Lie groups whose moduli spaces of left-invariant Riemannian metrics are one-dimensional

Hiroshi Tamaru (田丸 博士) Osaka Metropolitan University / OCAMI

> 部分多様体幾何とリー群作用 2022 (東京理科大学) 2023/03/28

Abstract

Framework

- We define \mathcal{M}_G the moduli space of left-inv. Riem. metrics on a Lie group G.
- Study the (non)existence of distinguished left-inv. metrics on G, in terms of \mathcal{M}_G .

Problem (not solved)

- Classify G such that dim $\mathcal{M}_G=1$.
- Study left-inv. Ricci soliton metrics on such G, in terms of \mathcal{M}_G .

Joint work with

- Masahiro Kawamata
- Yuichiro Taketomi (OMU)

Background - (1/2)

Basic Question

• Which homogeneous spaces G/K admit G-invariant Einstein or Ricci soliton metrics?

Def.

• Riem. mfd (M,g) is Ricci soliton if $\exists c \in \mathbb{R}, \ \exists X \in \mathfrak{X}(M) : \mathrm{Ric}_g = cg + \mathfrak{L}_X g$.

Note

 A situation of homogeneous Einstein/Ricci solitons depends on the signature of c.

Fact (Naber, Petersen-Wylie)

• (M,g): homogeneous Ricci soliton (c > 0) $\Rightarrow M \cong [homog. Einstein with <math>sc > 0] \times [flat].$

Fact (cf. Alekseevskii-Kimel'fel'd)

• (M, g): homogeneous Ricci soliton (c = 0) \Rightarrow flat.

Background - (2/2)

(Generalized) Alekseevskii Conjecture

(M,g): homog. Einstein (Ricci soliton), c < 0
 ⇒ M is a solvmanifold?
 (solvable Lie group with left-invariant metric?)

Fact (Jablonski)

AC and GAC are equivalent.

Fact (Böhm-Lafuente, 2023)

AC is true.

Motivating Question

 Which solvable Lie groups admit left-invariant Einstein or Ricci soliton metrics?

- Classification is known only for dim \leq 6 (Will).
- In higher-dim., the (non-)existence problem is hard to be solved in general.

Framework - (1/3)

Recall

 Study the (non-)existence of left-inv. "nice" metrics on Lie groups.

Difficulty

- For $n := \dim G$ with Lie algebra \mathfrak{g} , $\{ \text{left-inv. metrics on } G \} \cong GL(n, \mathbb{R})/O(n)$, which is too big...
- Not good to ask: nice metric ↔ nice point?

Def. (moduli space)

- G: a simply-conn. Lie group with dim. n,
- The moduli space \mathcal{M}_G of left-inv. Riem. metrics on G is defined by the orbit space of the action of $\mathbb{R}^{\times}\mathrm{Aut}(G)$ on $GL(n,\mathbb{R})/O(n)$.

- There is a surjection from \mathcal{M}_G onto {left-inv. metrics on G}/(isometry and scaling).
- It is bijective if G is nilpotent or completely solvable.

Framework - (2/3)

Note

- \mathcal{M}_G is a connected Hausdorff space.
- The points corresponding to principal orbits form a smooth mfd.

Ex (Hashinaga-T. 2017)

- Consider $\mathfrak{g} := \mathrm{span}\{e_1, e_2, e_3\}$ with $a \neq 1$, $[e_1, e_2] = e_2$, $[e_1, e_3] = ae_3$, $[e_2, e_3] = 0$.
- Then, by a matrix calculation,

$$\mathcal{M}_G\cong \left\{ egin{pmatrix} 1&0&0\0&1&0\0&\lambda&1 \end{pmatrix} \mid \lambda\geq 0
ight\}\cong [0,+\infty).$$

• On the corresponding G, the metric is Ricci soliton if and only if it corresponds to 0.

- Properties of \mathcal{M}_G are invariants of G.
- Question (Expectation): They reflect the properties of left-inv. metrics on *G*?

Framework - (3/3)

Note

• The simplest case is dim $\mathcal{M}_G = 0$, i.e., $\mathcal{M}_G = \{ \mathrm{pt} \}$, i.e., $\mathbb{R}^{\times} \mathrm{Aut}(G) \curvearrowright GL(n,\mathbb{R})/O(n)$ transitive.

Thm (Lauret 2003)

• dim $\mathcal{M}_G = 0$ iff the Lie algebra of G is \mathbb{R}^n (abelian), $\mathfrak{g}_{\mathbb{R}H^n}$ (special type), $\mathfrak{h}^3 \oplus \mathbb{R}^{n-3}$.

- Above three admit left-inv. Ricci solitons;
 which can be proved without classification.
- Moreover, it satisfies
 - \mathbb{R}^n : flat,
 - $\mathfrak{g}_{\mathbb{R}H^n}$: negative constant curvature,
 - $\mathfrak{h}^3 \oplus \mathbb{R}^{n-3}$: non-Einstein.
- Hence, left-inv. Einstein metrics could not be characterized in terms of \mathcal{M}_G ... but how about Ricci solitons?

One-dimensional Case - (1/5)

Conjecture

If dim $\mathcal{M}_G = 1$, then

- $\mathcal{M}_G\cong\mathbb{R}$ or $[0,+\infty)$,
- \exists left-inv. Ricci soliton iff $\mathcal{M}_G \cong [0, +\infty)$,
- a left-inv. Ricci soliton corresponds to 0.

Note (circumstantial evidence)

- It is true for all examples we know.
- If dim $\mathcal{M}_G = 1$, then we can show that G is solvable. Therefore left-inv. Ricci soliton is unique (Lauret 2011).

