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1 Preliminaries

1.1 f-minimal submanifold

Let x : (Σn, g) → (Rm, ḡ) be an oriented closed submanifold which is isometrically embedded
into the Euclidean space with standard inner product ḡ = ⟨·, ·⟩. We regard x as the position
vector of the submanifold Σn ⊂ Rm. The second fundamental form B of Σn ⊂ Rm is defined by

B(X,Y ) := (∇XY )⊥,

for X,Y ∈ Γ(TΣ), where ∇ denotes the Levi-Civita connection on Rm. The second fundamental
form B is a Γ(NΣ)-valued symmetric 2-tensor on Σn, where NΣ denotes the normal bundle of
Σn. The g-trace of B is called the mean curvature vector field of the submanifold Σn ⊂ Rm, i.e.,

H := trΣB =

n∑
i=1

B(ei, ei),

where {e1, . . . , en} is a local orthonormal frame on Σn. For a smooth normal vector field N ∈
Γ(NΣ), the shape operator in the direction of N is defined by

AN (X) = −(∇XN)⊤, X ∈ Γ(TΣ).

Then we have the relation

⟨AN (X), Y ⟩ = ⟨B(X,Y ), N⟩ = ⟨B(Y,X), N⟩ = ⟨AN (Y ), X⟩.

This means that the shape operator AN : Γ(TΣ) → Γ(TΣ) is self-adjoint w.r.t. g.
In the following, we put a weight function f on the ambient space Rm, that is we consider a

smooth metric measure space (Rm, ḡ, e−f volḡ), where f ∈ C∞(Rm) and volḡ is the Riemannian
volume measure on (Rm, ḡ). An f -minimal submanifold x : Σn → Rm is defined to be a critical
point of the weighted volume functional

volgf (Σ,x) :=

∫
Σ
e−x∗f dvolg =

∫
Σ
e−f dvolg,

where volg is the Riemannian volume measure on (Σn, g). In the following, we will omit ḡ and
g from the notations volḡ and volg since we can easily identify them by the context.

Now we consider a normal variation xt : Σ
n → (Rm, ḡ, e−f vol) of an embedding x0 = x with

an associated variation vector field N := d
dt

∣∣
t=0

xt ∈ Γ(NΣ). Then we have the first variation
formula

δΣf (N) :=
d

dt

∣∣∣
t=0

volf (Σ,xt) = −
∫
Σ
⟨Hf , N⟩e−f dvol,
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where
Hf := H +∇⊥f

is called the weighted mean curvature vector field. By the first variation formula, the definition
of the f -minimality is equivalent to say that x satisfies the equation Hf = 0.

Remark 1. If we take f as

f =
| • |2

4
,

then the f -minimal equation becomes

Hf = H +
x⊥

2
= 0

since (∇f)(x) = x
2 . This is nothing but the definition of self-shrinkers. The standard sphere

Sn(
√
2n) ⊂ Rm and cylinders Sk(

√
2k) × Rn−k ⊂ Rm (k = 1, . . . , n − 1) are basic examples of

self-shrinkers.

1.2 Second variation formula for f-minimal submanifolds

Let x : Σn → Rm be a smoothly embedded closed f -minimal submanifold and xt : Σ
n → Rm

be its normal variation with x0 = x and associated variation vector field N ∈ Γ(NΣ). Then we
know the second variation formula (see [7] or [6]):

δ2Σf (N,N) :=
d2

dt2

∣∣∣
t=0

volf (Σ,xt) =

∫
Σ

〈
∆⊥N +∇⊥

∇fN −A(N)− (∇N∇f)⊥, N
〉
e−f dvol,

where ∇⊥ is the normal connection, ∆⊥N is the normal Laplacian acting on Γ(NΣ) and A is
Simons’ operator defined by

A(N) :=
n∑

i=1

B(AN (ei), ei) =
n∑

i,j=1

⟨B(ei, ej), N⟩B(ei, ej), N ∈ Γ(NΣ),

for some local orthonormal frame {ei} on (Σn, g). Note also that our definition of ∆⊥ is

∆⊥N := −
n∑

i=1

(∇⊥
ei∇

⊥
eiN −∇⊥

∇eiei
N).

