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Definition 1.2 (revision)

• p ∈ M : critical point of f (or critical for f)
def⇐⇒ for a chart (U ;x1, · · · , xm) about p,

∂f
∂xi

(p) = 0 (i = 1, 2, · · ·m).

iff⇐⇒ dfp : TpM → R id
= Tf(p)R is not surjective,

i.e., rkp(f) := rank(dfp) = 0.

iff⇐⇒ giving M a Riemannian metric,

∇f(p) = 0.
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Theorem 1.1 (G. Reeb, 1952) (repeat)

M : m-dim closed C∞ manifold,

f : M → R: C∞ function.

If f has exactly two critical points each of which

is nondegenerate, then M is homeomorphic to Sm.

♣ The key results in the proof are

Morse Lemma and Fundamental Theorem.



Lemma 1.4 (Morse Lemma)

∀p0 ∈ M : nondegenerate critical point of f ,

∃(U,ϕ) = (U ;x1, · · · , xm): chart about p0

s.t. ϕ(p0) = o := (0, · · · , 0)(∈ Rm), and that

f(q) = f(p0)− x2
1(q)− · · ·− x2

λ(q)

+x2
λ+1(q) + · · ·+ x2

m(q), ∀q ∈ U .
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Remark 1.6

• M is a twisted m-sphere.

• Every exotic m-sphere (m ≥ 7) is diffeom.
to a twisted m-sphere.

[Smale, Ann. of Math. (1961)]

• If m ≤ 6, then M is diffeomorphic to Sm.

[Cerf, Kervaire-Milnor, Palais, Smale (’60s)]
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Theorem 1.8 (Mazur-Brown (1959, 1961))

X: topological space, Σ: suspension over X.

If Σ is locally m-Euclidean at the suspension
points, then Σ is homeomorphic to Sm.

[Proc. AMS]

• Mazur indicated that Thm 1.8 would follow

from the form of the generalized Schoenflies

theorem in [Bull. AMS (1959)].
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2.1 Differential of Lipschitz maps

M : m-dim Riemannian manifold,

N : n-dim Riemannian manifold,

F : M → N : Lipschitz map.

Note that, by Rademacher’s thm,

∃EF ⊂ M : Lebesgue measure zero

s.t. ∃dF on M \ EF .

Br(x): open metric ball with center x ∈ M ,

or x ∈ N , and radius r > 0.



Definition 2.1
For each p ∈ M , let

L(p, F (p))

be the set of all linear maps from TpM to TF (p)N .

Note that L(p, F (p)) is a nm-dim vector space
over R.
We topologize L(p, F (p)) with the operator

norm ‖ · ‖, i.e., ∀G ∈ L(p, F (p))

‖G‖ := sup‖v‖≤1 ‖G(v)‖
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Definition 2.3 (Kondo (2022))

For each p ∈ M , let

∂F (p) := the convex hull of KF (p)

:= the set of all convex combinations
of points in KF (p)

= the smallest convex set containing KF (p).

We call ∂F (p) the generalized differential of F at p.



Remark 2.4

Fix p ∈ M .

• If F is of class C1, then ∂F (p) = {dFp}.
• ∂F (p) is a compact convex set in L(p, F (p)).

• ∂F is upper semicontinuous, which means

∀ε > 0, ∃µ(p, ε) ∈ (0, r(p))

s.t. ∀x ∈ Bµ(p,ε)(p),

τF (x)
F (p) ◦ ∂F (x) ◦ τpx ⊂ Uε(∂F (p)).



Definition 2.5 (Kondo (2022))
p ∈ M : non-singular point of F in the sense

of Clarke
def⇐⇒ ∀f ∈ ∂F (p), rank(f) = min{m,n}.

• Remark that, if p ∈ M is non-singular for F

in the sense of Clarke, then ∃λ(p) > 0

s.t. every x ∈ B2λ(p)(p) is non-singular for F

in that sense.



Definition 2.5 (Kondo (2022))
p ∈ M : non-singular point of F in the sense

of Clarke
def⇐⇒ ∀f ∈ ∂F (p), rank(f) = min{m,n}.

• Note, in the case of N = R, i.e., F is a
Lipschitz function,

p ∈ M : singular point of F in the sense
of Clarke

iff⇐⇒ ∃g ∈ ∂F (p) s.t. rank(g) = 0.
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Since f ′(x) :=






2x, x > 2,

1, x ∈ (−1, 2),

2x, x < −1,

we see, for each λ ∈ [0, 1],

(1− λ) lim
x↓−1

f ′(x) + λ lim
x↑−1

f ′(x) = 1− 3λ,

(1− λ) lim
x↓2

f ′(x) + λ lim
x↑2

f ′(x) = 4− 3λ.

Thus ∂f(−1) = {1− 3λ |λ ∈ [0, 1]} = [−2, 1],

∂f(2) = {4− 3λ |λ ∈ [0, 1]} = [1, 4].
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Take the convex hull ∂g(0) of the set

Kg(0) :=
{
α ∈ R = T0R

∣∣∣
∃{xi}i∈N ⊂ R \ {0} s.t. xi → 0,

g′(xi) → α as i → ∞
}
.

