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1 Background

==

1.1 The original Reeb sphere theorem
Theorem 1.1 (G. Reeb, 1952) "

M: m-~dim closed C'*° manifold,

f M — R: C function. _ ;

If f has exactly two critical points each of which

Is nondegenerate, then M 1s homeomorphic

to the sphere S™ := {x € R™*! | ||z|| = 1}.
[Publ. Inst. Math. Univ. Strasbourg]
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Definition 1.2 (revision)

e p € M: critical point of f (or critical for f)

def
& for a chart (U;z1, -+ ,2.m,) about p,

2Lp)=0 (i=1,2,---m).

N df, : T,M — R < T'r(p)R 1s not surjective,

i.e., k,(f) := rank(df,) = 0.

ifF L. . . .
<= giving M a Riemannian metric,

Vip)=0.
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e Let p € M be a critical point of f.

Then p is said to be nondegenerate

def
& for a chart (U;x1,- -+ ,Tm,) about p,

det (524 (p)) #0.

Example 1.3

V(p1,p2,p3) € S,

let f(p1,p2,p3) == p3.
Two points (0,0, +1) are
nondegenerate cricical for f. o0, © 77 'l”"
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Theorem 1.1 (G. Reeb, 1952) (repeat)

M: m-dim closed C°° manifold,
f: M — R: C function.

If £ has exactly two critical points each of which
Is nondegenerate, then M is homeomorphic to S™.

& The key results in the proof are

Morse Lemma and Fundamental Theorem.



Lemma 1.4 (Morse Lemma)

Vpo € M: nondegenerate critical point of f,
AU, ) = (U;x1, -+ ,Tm): chart about pg
s.t. p(pg) =0:=(0,---,0)(e R™), and that

f(q) = f(po) — 21(q) — -+ — xX(q)
+23,1(q) + - +23,(9), VgeU.



Theorem 1.5 (Fundamental Theorem)

If f has no critical point on f~1[a,b] (a < b),

fH(=00,a] °=° f(~o0,b]

In particular f~1[a, b] e f~1(a) x [a,b].
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1.2 Proof of Reeb's sphere theorem

p1,p2 € M: exactly two nondeg. critical pts of f.
By the max-min value theorem, we can assume
ai .= f(pl) = MiNge M f(x);

ag == f(p2) = maxyen f(y).
| 'TQ:E'('(P;)




D(p2) ={re V|3 ;_1y;(r) <e}

-
- e

-
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Remark 1.6

o N Is a twisted m-sphere.

e Every exotic m-sphere (m > 7) is diffeom.
to a twisted m-sphere.

[Smale, Ann. of Math. (1961)]

o If m <6, then M is diffeomorphic to S™.
[Cerf, Kervaire-Milnor, Palais, Smale ('60s)]



1.3 Reeb-Milmor-Rosen sphere theorem
Theorem 1.7 (J. Milnor (1959), R. Rosen (1960))

M: m-dim closed (°° manifold,
f: M — R: C° function.

If f has exactly two critical points, I g |

then M is homeomorphic to S™.
[Bull. Soc. Math. France, Notices of AMS]

¥ The main theorem of the talk is the extension
of Theorem 1.7 to Lipshitz function.



1.3 Reeb-Milmor-Rosen sphere theorem

Theorem 1.7 (J. Milnor (1959), R. Rosen (1960))

M: m-dim closed C'*° manifold, =
f: M — R: C function.
If f has exactly two critical points, §

then M is homeomorphic to 8™.

¢ The key result in the proof IS

Mazur-Brown’s theorem.
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Theorem 1.8 (Mazur-Brown (1959, 1961))

X: topological space, >J: suspension over X.

If X2 is locally m-Euclidean at the suspension

points, then > is homeomorphic to S™.
[Proc. AMS]

e Mazur indicated that Thm 1.8 would follow

from the form of the generalized Schoenflies
theorem in [Bull. AMS (1959)].



1.4 Proof of Theorem 1.7
n1,p2 € M: exactly two critical points of f.
By the max-min value thoerem, we can assume
a1 := f(p1) = mingen f(x),
ag ‘= f_(Pz) —
a1 + a

2
Choose € > 0 so that

c€ (a1 +e,a2 —€).

Let c:=




Since f has no critical point on f~1[a; +¢,a9 — €],
by the Fundamental theorem,

far + €, as — g

diff
~° f~Yay +€) X [a1 + €, a2 — €]

diffeo

m~/




Since f~1(a; +¢) = p1 and f~1(ay — &) — po
as € — 0, we have

M =lim. o f~ ay +e,a2 — €] —, [~ \
homeo ~1(¢) x a1, 09 ’ A
e Tl e e N\ S\

= the suspension ¥ over f~1(c). ¢ > 0

Since X is locally m-Euclidean at suspension pts
of Y., Mazur-Brown's theorem shows that M is

homeomorphic to S™.



onsmooth Analysis

F.H. Clarke
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2.1 Differential of Lipschitz maps

M: m-dim Riemannian manifold,

N: n-dim Riemannian manifold,

F M — N: Lipschitz map.