Define the weighted normal Laplace operator by

∆⊥
f N := ∆⊥N +∇⊥

∇fN, N ∈ Γ(NΣ),

then from the second variation formula, we know that the Jacobi operator (or stability operator)
for our variational problem can be written as

LN = ∆⊥
f N −A(N)− (∇N∇f)⊥, N ∈ Γ(NΣ). (1)

Remark 2. Since

Ricf = Ric+Hessf = Hessf ,

the Jacobi operator for f -minimal submanifolds can be written as

LN = ∆⊥
f N −A(N)− Ricf (N)⊥,

where Ricf (X) for X ∈ Γ(TRm) is the uniquely determined vector field on Rm by the relation

⟨Ricf (X), Y ⟩ = Ricf (X,Y ) for all Y ∈ Γ(TRm).
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Remark 3. For a self-shrinker x : Σn → Rm with f = |•|2
4 , the Jacobi operator is

LN = ∆⊥
f N −A(N)− 1

2
N, N ∈ Γ(NΣ)

and the second variation formula becomes

δ2Σf (N,N) =

∫
Σ

〈
∆⊥

f N −A(N)− 1

2
N,N

〉
e−f dvol . (2)

1.3 Some formulas for f-minimal immersions

We will denote by P the set of all parallel vector fields on Rm, that is, V ∈ P is nothing
but a constant vector field on Rm. Of course, we can identify a vector V ∈ Rm with a parallel
vector field V ∈ P . By a direct computation, we have the following.

Lemma 4. Let x : Σn → Rm be a submanifold (not necessarily be f -minimal), V ∈ P and
X ∈ Γ(TΣ). Then the following relations hold:

∇XV ⊤ = AV ⊥
(X) (3)

∇⊥
XV ⊥ = −B(X,V ⊤) (4)

Using (3), (4) and the Codazzi equation, we obtain the following Lemma.

Lemma 5. Let x : Σn → Rm be an f -minimal submanifold and V ∈ P. Then we have

∆⊥
f V

⊥ = A(V ⊥)− (∇V ⊤∇f)⊥. (5)

Moreover, if x : Σn → Rm is a self-shrinker, then

∆⊥
f V

⊥ = A(V ⊥). (6)

2 Hodge Laplacian for f-minimal immersions

Let Ω1(Σ) be the space of 1-forms. The Hodge Laplacian acting on Ω1(Σ) is given by

∆[1] := dδ + δd.

Moreover, we consider
δf := δ + i∇f .

Then, the weighted Hodge Laplacian acting on Ω1(Σ) is defined by

∆
[1]
f := dδf + δfd.

By the classical Weitzenböck formula, we have the following.

Lemma 6 ([4]). Let (Σn, g, e−f vol) be a weighted Riemannian manifold and ω ∈ Ω1(Σ). Then

∆
[1]
f ω = ∆fω +RicΣf (ω), (7)

where ∆fω = ∆ω+(∇ω)(∇f, ·) ∈ Ω1(Σ) and RicΣf (ω) = RicΣf (ω
♯, ·) = RicΣ(ω♯, ·)+HessΣf (ω

♯, ·) ∈
Ω1(Σ).
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If X ∈ Γ(TΣ), we can consider its dual 1-form X♭ ∈ Ω1(Σ). The weighted Hodge Laplacian
of X is defined as the unique vector field satisfying

g(∆
[1]
f X,Y ) = (∆

[1]
f X♭)(Y ), Y ∈ Γ(TΣ).

Or equivalently, we can say that

∆
[1]
f X := (∆

[1]
f X♭)♯.

Then the above Weitzenböck formula becomes

∆
[1]
f X = ∆fX +RicΣf (X), X ∈ Γ(TΣ), (8)

where RicΣf (X) = (RicΣf (X, ·))♯ ∈ Γ(TΣ). Now, using the Gauss equation, the Weitzenböck
formula (8) for f -minimal submanifolds yields the following.

