Reeb's sphere theorem for Lipschitz functions

Kei KONDO (Okayama University)

Submanifold Geometry and Lie Group Actions 2022

Tokyo University of Science, Kagurazaka

1 Background

1.1 The original Reeb sphere theorem

- Theorem 1.1 (G. Reeb, 1952)
- M: m-dim closed C^{∞} manifold,
- $f: M \to \mathbb{R}$: C^{∞} function.

If f has exactly two critical points each of which is nondegenerate, then M is homeomorphic to the sphere $\mathbb{S}^m := \{x \in \mathbb{R}^{m+1} | ||x|| = 1\}.$ [Publ. Inst. Math. Univ. Strasbourg]

Definition 1.2 (revision)

• $p \in M$: critical point of f (or critical for f) $\stackrel{\text{def}}{\iff} \text{ for a chart } (U; x_1, \cdots, x_m) \text{ about } p,$ $\frac{\partial f}{\partial r}(p) = 0 \quad (i = 1, 2, \cdots m).$ $\stackrel{\text{iff}}{\iff} df_p: T_pM \to \mathbb{R} \stackrel{\text{id}}{=} T_{f(p)}\mathbb{R} \text{ is not surjective,}$ i.e., $rk_{p}(f) := rank(df_{p}) = 0$. $\stackrel{\text{iff}}{\iff}$ giving M a Riemannian metric, $\nabla f(p) = 0.$

• Let $p \in M$ be a critical point of f. Then p is said to be nondegenerate $\stackrel{\text{def}}{\iff}$ for a chart $(U; x_1, \cdots, x_m)$ about p,

$$\det\left(\frac{\partial^2 f}{\partial x_j \partial x_i}(p)\right) \neq 0.$$

Example 1.3

 $\forall (p_1, p_2, p_3) \in \mathbb{S}^2$, let $f(p_1, p_2, p_3) := p_3$.

Two points $(0, 0, \pm 1)$ are nondegenerate critical for f.

Theorem 1.1 (G. Reeb, 1952) (repeat)

M: $m\text{-}\mathrm{dim}$ closed C^∞ manifold,

- $f: M \to \mathbb{R}$: C^{∞} function.
- If f has exactly two critical points each of which
- is nondegenerate, then M is homeomorphic to \mathbb{S}^m .

The key results in the proof are Morse Lemma and Fundamental Theorem.

Lemma 1.4 (Morse Lemma)

 $\forall p_0 \in M$: nondegenerate critical point of f,

$$\begin{split} \exists (U,\varphi) &= (U;x_1,\cdots,x_m): \text{ chart about } p_0\\ \text{s.t. } \varphi(p_0) &= o := (0,\cdots,0) (\in \mathbb{R}^m), \text{ and that}\\ f(q) &= f(p_0) - x_1^2(q) - \cdots - x_\lambda^2(q)\\ &+ x_{\lambda+1}^2(q) + \cdots + x_m^2(q), \ \forall q \in U. \end{split}$$

Theorem 1.5 (Fundamental Theorem) If f has no critical point on $f^{-1}[a,b]$ (a < b), $f^{-1}(-\infty, a] \stackrel{\text{diffeo}}{\simeq} f^{-1}(-\infty, b].$ In particular $f^{-1}[a,b] \stackrel{\text{diffeo}}{\simeq} f^{-1}(a) \times [a,b].$

1.2 Proof of Reeb's sphere theorem

 $p_1, p_2 \in M$: exactly two nondeg. critical pts of f. By the max-min value theorem, we can assume $a_1 := f(p_1) = \min_{x \in M} f(x),$ $a_2 := f(p_2) = \max_{y \in M} f(y).$ $a_2=f(P_1)$

Remark 1.6

- M is a twisted m-sphere.
- Every exotic *m*-sphere (*m* ≥ 7) is diffeom.
 to a twisted *m*-sphere.

[Smale, Ann. of Math. (1961)]

If m ≤ 6, then M is diffeomorphic to S^m.
 [Cerf, Kervaire-Milnor, Palais, Smale ('60s)]

1.3 Reeb-Milmor-Rosen sphere theorem

Theorem 1.7 (J. Milnor (1959), R. Rosen (1960))

M: *m*-dim closed C^{∞} manifold,

 $f: M \to \mathbb{R}$: C^{∞} function.

