B \rangle = \langle C, C \rangle = 1,$$
$$\langle A, A \rangle = \langle B, B \rangle = \langle A, C \rangle = \langle B, C \rangle = 0,$$
$$(A, B, C)' = (A, B, C) \begin{pmatrix} 0 & 0 & -\tau \\ 0 & 0 & -\kappa \\ \kappa & \tau & 0 \end{pmatrix}$$

Remark

The mean curvature of B-scroll is τ .

Theorem

For arbitrary functions $\kappa \neq 0$ and τ , there exists a null Frenet curve γ with (A,B,C) s.t.

$$(A,B,C)' = (A,B,C) \begin{pmatrix} 0 & 0 & -\tau \\ 0 & 0 & -\kappa \\ \kappa & \tau & 0 \end{pmatrix}.$$

Null Frenet curve γ is given by

$$\gamma = \left(\int_0^s A^1 ds, \int_0^s A^2 ds, \int_0^s A^3 ds\right)$$

where $A = (A^1, A^2, A^3)$.

Theorem (K)

The non-vertical timelike minimal surfaces with $Q\overline{Q}=0, Q\neq 0$ are null-scrolls with the mean curvature H=0.

 (\Leftarrow) Denote the conformal coordinate for null-scroll by $z=lx+\bar{l}y,$ where $l=\frac{1+i'}{2}$ and the ruler as B. The \bar{l} -part of the Abresch-Rosenberg differential can be computed as

$$\bar{l}Q = \bar{l}\frac{1}{2}(t_y)^2 g(B, e_3)^2 H,$$

that means $\overline{lQ}=0$ if and only if H=0 or $g(B,e_3)=0$. (\Rightarrow) The minimal surfaces induce the B-scrolls with $\tau=1/2$. By the relation between f^μ and $f^3_{\mathbb{L}}$, we can see that the null curve and null vector field of B-scroll derive a null curve and null vector field of Nil_3 .

Issues

- \blacksquare Construction of the null-scroll with the mean curvature 0 by the curve theory in $Nil_3.$
- Classify the CMC surfaces in Nil_3 by $Q\overline{Q} = 0$.
- Details of "ruled surfaces" $\gamma \cdot \exp(tB)$.

[Abresch-Rosenberg] U. Abresch, H. Rosenberg.

A Hopf differential for constant mean curvature surfaces in $S^2 \times R$ and $H^2 \times R$.

Acta Math. 193(2): 141–174, 2004.

[Bobenko] A. I. Bobenko.

Surfaces in terms of 2 by 2 matrices. Old and new integrable cases.

Harmonic Maps and Integrable Systems. Aspects of Mathematics (23), 1994.

[Dorfmeister-Inoguchi-Toda] J. F. Dorfmeister, J. Inoguchi, M. Toda.

Weierstrass-type representation of timelike surfaces with constant mean curvature.

in: Differential geometry and integrable systems (Tokyo, 2000), Contemp. Math., 308: 77–99, 2002.

[Graves] L. Graves.

Codimension one isometric immersions between Lorentz spaces.

Trans. Amer. Math. Soc. 252: 367-392, 1979.

[Kiyohara-Kobayashi] H. Kiyohara, S-P. Kobayashi.

Timelike minimal surfaces in the three-dimensional Heisenberg group.

J Geom Anal. 32, 225, 2022.

[Sym] A. Sym.

Soliton surfaces and their applications (soliton geometry from spectral problems).

In: Martini, R. (eds) Geometric Aspects of the Einstein Equations and Integrable Systems. Lecture Notes in

Physics (239). Springer, Berlin, Heidelberg, 1985.

[Taniguchi] T. Taniguchi.

The Sym-Bobenko formula and constant mean curvature surfaces in Minkowski 3-space. Tokyo Journal of Mathematics. **20**(2): 463-473, 1997.

[Thurston] W. M. Thurston (S. Levy ed.).

Three-dimensional geometry and topology. Vol. 1, Princeton Math. Series, Vol. 35, Princeton Univ. Press. 1997.