Lemma 7. Let x : Σn → Rm be an f -minimal submanifold. For any X ∈ Γ(TΣ), we have

∆
[1]
f X = ∆fX + (∇X∇f)⊤ −

n∑
i=1

AB(ei,X)(ei). (9)

In particular, if x : Σn → Rm is a self-shrinker, then the following holds:

∆
[1]
f X = ∆fX +

1

2
X −

n∑
i=1

AB(ei,X)(ei). (10)

On the other hand, using (3), (4) and the Codazzi equation, we can compute the Laplacian
of the tangent part of a parallel vector field V ∈ P .

Lemma 8. Let x : Σn → Rm be a smooth submanifold (not necessarily be f -minimal) and
V ∈ P, then it holds that

∆V ⊤ =

n∑
i=1

{
AB(ei,V

⊤)(ei)− ⟨∇⊥
eiH,V ⊥⟩ei

}
. (11)

In addition, for an f -minimal submanifold x : Σn → Rm, we have

∆fV
⊤ := ∆V ⊤ +∇∇fV

⊤ =

n∑
i=1

AB(ei,V
⊤)(ei) + (∇V ⊥∇f)⊤. (12)

and

∆
[1]
f V ⊤ = (∇V ∇f)⊤ = (∇V ⊤∇f)⊤ + (∇V ⊥∇f)⊤. (13)

Moreover, if x : Σn → Rm is a self-shrinker, then we have

∆
[1]
f V ⊤ =

1

2
(V ⊤)⊤ +

�����1

2
(V ⊥)⊤ =

1

2
V ⊤. (14)

Finally, using f -minimality, (3), (9) and (12), we can compute the following.

Lemma 9. Let x : Σn → Rm be a smooth submanifold (not necessarily be f -minimal) and
V ∈ P. Then for any X ∈ Γ(TΣ), we have

∇⟨V,X⟩ =
n∑
i=i

⟨V,∇eiX⟩ei +AV ⊥
(X). (15)
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Moreover, if x : Σn → Rm is f -minimal then we have

∆f ⟨V,X⟩ := ∆⟨V,X⟩+ ⟨∇f,∇⟨V,X⟩⟩

= −Hessf (V
⊤, X) + Hessf (V

⊥, X) + ⟨V,∆[1]
f X⟩+ 2A2(V ⊤, X)− 2⟨AV ⊥

,∇X⟩,
(16)

where

⟨AV ⊥
,∇X⟩ :=

n∑
i=1

⟨AV ⊥
(ei), (∇X)(ei)⟩.

For a self-shrinker, it additionally holds that

∆f ⟨V,X⟩ = −1

2
⟨V,X⟩+ ⟨V,∆[1]

f X⟩+ 2A2(V ⊤, X)− 2⟨AV ⊥
,∇X⟩.

3 Index estimate for f-minimal submanifolds

3.1 Test functions

For X ∈ Γ(TRm) and V,W ∈ P , we define the test function

ΦV,W (X) := ⟨W,X⟩V ⊥ − ⟨V,X⟩W⊥.

Sometimes we just write Φ(X) omitting V,W for simplicity. Using formulas (4), (5) and (16),
we can compute

Proposition 10. Let x : Σn → Rm be an f -minimal submanifold, X ∈ Γ(TΣ) and V,W ∈ P.
Then we have

LΦ(X) = −Φ((∇X∇f)⊤)− (∇Φ(X)∇f)⊥ +Φ(∆
[1]
f X)

+ 2Φ(AB(X,ei)(ei)) + 2B
(
∇⟨W,X⟩, V ⊤

)
− 2B(∇⟨V,X⟩,W⊤) + Z,

where

Z := −2Φ(B(ei,∇eiX)) + Φ((∇X∇f)⊥)− ⟨W,X⟩(∇V ⊤∇f)⊥ + ⟨V,X⟩(∇W⊤∇f)⊥.

3.2 Integration formulas

Let U ⊂ P be a set of all parallel vector fields with unit length. Then U can be identified
with the unit hypersphere Sm−1 ⊂ Rm. We put the normalized volume measure

dσ̂ :=
1

|Bm|
dσ on U ,

where |Bm| is the volume of the unit ball Bm ⊂ Rm and dσ is the standard volume element on
the sphere. The following proposition is an elementary application of the divergence theorem.