If f has exactly two critical points,

then M is homeomorphic to \mathbb{S}^m .

[Bull. Soc. Math. France, Notices of AMS]

★ The main theorem of the talk is the extension of Theorem 1.7 to Lipshitz function.

1.3 Reeb-Milmor-Rosen sphere theorem

Theorem 1.7 (J. Milnor (1959), R. Rosen (1960))

- $M: m \text{-dim closed } C^{\infty} \text{ manifold,}$
- $f: M \to \mathbb{R}$: C^{∞} function.
- If f has exactly two critical points,
- then M is homeomorphic to \mathbb{S}^m .

[Bull. Soc. Math. France, Notices of AMS]

The key result in the proof is

Mazur-Brown's theorem.

Theorem 1.8 (Mazur-Brown (1959, 1961)) X: topological space, Σ : suspension over X. If Σ is locally m-Euclidean at the suspension points, then Σ is homeomorphic to \mathbb{S}^m . [Proc. AMS]

 Mazur indicated that Thm 1.8 would follow from the form of the generalized Schoenflies theorem in [Bull. AMS (1959)].

Since f has no critical point on $f^{-1}[a_1 + \varepsilon, a_2 - \varepsilon]$, by the Fundamental theorem,

$$f^{-1}[a_1 + \varepsilon, a_2 - \varepsilon]$$

$$\stackrel{\text{diffeo}}{\simeq} f^{-1}(a_1 + \varepsilon) \times [a_1 + \varepsilon, a_2 - \varepsilon]$$

$$\stackrel{\text{diffeo}}{\simeq} f^{-1}(c) \times [a_1 + \varepsilon, a_2 - \varepsilon].$$

$$f^{*}[a_{1}*\varepsilon, a_{2}-\varepsilon].$$

$$f^{*}[a_{1}*\varepsilon, a_{2}-\varepsilon].$$

$$f^{*}[a_{1}*\varepsilon, a_{2}-\varepsilon].$$

$$f^{*}[a_{1}*\varepsilon, a_{2}-\varepsilon].$$

Since Σ is locally *m*-Euclidean at suspension pts of Σ , Mazur-Brown's theorem shows that *M* is homeomorphic to \mathbb{S}^m .

2 Nonsmooth Analysis

R.T. Rockafellar

F.H. Clarke

2.1 Differential of Lipschitz maps

- M: m-dim Riemannian manifold,
- N: n-dim Riemannian manifold,
- $F: M \to N$: Lipschitz map.
- Note that, by Rademacher's thm,
- $\exists E_F \subset M$: Lebesgue measure zero
- s.t. $\exists dF$ on $M \setminus E_F$.
- $B_r(x)$: open metric ball with center $x \in M$, or $x \in N$, and radius r > 0.

Definition 2.1

For each $p \in M$, let

 $\mathcal{L}(p, F(p))$

be the set of all linear maps from T_pM to $T_{F(p)}N$. Note that $\mathcal{L}(p, F(p))$ is a *nm*-dim vector space over \mathbb{R} .

We topologize $\mathcal{L}(p, F(p))$ with the operator norm $\|\cdot\|$, i.e., $\forall G \in \mathcal{L}(p, F(p))$ $\|G\| := \sup_{\|v\| \le 1} \|G(v)\|$

Definition 2.2 (Kondo (2022)) For each $p \in M$, let $K_F(p) := \Big\{ G \in \mathcal{L}(p, F(p)) \Big\}$ $\Big|\begin{array}{l} \exists \{x_i\}_{i\in\mathbb{N}} \subset B_{r(p)}(p) \setminus E_F \quad \text{s.t. } x_i \to p, \\ \tau_{F(p)}^{F(x_i)} \circ dF_{x_i} \circ \tau_{x_i}^p \to G \text{ as } i \to \infty \end{array}\Big\}.$ F ND dFx: $T_{x:}(v)$ M> TFIP) odFz: oTP: (v) F(P) F(X:)

Definition 2.3 (Kondo (2022)) For each $p \in M$, let

 $\partial F(p) :=$ the convex hull of $K_F(p)$

:= the set of all convex combinations of points in $K_F(p)$

= the smallest convex set containing $K_F(p)$.