Since | cos(1/x)| ≤ 1, we see

∂g(0) = [−1, 1].

As 0 ∈ ∂g(0), x = 0 is a singular point of g.



Definition 2.8 (Kondo (2022))

F : M → R: Lipschitz function, p ∈ M .

!F (p) :=
{
w ∈ TpM

∣∣∣∣
∃{xi}i∈N ⊂ Br(p)(p) \ EF s.t. xi → p,

∇F (xi) → w as i → ∞

}
,

!F (p) := the convex hull of !F (p).

We call !F (p) the generalized gradient of F at p.



Definition 2.9 (Kondo (2022))

F : M → R: Lipschitz function.

p ∈ M : critical point of F in the sense of Clarke
def⇐⇒ op ∈ !F (p)

where op denotes the origin of TpM .

Remark 2.10 (Kondo (2022))

p ∈ M : singular for F in the sense of Clarke
iff⇐⇒ p ∈ M : critical for F in that sense.
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X: m-dim complete Riemannian manifold,

d: distance function of X.

Fix p ∈ X.

Define the function dp : X → R by

dp(x) := d(p, x), ∀x ∈ X.

Note that dp is a 1-Lipschitz function.
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• Diameter sphere theorem (Grove-Shiohama)

If the sectional curvature of X is bounded

from below by 1, and if the diameter of X is

greater than π/2, then X is homeom. to Sm.
[Ann. of Math. (1977)]

• Reeb’s sphere theorem for distance functions

Fix p ∈ X. If X is closed, and if dp has

exactly two critical points p, q in the sense

of GS, then X is homeomorphic to Sm.



• Remark that, for any fixed p ∈ X,

q ∈ X: critical for dp in the sense of GS
iff⇐⇒ q ∈ X: critical for dp in the sense of Clarke
iff⇐⇒ q ∈ X: singular for dp in that sense.

[Kondo, J.Math. Soc. Japan (2022)]

• Nonsmooth analysis is one of the frameworks
that includes Grove-Shiohama’s theory for
distance functions.
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3 Main Theorem
Main Theorem (Kondo (2022))

M : m-dim closed Riemannian manifold,

F : M → R: Lipschitz function.

If F has exactly two singular points in the sense
of Clarke, then M is homeomorphic to Sm.

[J.Math. Soc. Japan]

♣ The key result in the proof is

Mazur-Brown’s theorem.



4 Proof of Main Theorem
z1, z2 ∈ M : singular for F in the sense of Clarke

Since z1, z2 are critical for F in that sense,
by the max-min value thm, we can assume

a1 := F (z1) = minx∈M F (x),

a2 := F (z2) = maxy∈M F (y).

For any r > 0 with Br(z1) ∩Br(z2) = ∅,

∃bi(r) ∈ (a1, a2) s.t. F−1(bi(r)) ⊂ Br(zi)

where i = 1, 2.
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4 Proof of Main Theorem
z1, z2 ∈ M : singular for F in the sense of Clarke

Since z1, z2 are critical for F in that sense,
by the max-min value thm, we can assume

a1 := F (z1) = minx∈M F (x),

a2 := F (z2) = maxy∈M F (y).

For any r > 0 with Br(z1) ∩Br(z2) = ∅,

∃bi(r) ∈ (a1, a2) s.t. F−1(bi(r)) ⊂ Br(zi)

where i = 1, 2.





Fix ε ∈ (0, inj(M)/2).

F (i)
ε : local convolution smoothing of F

on Br(pi)(pi), i = 1, · · · , k, defined by

F (i)
ε (q) :=
∫

y ∈TpiM
ρ(i)ε (y)(F ◦ exppi

)(exp−1
pi

q − y)dy

for all q ∈ Br(pi)(pi).



Fix ε ∈ (0, inj(M)/2).

F (i)
ε : local convolution smoothing of F

on Br(pi)(pi), i = 1, · · · , k.

For a C∞ partition of unity {ψi}ki=1 subordinate

to {Br(pi)(pi)}ki=1, let

Fε(x) :=
∑k

i=1 ψi(x) · F (i)
ε (x), ∀x ∈ M .

Note that Fε ⇒ F uniformly as ε ↓ 0, i.e., Fε is

a global smoothing of F .
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Fix c := (a1 + a2)/2 and ε ∈ (0, ε1).

W.o.l.g., we can assume c ∈ (b1(r), b2(r)).

By the Fundamental Thm,

Mε(r)
diffeo( F−1

ε (c)× [b1(r), b2(r)].

Since limr↓0 bi(r) = ai and F−1
ε (bi(r)) ⊂ Br(zi),

we have limr↓0 F−1
ε (bi(r)) = zi (i = 1, 2).

In particular limr↓0 Mε(r) = M .