Proposition 11. For any vector fields X,Y ∈ Γ(TRm), we have∫
U
⟨X,V ⟩⟨Y, V ⟩dσ̂(V ) = ⟨X,Y ⟩.

Lemma 12. For any X,Y ∈ Γ(TRm), the following holds:∫
U
|V ⊥|2dσ̂(V ) = codim(Σ) = m− n,∫

U×U
⟨ΦV,W (X),ΦV,W (Y )⟩dσ̂(V )dσ̂(W ) = 2(m− n)⟨X,Y ⟩ − 2⟨X,Y ⊥⟩.
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As a direct consequence of this lemma, for any X ∈ Γ(TΣ) and N ∈ Γ(NΣ), we see∫
U×U

⟨Φ(X),Φ(X)⟩dσ̂(V )dσ̂(W ) = 2(m− n)|X|2,
∫
U×U

⟨Φ(X),Φ(N)⟩dσ̂(V )dσ̂(W ) = 0.

Now we list other integral formulas which will play important roles in our index estimate.
These are derived by Lemma 12, identity (15) and Proposition 11.

Lemma 13. For any X ∈ Γ(TΣ) and N ∈ Γ(TΣ), it holds that

−
∫
U×U

⟨Φ(X),Φ((∇X∇f)⊤)⟩ = −2(m− n)Hessf (X,X),∫
U×U

⟨Φ(X),Φ(∆
[1]
f X)⟩ = 2(m− n)⟨X,∆

[1]
f X⟩,

2

∫
U×U

⟨Φ(X),Φ(AB(ei,X)(ei))⟩ = 4(m− n)A2(X,X),

2

∫
U×U

⟨B(∇⟨W,X⟩, V ⊤)−B(∇⟨V,X⟩,W⊤)⟩ = −4A2(X,X),

−
∫
U×U

⟨Φ(X), (∇Φ(X)∇f)⊥⟩ = −2|X|2
m−n∑
α=1

Hessf (να, να),∫
U×U

⟨Φ(X),Z⟩ = 0.

Remark 14. The Gauss equation and f -minimality of x : Σn → Rm implies

A2(X,X) = Hessf (X,X)− RicΣf (X,X).

3.3 Eigenvalue comparison theorem for f-minimal immersions

Let x : Σn → (Rm, ḡ, e−f vol) be a compact smoothly immersed f -minimal submanifold. In
this section, we assume

codim(Σ) = m− n = 2, Hessf = Ricf ≥ K > 0, RicΣf ≥ −κ, K > κ ≥ 0.

Let {Ni}∞i=1 be an orthonormal system of Γ(NΣ) which consists of eigensections of the
stability operator L with corresponding eigenvalues {µi}∞i=1. For a positive interger k ≥ 1, we
want to find a non-zero vector field X ∈ Γ(TΣ) satisfying∫

Σ
⟨ΦV,W (X), N1⟩e−f dvol = · · · =

∫
Σ
⟨ΦV,W (X), Nk−1⟩e−f dvol = 0 (17)

for any pair of (V,W ) ∈ P ×P . Since ΦV,W (·) is skew-symmetric for (V,W ) ∈ P ×P , finding a
non-zero solution X to (17) is equivalent to find a non-zero solution to a homogeneous system
with

d̃(k) =
1

2
m(m− 1)(k − 1)

equations and d unknown variables. Of course, such a solution exists whenever the number of
valuables d ≥ d̃(k) + 1. Let

d(k) := d̃(k) + 1 =
1

2
m(m− 1)(k − 1) + 1.

Now we consider a subspace

Ed :=
d⊕

i=1

Vi ⊂ Γ(TΣ)
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which is the direct sum of first d eigenspaces V1, . . . ,Vd of ∆
[1]
f with corresponding eigenvalues

λ1, . . . , λd. By the argument above, we can find a non-zero vector field X ∈ Ed(k) satisfying
(17). Then by the min-max principle, we have

µk

∫
Σ
|Φ(X)|2e−f dvol ≤

∫
Σ
⟨Φ(X), LΦ(X)⟩e−f dvol

≤
∫
Σ

〈
Φ(X),−Φ((∇X∇f)⊤)− (∇Φ(X)∇f)⊥ +Φ(∆

[1]
f X)