Note that, by Rademacher’'s thm,

dEr C M: Lebesgue measure zero

s.t. ddF on M \ Fp.

B,.(x): open metric ball with center x € M,
or x € N, and radius r > 0.



Definition 2.1
For each p € M, let

L(p, F(p))
be the set of all linear maps from T, M to Tx(,)N.

Note that L(p, F'(p)) is a nm-dim vector space
over [R.

We topologize L(p, F'(p)) with the operator
norm || - ||, i.e.,, VG € L(p, F(p))
|G|l :==supj, <1 |G(v)]




Definition 2.2 (Kondo (2022))
For each p € M, let

Kr(p) := {G € L(p, F(p))
3{51%' ieN C Br(p)( )\EF s.t. T = P, }

N> _"ir-}r)%le."I (V)
de;";C;; (v lb - 00
e Gv)

Flx: )
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Definition 2.3 (Kondo (2022))
For each p € M, let

OF'(p) := the convex hull of Kr(p)

.= the set of all convex combinations
of points in Kr(p)

= the smallest convex set containing K (p).

We call OF (p) the generalized differential of F' at p.



Remark 2.4
Fix pe M.
o If Fis of class C*, then OF (p) = {dF,}.
e OF(p) is a compact convex set in L(p, F'(p)).
e OF' is upper semicontinuous, which means
Ve >0, Ju(p,e) € (0,r(p))
s.t. Vo € Byp.e)(p)

TFF((;)) o OF (x) ol C U.(OF(p)).



Definition 2.5 (Kondo (2022))
p € M: non-singular point of F' in the sense
of Clarke

& Vf € 0F(p), rank(f) = min{m,n}.

e Remark that, if p € M is non-singular for F
in the sense of Clarke, then I\(p) > 0
s.t. every x € Bay(p)(p) is non-singular for F

In that sense.



Definition 2.5 (Kondo (2022))
p € M: non-singular point of F' in the sense
of Clarke

& Vf € 0F(p), rank(f) = min{m,n}.

e Note, inthecaseof N =1, 1.e., Fis a
Lipschitz function,

p € M: singular point of F' in the sense
of Clarke
iff

<= dg € OF(p) s.t. rank(g)=0.



Example 2.6

2, x> 2,
f(iE) =TT 27 (S [_172]7
T < —1,

)

which is a convex function on R,

and is not differentiable at x = —1, 2.
Note that for Vp € R\ {—1,2}

dfp(s£|,) = &) = f'(n).
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2r, x> 2,
Since f'(z):=41, x¢€(-1,2),
2x, x < —1,

we see, for each A € |0, 1],

(1 =X lim f(z)+ X lim f'(x) =1— 3\,

xl—1 xT—1
B . / . / _ B
(1 — M) la}igf (x) + )\la}gf (x) =4 — 3.

Thus Of(—1) = {1 —3X| A€ [0,1]} = [-2, 1]
Df(2) = {4 —3X\| X € [0,1]} = [1,4].



Since 0 € 0f(—1) = [-2,1],

x = —1 is singular for f,
and 1 = f(—1) = I;lellgf(ai)

Since 0 € 0f(2) = [1,4],

x = 2 is nonsingular for f, 2 4 0 >

and f is increasing near x = 2.
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Example 2.7

z?sin:  (z #0), |
0 (z =0),

which is locally Lipschitz.
g is differentiable on R,

but is not C! at £ = 0,
1 1

for g'(z) = 2z sin = — cos . I

Since | cos(1/x)| < 1, we can choose a sequence

of lines with the same slope tangent to y = g(x).
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For instance, Vi € N, let

1 T
— = - +20—1)m
- 3—I- (4 )T
We see

lim r; — 0 and
12— 00

lim g/ (CBZ) — -0.04 0.02 0 0.02
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Take the convex hull 9¢g(0) of the set

K4(0) :={a e R=ToR

| H{xi}ieN C R \ {O} s.t. x; — 0,
g (x;) = aas i — oo

3

Since |cos(1/x)| < 1, we see
0g9(0) = [=1,1].

As 0 € 0g(0), z = 0 is a singular point of g.



Definition 2.8 (Kondo (2022))
F : M — R: Lipschitz function, p € M.

xp(p) = {w cT,M

El{xi}iEN C Bfr'(p) (p) \ Lp st .z —p, }
VF(x;) = wasi1— o0 |

®p(p) := the convex hull of xp(p).

We call ®g(p) the generalized gradient of F' at p.



Definition 2.9 (Kondo (2022))
F : M — R: Lipschitz function.

p € M: critical point of F' in the sense of Clarke

&L o, € ®p(p)

where o, denotes the origin of T}, M.

Remark 2.10 (Kondo (2022))

p € M: singular for F' in the sense of Clarke

ifF " .
<= p € M: critical for F in that sense.



2.2 Example: Grove-Shiohama's theory
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X: m~-dim complete Riemannian manifold,
d: distance function of X.
Fix p e X.
Define the function d, : X — R by
dy(z) :=d(p,x), VxrelX.