We call $\partial F(p)$ the generalized differential of F at p.

Remark 2.4

Fix $p \in M$.

- If F is of class C^1 , then $\partial F(p) = \{dF_p\}$.
- $\partial F(p)$ is a compact convex set in $\mathcal{L}(p, F(p))$.
- ∂F is upper semicontinuous, which means $\forall \varepsilon > 0, \exists \mu(p, \varepsilon) \in (0, r(p))$ s.t. $\forall x \in B_{\mu(p,\varepsilon)}(p),$ $\tau_{F(p)}^{F(x)} \circ \partial F(x) \circ \tau_x^p \subset U_{\varepsilon}(\partial F(p)).$

Definition 2.5 (Kondo (2022)) $p \in M$: non-singular point of F in the sense of Clarke

$$\stackrel{\text{def}}{\iff} \forall f \in \partial F(p), \operatorname{rank}(f) = \min\{m, n\}.$$

 Remark that, if p ∈ M is non-singular for F in the sense of Clarke, then ∃λ(p) > 0
 s.t. every x ∈ B_{2λ(p)}(p) is non-singular for F in that sense.

Definition 2.5 (Kondo (2022)) $p \in M$: non-singular point of F in the sense of Clarke

$$\stackrel{\mathsf{def}}{\iff} \forall f \in \partial F(p), \operatorname{rank}(f) = \min\{m, n\}.$$

• Note, in the case of $N = \mathbb{R}$, i.e., F is a Lipschitz function,

 $p \in M$: singular point of F in the sense of Clarke

 $\stackrel{\text{iff}}{\iff} \exists g \in \partial F(p) \quad \text{s.t.} \quad \operatorname{rank}(g) = 0.$

Example 2.6

Since
$$f'(x) := \begin{cases} 2x, & x > 2, \\ 1, & x \in (-1, 2), \\ 2x, & x < -1, \end{cases}$$

we see, for each $\lambda \in [0, 1]$,

$$(1-\lambda)\lim_{x\downarrow-1}f'(x) + \lambda\lim_{x\uparrow-1}f'(x) = 1 - 3\lambda,$$

$$(1-\lambda)\lim_{x\downarrow2}f'(x) + \lambda\lim_{x\uparrow2}f'(x) = 4 - 3\lambda.$$

Thus $\partial f(-1) = \{1 - 3\lambda \mid \lambda \in [0, 1]\} = [-2, 1],$

$$\partial f(2) = \{4 - 3\lambda \,|\, \lambda \in [0, 1]\} = [1, 4].$$

Example 2.7

Since $|\cos(1/x)| \le 1$, we can choose a sequence of lines with the same slope tangent to y = g(x).

For instance, $\forall i \in \mathbb{N}$, let

$$\frac{1}{x_i} := \frac{\pi}{3} + 2(i-1)\pi.$$

We see

$$\lim_{i\to\infty} x_i = 0 \text{ and }$$

$$\lim_{i \to \infty} g'(x_i) = -\frac{1}{2}.$$

Take the convex hull $\partial g(0)$ of the set

$$K_g(0) := \left\{ \alpha \in \mathbb{R} = T_0 \mathbb{R} \\ | \begin{array}{c} \exists \{x_i\}_{i \in \mathbb{N}} \subset \mathbb{R} \setminus \{0\} \text{ s.t. } x_i \to 0, \\ g'(x_i) \to \alpha \text{ as } i \to \infty \end{array} \right\}.$$

Since
$$|\cos(1/x)| \le 1$$
, we see

$$\partial g(0) = [-1, 1].$$

As $0 \in \partial g(0)$, x = 0 is a singular point of g.

Definition 2.8 (Kondo (2022))

 $F: M \to \mathbb{R}$: Lipschitz function, $p \in M$.

$$\underset{F}{*}_{F}(p) := \left\{ w \in T_{p}M \\ \mid \exists \{x_{i}\}_{i \in \mathbb{N}} \subset B_{r(p)}(p) \setminus E_{F} \text{ s.t. } x_{i} \to p, \\ \nabla F(x_{i}) \to w \text{ as } i \to \infty \right\},$$

 $\circledast_F(p) :=$ the convex hull of $\divideontimes_F(p)$.