+ 2Φ(AB(ei,X)(ei)) + 2B(∇⟨W,X⟩, V ⊤)− 2B(∇⟨V,X⟩,W⊤) + Z
〉
e−f dvol

Integrating both sides of this inequality w.r.t. (V,W ) ∈ U × U , Fubini’s theorem and Lemma
13 imply

2(m− n)µk

∫
Σ
|X|2e−f dvol

≤ {2(m− n)− 4}
∫
Σ
Hessf (X,X)e−f dvol−2

m−n∑
α=1

∫
Σ
|X|2Hessf (να, να)e−f dvol

+ 2(m− n)

∫
Σ
⟨X,∆

[1]
f X⟩e−f dvol−4(m− n− 1)

∫
Σ
RicΣf (X,X)e−f dvol

≤ {2(m− n)− 4}
∫
Σ
Hessf (X,X)e−f dvol−2

m−n∑
α=1

∫
Σ
|X|2Hessf (να, να)e−f dvol

+ 2(m− n)λd(k)

∫
Σ
|X|2e−f dvol−4(m− n− 1)

∫
Σ
RicΣf (X,X)e−f dvol . (18)

where we have used ∫
Σ
⟨X,∆

[1]
f X⟩e−f dvol ≤ λd(k)

∫
Σ
|X|2e−f dvol,

since X ∈ Ed(k). Now we will use the assumption

codim(Σ) = m− n = 2, Hessf ≥ K > 0, RicΣf ≥ −κ, K > κ ≥ 0

to obtain

4µk

∫
Σ
|X|2e−f dvol ≤ −4(K − κ)

∫
Σ
|X|2e−f dvol+4λd(k)

∫
Σ
|X|2e−f dvol,

hence

µk ≤ −(K − κ) + λd(k).

This completes the proof of the eigenvalue comparison theorem between L and ∆
[1]
f .

Theorem 15. Let x : Σn → (Rm, ḡ, e−f vol) be a closed smoothly embedded f -minimal subman-
ifold. Assume that

codim(Σ) = m− n = 2, Hessf = Ricf ≥ K > 0, RicΣf ≥ −κ, K > κ ≥ 0.

Then for all k ≥ 1, we have

µk ≤ −(K − κ) + λd(k) with d(k) :=
m(m− 1)(k − 1)

2
+ 1,

where {µi} and {λj} are eigenvalues of the operators L and ∆
[1]
f , respectively.
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If x : Σ → (Rm, ḡ, e−f vol) with f = |•|2
4 is a self-shrinker, then

Hessf =
1

2
ḡ.

Hence, without codimension restriction, (18) reduces to

2(m− n)µk

∫
Σ
|X|2e−f dvol

≤ {−2 + 2(m− n)λd(k)}
∫
Σ
|X|2e−f dvol−4(m− n− 1)

∫
Σ
RicΣf (X,X)e−f dvol .

Moreover, if RicΣf ≥ κ, then we have

µk ≤ λd(k) −
1

m− n
+

2(m− n− 1)κ

m− n
.

Note that the sum of the last two terms is negative if

0 ≤ κ <
1

2(m− n− 1)
.

Corollary 16. Let x : Σn → (Rm, ḡ, e−f vol) be a closed embedded self-shrinker with f = |•|2
4 .

Assume that

RicΣf ≥ −κ, κ ≥ 0.

Then for all k ≥ 1, we have

µk ≤ λd(k) −
1

m− n
+

2(m− n− 1)κ

m− n
, d(k) :=

m(m− 1)(k − 1)

2
+ 1,

where {µi} and {λj} are eigenvalues of the operators L and ∆
[1]
f , respectively.

3.4 Index estimate for f-minimal submanifolds

Finally, we use the same method as Impera–Rimoldi–Savo [4] to estimate the Morse index
of L below by the first Betti number b1 = b1(Σ). For any positive number a > 0, let

N∆f
(a) := #{positive eigenvalues of ∆f which are less than a}.

Theorem 17. Let x : Σn → (Rn+2, ḡ, e−f vol) be a closed smoothly embedded f -minimal sub-
manifold of codimention two. Assume that

Ricf ≥ K > 0, RicΣf ≥ −κ (K > κ ≥ 0).