Note that d, is a 1-Lipschitz function.



e g € X: critical point of d,, in the sense
of Grove-Shiohama

&y e T,X,
v :[0,1] — X: minimal geodesic
joining g to p s.t. Z(v,v'(0)) < 7/2.

For convienience p is also called critical for d,,.



e Gromov's isotopy lemma (1981)

If 0 < ry <rg <00, and if d, has no critical

points in the sense of GS on B,.,(p) \ By, (p),

homeom

then B, (p)\ B,,(p) =~ 0B, (p)X|riy,ra|.
[Comment. Math. Helv.]

) d8Bra(p)

P

dBri(
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¢ Diameter sphere theorem (Grove-Shiohama)

It the sectional curvature of X is bounded
from below by 1, and if the diameter of X is

greater than 7 /2, then X is homeom.to S™.
[Ann. of Math. (1977)]

e Reeb’s sphere theorem for distance functions

Fix p € X. If X is closed, and if d,, has
exactly two critical points p, g in the sense
of GS, then X is homeomorphic to S™.



e Remark that, for any fixed p € X,

q € X: critical for d,, in the sense of GS

ff " .
& ¢ € X: critical for d,, in the sense of Clarke

ff . .
<= ¢ € X: singular for d,, in that sense.

[Kondo, J. Math. Soc. Japan (2022)]
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3 Main Theorem
Main Theorem (Kondo (2022))

M: m-dim closed Riemannian manifold,
F : M — R: Lipschitz function.

If F' has exactly two singular points in the sense
of Clarke, then M is homeomorphic to S™.

[J. Math. Soc. Japan]

& The key result in the proof is

Mazur-Brown’s theorem.



4  Proof of Main Theorem

21,29 € M: singular for F' in the sense of Clarke
Since z1, 2z are critical for F' in that sense,
by the max-min value thm, we can assume

a1 := F(z1) = mingcp F(x),

ag 1= F(z9) = max,cn F(y).
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4  Proof of Main Theorem

21,29 € M: singular for F' in the sense of Clarke

Since 21, z9 are critical for F' in that sense,
by the max-min value thm, we can assume

a1 := F(z1) = mingcp F(x),

ag 1= F(z9) = max,cn F(y).
For any r > 0 with B,.(z1) N B,(z2) = 0,
Elbz(ff‘) c (&1,&2) S.T. F_l(b@(’l“)) C Br(zz)

where 1 = 1, 2.
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Since M is compact, there are finite number of

strongly convex open balls

EIB?“(m)(pl)v T ElB?“(pk)(pk) CM
which cover M, where r(p;) € (0,inj(M)/2).



Fix e € (0,inj(M)/2).

Fg(i): local convolution smoothing of F
on B (pi), ¢ =1,---,k, defined by

2 (g) =

/ p (y)(F o exp,, )(exp,' ¢ — y)dy
yel, M

for all g € Br(pi)(pi).



Fix € € (0,inj(M)/2).
Fg(i): local convolution smoothing of F
on B (pi), i =1,--- k.

For a C*° partition of unity {¢;}_, subordinate
to {Br(p,) (Pi) }izy, let

Fo(z) =0 pi(z) - B (2), Vo € M.

Note that F. = F' uniformly as € | O, i.e., F; is
a global smoothing of F'



Let M(r) := F~1([b1(r), ba(T)])-

Since F' has no singular point on M (r),
Vg € M(r), 3X(q) > 0, Je(q) € (0,inj(M)/2)
s.t. Ve e (O,E(Q)), VE, # 0 on B)\(q)(q).
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Thus IV C M: open, deg € (0,inj(M)/2)
s.t. M(r) CV, and that
Ve € (0,e9), F: has no critical point on V.

A
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Since F, = F as ¢ ] 0, Je1 € (0,¢&0)
s.t. Ve € (0,¢e1),
F1(b;i(r)) € Br(z;) NV (i =1,2).

&

In particular Mc(r) := F1([b1(r), ba(7)]) - V.

| S . )

Since F. has no critical point ’:‘L:m
- mee- tha
on M.(r), Vt € [by1(r), ba(7)], «7 1R M
F-1(t) is a compact regular /7 .
: : ==/ . _lhm

submanifold of M of codim 1. %=y ‘

P -1 o= Fl&)
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Fix ¢ := (CL1 -+ (12)/2 and ¢ € (0,81).
W.o.l.g., we can assume ¢ € (b1 (r), ba(r)).
By the Fundamental Thm,

diffeo

M. (r) =" F='(c) x [by(r), ba(r)].

Since lim,. o b;(1) = a; and F=1(b;(r)) C B,(z),
we have  lim, o F1(bi(r)) = 2z; (1 = 1,2).

In particular  lim, g M.(r) = M.



We have
M = lim,rw Ms(’l“)

homes ~1c) x [a1, 9] . , ] A
2 (Fe_l(c)Fx (o) F3(0) X {ag) %% v

— the suspension Y over F~1(c).
p . (c) , . 0

Since X is locally m-Euclidean at suspension pts

of X, Mazur-Brown's theorem shows that M is

homeomorphic to S™.