We call $\circledast_F(p)$ the generalized gradient of F at p.

Definition 2.9 (Kondo (2022))

 $F: M \to \mathbb{R}$: Lipschitz function.

 $p \in M$: critical point of F in the sense of Clarke $\stackrel{\text{def}}{\iff} o_p \in \circledast_F(p)$

where o_p denotes the origin of T_pM . **Remark 2.10** (Kondo (2022))

 $p \in M$: singular for F in the sense of Clarke $\stackrel{\text{iff}}{\iff} p \in M$: critical for F in that sense.

2.2 Example: Grove-Shiohama's theory

K. Grove

K. Shiohama

- X: *m*-dim complete Riemannian manifold,
- d: distance function of X.

Fix $p \in X$.

Define the function $d_p: X \to \mathbb{R}$ by

$$d_p(x) := d(p, x), \quad \forall x \in X.$$

Note that d_p is a 1-Lipschitz function.

• $q \in X$: critical point of d_p in the sense of Grove-Shiohama

 $\stackrel{\text{def}}{\iff} \forall v \in T_q X,$ $\exists \gamma : [0,1] \to X: \text{ minimal geodesic}$ joining q to p s.t. $\angle (v,\gamma'(0)) \le \pi/2.$

For convienience p is also called critical for d_p .

• Gromov's isotopy lemma (1981) If $0 < r_1 < r_2 \le \infty$, and if d_p has no critical points in the sense of GS on $\overline{B_{r_2}(p)} \setminus B_{r_1}(p)$, then $\overline{B_{r_2}(p)} \setminus B_{r_1}(p) \stackrel{\text{homeom}}{\simeq} \partial B_{r_1}(p) \times [r_1, r_2]$. [Comment. Math. Helv.]

- Diameter sphere theorem (Grove-Shiohama)
 If the sectional curvature of X is bounded
 from below by 1, and if the diameter of X is
 greater than π/2, then X is homeom. to S^m.
 [Ann. of Math. (1977)]
- Reeb's sphere theorem for distance functions
 Fix p ∈ X. If X is closed, and if d_p has exactly two critical points p, q in the sense of GS, then X is homeomorphic to S^m.

• Remark that, for any fixed $p \in X$,

 $q \in X$: critical for d_p in the sense of GS

- $\stackrel{\text{iff}}{\iff} q \in X$: critical for d_p in the sense of Clarke
- $\iff q \in X$: singular for d_p in that sense.

[Kondo, J. Math. Soc. Japan (2022)]

3 Main Theorem

Main Theorem (Kondo (2022))

- M: m-dim closed Riemannian manifold,
- $F: M \to \mathbb{R}$: Lipschitz function.
- If F has exactly two singular points in the sense of Clarke, then M is homeomorphic to \mathbb{S}^m .
 - [J. Math. Soc. Japan]
- The key result in the proof is Mazur-Brown's theorem.

4 Proof of Main Theorem

 $z_1, z_2 \in M$: singular for F in the sense of Clarke Since z_1, z_2 are critical for F in that sense, by the max-min value thm, we can assume

$$a_1 := F(z_1) = \min_{x \in M} F(x),$$

 $a_2 := F(z_2) = \max_{y \in M} F(y).$

4 Proof of Main Theorem

 $z_1, z_2 \in M$: singular for F in the sense of Clarke Since z_1, z_2 are critical for F in that sense, by the max-min value thm, we can assume

$$a_1 := F(z_1) = \min_{x \in M} F(x),$$

 $a_2 := F(z_2) = \max_{y \in M} F(y).$

For any r > 0 with $B_r(z_1) \cap B_r(z_2) = \emptyset$,

 $\exists b_i(r) \in (a_1, a_2)$ s.t. $F^{-1}(b_i(r)) \subset B_r(z_i)$

where i = 1, 2.