Then we have

indf (Σ) ≥
2

(n+ 1)(n+ 2)

{
N∆f

(K − κ) + b1(Σ)
}
.

Proof. Let l ∈ Z be any fixed positive integer and choose β ∈ Z such that

(l − 1)(n+ 1)(n+ 2)

2
≤ β ≤ l(n+ 1)(n+ 2)

2
.
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Then it is easy to see that the largest integer k ∈ Z satisfying

d(k) :=
(n+ 1)(n+ 2)

2
(k − 1) + 1 ≤ β

is k = l. Therefore, for such k, we have k ≥ 2β
(n+1)(n+2) .

Now let

β := #{eigenvalues of ∆[1]
f which are less than K − κ}.

Choose k ∈ Z as the largest integer which satisfies d(k) ≤ β. Above observation shows that

k ≥ 2β

(n+ 1)(n+ 2)
.

Then Theorem 15 implies that

µ1 ≤ · · · ≤ µk ≤ −(K − κ) + λd(k) ≤ −(K − κ) + λβ < 0.

Therefore, the Morse index, i.e., the number of negative eigenvalues of L is estimated as

indf (Σ) ≥ k ≥ 2β

(n+ 1)(n+ 2)
. (19)

Now we will associate β with b1(Σ) and N∆f
(K−κ). Let γ := N∆f

(K−κ) and u1, . . . , uγ ∈
C∞(Σ) be L2

f -orthogonal eigenfunctions of ∆f with associated positive eigenvalues which are
less than K − κ > 0. By the Stokes formula, we compute∫

Σ
⟨dui, duj⟩e−f dvol =

∫
Σ
(∆fui)uj e

−f dvol = λiδij ,

so that du1, . . . , duγ ∈ Ω1(Σ) are also orthogonal. Moreover, as the weighted Hodge Laplacian

∆
[1]
f commutes with exterior derivative d, we see

∆
[1]
f dui = d∆fui = λidui,

i.e., du1, . . . , duγ are eigenforms of ∆
[1]
f associated to the eigenvalues 0 < λ1 ≤ · · · ≤ λγ < K−κ.

As du1, . . . , duγ are all perpendicular to the space of f -harmonic 1-formsH1
f (Σ) whose dimension

coincides with b1(Σ), it follows that β ≥ b1(Σ) + γ. Combining this with (19), we have

indf (Σ) ≥
2

(n+ 1)(n+ 2)
(b1(Σ) + γ)

which is the desired one.

3.5 Index estimate for self-shrinkers in higher codimension

In this subsection, we will estimate the Morse index of self-shrinkers in higher codimension
below by the first Betti number b1 = b1(Σ).

Corollary 18. Let x : Σn → (Rm, ḡ, e−f vol) be a closed embedded self-shrinker with f = |•|2
4 .

Assume that

RicΣf >
−1

2(m− n− 1)
.

Then we have

indf (Σ) ≥
2 b1(Σ)

m(m− 1)
.
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Proof. Let k ∈ Z be the lagest integer satisfying d(k) ≤ b1(Σ). Then by Corollary 16 and the
lower bound on RicΣf imply µk < 0. So,

indf (Σ) ≥ k.

On the other hand, as in the proof of Theorem 15, we have k ≥ 2
m(m−1) . Therefore, we can

estimate

indf (Σ) ≥ k ≥ 2 b1(Σ)

m(m− 1)
.

This completes the proof.

Remark 19. The lower bound assumption on RicΣf is equivalent to say that B2(X,X) < |X|2,
which is very restrictive. However, in codimension one, such an assumption on RicΣf can be

removed (see [4]). Moreover, for a codimension one self-shrinker x : Σn → Rn+1, Impera–
Rimoldi–Savo showed much better estimate that

indf (Σ) ≥
2 b1(Σ)

n(n+ 1)
+ n+ 1.

This follows from the eigenvalue comparison theorem for codimension one self-shrinkers and the
fact that all self-shrinkers (even if they are in higher codimension) satisfy

Ly⊥ = −1

2
y⊥

for any vector y ∈ Rn+1.