Prop (a partial answer)

- If $\mathcal{M}_G \cong [0, +\infty)$, then 0 corresponds to an isolated orbit.
- A left-inv. metric corresponding to an isolated orbit is Ricci soliton (Taketomi 2022).

One-dimensional Case - (2/5)

Note (ongoing idea)

- Recall $\mathcal{M}_G := \mathbb{R}^{\times} \mathrm{Aut}(G) \setminus (GL(n,\mathbb{R})/O(n))$.
- Consider $H \curvearrowright M$: a cohomogeneity one action on an Hadamard mfd.
- If H is connected, then the orbit space $H \setminus M$ is \mathbb{R} or $[0, +\infty)$ (Berndt-Brück 2001).
- In general $\mathbb{R}^{\times} \mathrm{Aut}(G)$ is not connected ...
- We are trying to classify Lie groups with $\dim \mathcal{M}_G = 1$.
- Many examples are "almost abelian".

Def.

• \mathfrak{g} is almost abelian if \exists codimension one abelian ideal. (Namely $\mathfrak{g}\cong\mathbb{R}\ltimes\mathbb{R}^{n-1}$)

One-dimensional Case - (3/5)

Fact

• Each $A \in M(n-1,\mathbb{R})$ gives an almost abelian Lie algebra $\mathfrak{g}_A = \operatorname{span}\{e_1,\ldots,e_n\}$ by

$$\operatorname{ad}_{e_1} = A \quad (\operatorname{on span}\{e_2, \ldots, e_n\}).$$

• $\mathfrak{g}_A \cong \mathfrak{g}_B$ iff A and B are similar (conjugate up to nonzero scaling).

Ex.

• \mathbb{R}^n , $\mathfrak{g}_{\mathbb{R}H^n}$, $\mathfrak{h}^3 \oplus \mathbb{R}^{n-3}$ are almost abelian, whose corresponding matrices are

$$O_n$$
, I_n , $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \oplus \mathbb{R}^{n-3}$.

Ex.

- Remember $\mathfrak{g} := \mathrm{span}\{e_1, e_2, e_3\}$ with $[e_1, e_2] = e_2, \ [e_1, e_3] = ae_3, \ [e_2, e_3] = 0.$
- This is almost abelian corresponding to

$$\left(\begin{array}{c} 1 & 0 \\ 0 & a \end{array}\right).$$

One-dimensional Case - (4/5)

Thm

 \mathfrak{g}_A has one-dim. moduli iff A is similar to

• $(\alpha I_{n-1}) \oplus (\beta I_1)$ with $\alpha \neq \beta$;

•
$$I_{n-3} \oplus \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
; $\longleftarrow M_{\mathbb{G}} \cong \mathbb{R}$
• $\begin{pmatrix} \gamma & 1 \\ -1 & \gamma \end{pmatrix}$ with $\gamma \geq 0$;

$$\bullet \quad \left(\begin{array}{c} 0 & 1 \\ 0 & 0 \end{array}\right) \oplus \left(\begin{array}{c} 0 & 1 \\ 0 & 0 \end{array}\right) \oplus O_{n-5}.$$

Idea of Proof

- (⇐): direct calculation.
- (\Rightarrow) : The action is of cohomogeneity one iff the slice representation is very nice iff A cannot have many eigenvalues...

Conjecture

ullet dim $\mathcal{M}_G=1$ iff its Lie algebra is one of four almost abelian Lie algebras, or $\mathfrak{h}^5\oplus \mathbb{R}^{n-5}$ (5-dim Heisenberg + abelian).

One-dimensional Case - (5/5)

Recall

For all known examples with one-dim moduli,

- $\mathcal{M}_G\cong\mathbb{R}$ or $[0,+\infty)$,
- \exists left-inv. Ricci soliton iff $\mathcal{M}_G \cong [0, +\infty)$,
- a left-inv. Ricci soliton corresponds to 0.

Problems

Conjecture

If \mathcal{M}_G is one-dimensional, then

- $\mathcal{M}_G\cong\mathbb{R}$ or $[0,+\infty)$,
- \exists left-inv. Ricci soliton iff $\mathcal{M}_G\cong [0,+\infty)$,
- a left-inv. Ricci soliton corresponds to 0.

Note

- The most hard part would be the non-existence in the case of $\mathcal{M}_G \cong \mathbb{R}$;
- Maybe the classification would be easier...?

Other Problems

- Study the case of dim $\mathcal{M}_G=2$.
- Study the case that $\mathbb{R}^{\times} \operatorname{Aut}(G) \curvearrowright GL(n,\mathbb{R})/O(n)$ is "nice" (e.g., polar or hyperpolar).
- Study the pseudo-Riemannian version.

Ref

- J. Berndt, J.C. Diaz-Ramos, H. Tamaru; Hyperpolar homogeneous foliations on symmetric spaces of noncompact type, J. Differential Geom. (2010)
- J. Berndt, H. Tamaru; Homogeneous codimension one foliations on noncompact symmetric spaces, J. Differential Geom. (2003)
- J. Berndt, H. Tamaru; Cohomogeneity one actions on symmetric spaces of noncompact type, J. Reine Angew. Math. (2013)
- L. P. Castellanos Moscoso, H. Tamaru; A classification of left-invariant symplectic structures on some Lie groups, Beitrage Algebra Geom., to appear.
- T. Hashinaga, H. Tamaru; Three-dimensional solvsolitons and the minimality of the corresponding submanifolds, Internat. J. Math. (2017)
- M. Kawamata, Y. Taketomi, H. Tamaru; in progress
- Y. Kondo, H. Tamaru; A classification of left-invariant Lorentzian metrics on some nilpotent Lie groups, Tohoku Math. J. (2023)
- Y. Taketomi, H. Tamaru; On the nonexistence of left-invariant Ricci solitons a conjecture and examples, Transf. Groups (2018)

Thank you!