Since M is compact, there are finite number of strongly convex open balls

$$\exists B_{r(p_1)}(p_1), \cdots, \exists B_{r(p_k)}(p_k) \subset M$$

which cover M, where $r(p_i) \in (0, inj(M)/2)$.

Fix
$$\varepsilon \in (0, \operatorname{inj}(M)/2)$$
.
 $F_{\varepsilon}^{(i)}$: local convolution smoothing of F
on $B_{r(p_i)}(p_i)$, $i = 1, \cdots, k$, defined by
 $F_{\varepsilon}^{(i)}(q) :=$
 $\int_{y \in T_{p_i}M} \rho_{\varepsilon}^{(i)}(y) (F \circ \exp_{p_i}) (\exp_{p_i}^{-1} q - y) dy$
for all $q \in B_{r(p_i)}(p_i)$.

Fix $\varepsilon \in (0, \operatorname{inj}(M)/2)$. $F_{\varepsilon}^{(i)}$: local convolution smoothing of Fon $B_{r(p_i)}(p_i)$, $i = 1, \cdots, k$.

For a C^{∞} partition of unity $\{\psi_i\}_{i=1}^k$ subordinate to $\{B_{r(p_i)}(p_i)\}_{i=1}^k$, let $F_{\varepsilon}(x) := \sum_{i=1}^k \psi_i(x) \cdot F_{\varepsilon}^{(i)}(x), \ \forall x \in M.$

Note that $F_{\varepsilon} \rightrightarrows F$ uniformly as $\varepsilon \downarrow 0$, i.e., F_{ε} is a global smoothing of F.

Thus $\exists V \subset M$: open, $\exists \varepsilon_0 \in (0, \operatorname{inj}(M)/2)$ s.t. $M(r) \subset V$, and that $\forall \varepsilon \in (0, \varepsilon_0)$, F_{ε} has no critical point on V.

Since $F_{\varepsilon} \rightrightarrows F$ as $\varepsilon \downarrow 0$, $\exists \varepsilon_1 \in (0, \varepsilon_0)$ s.t. $\forall \varepsilon \in (0, \varepsilon_1)$, $F_{\epsilon}^{-1}(b_i(r)) \subset B_r(z_i) \cap V \ (i = 1, 2).$ In particular $M_{\varepsilon}(r) := F_{\varepsilon}^{-1}([b_1(r), b_2(r)]) \subset V$. Since F_{ε} has no critical point on $M_{\varepsilon}(r)$, $\forall t \in [b_1(r), b_2(r)]$, $F_{\varepsilon}^{-1}(t)$ is a compact regular submanifold of M of codim 1. b.(+)

Fix
$$c := (a_1 + a_2)/2$$
 and $\varepsilon \in (0, \varepsilon_1)$.

W.o.I.g., we can assume $c \in (b_1(r), b_2(r))$.

By the Fundamental Thm,

$$M_{\varepsilon}(r) \stackrel{\text{diffeo}}{\simeq} F_{\varepsilon}^{-1}(c) \times [b_1(r), b_2(r)].$$

Since $\lim_{r\downarrow 0} b_i(r) = a_i$ and $F_{\varepsilon}^{-1}(b_i(r)) \subset B_r(z_i)$,

we have $\lim_{r \downarrow 0} F_{\varepsilon}^{-1}(b_i(r)) = z_i \ (i = 1, 2).$

In particular $\lim_{r\downarrow 0} M_{\varepsilon}(r) = M$.

We have

$$M = \lim_{r \downarrow 0} M_{\varepsilon}(r)$$

$$\stackrel{\text{homeo}}{\simeq} \frac{F_{\varepsilon}^{-1}(c) \times [a_{1}, a_{2}]}{(F_{\varepsilon}^{-1}(c) \times \{a_{1}\}, F_{\varepsilon}^{-1}(c) \times \{a_{2}\})}$$

$$= \text{the suspension } \Sigma \text{ over } F_{\varepsilon}^{-1}(c).$$

$$F_{\varepsilon}^{-1}(c).$$

Since Σ is locally *m*-Euclidean at suspension pts of Σ , Mazur-Brown's theorem shows that *M* is homeomorphic to \mathbb{S}^m .