4 Examples

Here we compute RicΣf explicitly. Recall that on a self-shrinker x : Σn → (Rm, ḡ, e−f vol)

with f = |•|2
4 , we have

HessΣf (X,X) = Hessf (X,X) + ⟨B(X,X),∇⊥f⟩ = 1

2
|X|2 + 1

2
⟨B(X,X),x⊥⟩

for any X ∈ Γ(TΣ).

Example 20. Let Σn = Sn(
√
2n) ⊂ Rm. Since the normal part x⊥ of the position vector x ∈ Sn

is x itself,

HessΣf (X,X) =
1

2
|X|2 + 1

2
⟨∇XX,x⊥⟩

=
1

2
|X|2 − 1

2
⟨X,∇Xx⊥⟩

=
1

2
|X|2 − 1

2
⟨X,∇XX⟩

=
1

2
|X|2 − 1

2
⟨X,X⟩ = 0.

So that, we have

RicΣf (X,X) = RicΣ(X,X) =
n− 1

2n
|X|2.

This can be generalized to spherical self-shrinkers. A spherical self-shrinker is a self-shrinker
x : Σn → Rm which is contained in some sphere Sl ⊂ Rm with appropriate radius. It is well-
known that being a spherical self-shrinker is equivalent to being minimal submanifold of the
sphere.
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Example 21. Let x : Σn → Rm be a spherical self-shrinker. Then again the position vector
of Σn satisfies x = x⊥ since x is outward pointing to the sphere. By the same computation we
have HessΣf (X,X) = 0, so that

RicΣf (X,X) = RicΣ(X,X).

For example, Clifford torus x : T2 → R4 defined by

x(θ, ϕ) =
√
2(cos θ, sin θ, cosϕ, sinϕ) ∈ S1(

√
2)× S1(

√
2) ⊂ S3(2) ⊂ R4

is a spherical self-shrinker. Since RicΣ = 0 on the Clifford torus, we see

RicΣf (X,X) = RicΣ(X,X) = 0.

Now, we can apply Corollary 18 to obtain

indf (Σ) ≥
2 b1(T2)

4 · 3
=

1

3
.

The Morse index is an integer, so we conclude that indf (Σ) ≥ 1. Unfortunately, this estimate
is useless. In fact, for every self-shrinkers in Rm, we already know indf (Σ) ≥ m + 1 because
the mean curvature vector field H and normal part y⊥ of any vector y ∈ Rm have negative
eigenvalues −1 and −1/2, respectively.

References

[1] D. Adauto and M. Batista, Index estimates for closed minimal submanifolds of the
sphere, Proc. R. Soc. Edinb., Sect. A, Math. 152 (2022), no. 3, 802–816.

[2] D. Adauto and M. Batista, Morse index bounds for minimal submanifolds, Collect.
Math. (2022), DOI: 10.1007/s13348-022-00380-7.

[3] L. Ambrozio, A. Carlotto and B. Sharp, Comparing the Morse index and the first
Betti number of minimal hypersurfaces, J. Differ. Geom. 108 (2018), no. 3, 379–410.

[4] D. Impera, M. Rimoldi and A. Savo, Index and first Betti number of f -minimal hyper-
surfaces and self-shrinkers, Rev. Mat. Iberoam. 36 (2020), no. 3, 817–840.

[5] D. Impera and M. Rimoldi, Index and first Betti number of f -minimal hypersurfaces:
general ambients, Ann. Mat. Pura Appl. (4) 199 (2020), no. 6, 2151–2165.

[6] Y.-I. Lee and Y.-K. Lue, The stability of self-shrinkers of mean curvature flow in higher
co-dimension, Trans. Am. Math. Soc. 367 (2015), no. 4, 2411–2435.

[7] G. Liu, Stable weighted minimal surfaces in manifolds with non-negative Bakry-Emery
Ricci tensor, Commun. Anal. Geom. 21 (2013), no. 5, 1061–1079.

[8] A. Ros, One-sided complete stable minimal surfaces., J. Differ. Geom. 74 (2006), no. 1,
69–92.

[9] A. Savo, Index bounds for minimal hypersurfaces of the sphere, Indiana Univ. Math. J. 59
(2010), no. 3, 823–838.

11


