Morse index and first Betti number for self-shrinkers in higher
codimension
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1 Preliminaries

1.1 f-minimal submanifold

Let x : (X", g) — (R™, g) be an oriented closed submanifold which is isometrically embedded
into the Euclidean space with standard inner product g = (-,-). We regard x as the position
vector of the submanifold %™ C R™. The second fundamental form B of ¥™ C R™ is defined by

B(X,Y):= (VxY)t,

for X, Y € T(TY), where V denotes the Levi-Civita connection on R™. The second fundamental
form B is a ['(INX)-valued symmetric 2-tensor on X", where N¥ denotes the normal bundle of
™. The g-trace of B is called the mean curvature vector field of the submanifold ¥™ C R™, i.e.,

n
H: =try B = ZB(ez‘,ei),
i=1

where {ej,..., ey} is a local orthonormal frame on ¥". For a smooth normal vector field N €
['(NY), the shape operator in the direction of N is defined by
AN(X)=—-(VxN)", XeI(T®).
Then we have the relation
(AY(X),Y) = (B(X,Y),N) = (B(Y, X),N) = (AV(Y), X).

This means that the shape operator AV : I'(TY) — I'(TY) is self-adjoint w.r.t. g.

In the following, we put a weight function f on the ambient space R™, that is we consider a
smooth metric measure space (R™, g, e~/ vol9), where f € C*°(R™) and vol? is the Riemannian
volume measure on (R™,g). An f-minimal submanifold x : ¥ — R™ is defined to be a critical
point of the weighted volume functional

vold(2,x) := [ e dvold = [ e/ dvol’,
! b )

where volY is the Riemannian volume measure on (X", ¢g). In the following, we will omit g and
g from the notations vol? and vol? since we can easily identify them by the context.
Now we consider a normal variation x; : £" — (R™, g,e~/ vol) of an embedding x¢ = x with

an associated variation vector field N := %| —oXt € I'(NY). Then we have the first variation
formula
d
0¥ f(N) := —‘ volp (X, x¢) = —/(Hf,N)e_f dvol,
dt lt=0 »
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where
}If:::f{—F‘7lf
is called the weighted mean curvature vector field. By the first variation formula, the definition
of the f-minimality is equivalent to say that x satisfies the equation H; = 0.
Remark 1. If we take f as

then the f-minimal equation becomes

'_

X

Hi=H+-=-—=0
f T3

since (Vf)(x) = %. This is nothing but the definition of self-shrinkers. The standard sphere

S"(v/2n) € R™ and cylinders S¥(v/2k) x R** ¢ R™ (k = 1,...,n — 1) are basic examples of
self-shrinkers.

1.2 Second variation formula for f-minimal submanifolds

Let x : ¥ — R™ be a smoothly embedded closed f-minimal submanifold and x; : ¥* — R™
be its normal variation with xo = x and associated variation vector field N € I'(NX). Then we
know the second variation formula (see [7] or [6]):

2

d
2 e —
PEp(N.N) = (tzovolf(z,xt) /

: <ALN + V&N — A(N) — (VNV ), N> e~/ dvol,

where V+ is the normal connection, A+ N is the normal Laplacian acting on T'(NY) and A is
Simons’ operator defined by

n

A(N) =Y B(AN(e;),e;) = Y (B(eie;), N)Bei,e;), N €T(NE),
i=1

i,j=1

for some local orthonormal frame {e;} on (X7, g). Note also that our definition of A~ is

ATN ==Y (Vi VN = Vg, . N).
i=1

Define the weighted normal Laplace operator by
AfN = A*N +Vg,N, N eTI(NY),

then from the second variation formula, we know that the Jacobi operator (or stability operator)
for our variational problem can be written as

LN = AyN — A(N) - (VNVf)*, NeT(ND). (1)
Remark 2. Since
Ricy = Ric+ Hessy = Hessy,
the Jacobi operator for f-minimal submanifolds can be written as
LN = AyN — A(N) — Ricg(N)™,
where Ricy(X) for X € I'(TR™) is the uniquely determined vector field on R™ by the relation

(Ricy(X),Y) = Ricp(X,Y) forall Y e '(TR™).



Remark 3. For a self-shrinker x : 3" — R™ with f = %, the Jacobi operator is
1
LN = AfN — A(N) - 5N, NeT(NY)
and the second variation formula becomes

§*%¢(N,N) = /E (AFN — A(N) — %N,N>e_f dvol . (2)

1.3 Some formulas for f-minimal immersions

We will denote by P the set of all parallel vector fields on R™, that is, V' € P is nothing
but a constant vector field on R™. Of course, we can identify a vector V € R™ with a parallel
vector field V' € P. By a direct computation, we have the following.

Lemma 4. Let x : X" — R™ be a submanifold (not necessarily be f-minimal), V € P and
X e I(TY). Then the following relations hold:

VxVT =AY (X) (3)
VxVt=—-BX, v (4)

Using (3), (4) and the Codazzi equation, we obtain the following Lemma.
Lemma 5. Let x : X" — R™ be an f-minimal submanifold and V € P. Then we have
AFVE =AWV = (Vyr V). (5)
Moreover, if x : ¥™ — R™ is a self-shrinker, then
AFVE = A(VH). (6)
2 Hodge Laplacian for f-minimal immersions
Let Q!(X) be the space of 1-forms. The Hodge Laplacian acting on Q'(X) is given by
Al = d5 4 6d.

Moreover, we consider
0 = 0+ivy fe

Then, the weighted Hodge Laplacian acting on Q!(X) is defined by
AW = sy + 8.
By the classical Weitzenbock formula, we have the following.

Lemma 6 ([4]). Let (X", g,e~/ vol) be a weighted Riemannian manifold and w € QY(X). Then
Agc”w =Apw+ Ric?(w), (7)

where A jw = Aw+(Vw)(Vf,-) € Q1) and Ric?(w) = Ric?(wﬁ, ) = Ric® (W, -)+Hess?(wﬁ, )€
QLx).



If X € I(TY), we can consider its dual 1-form X” € Q'(X). The weighted Hodge Laplacian
of X is defined as the unique vector field satisfying

g AYXy) = (APX" (), Yer(Ts).

Or equivalently, we can say that
Al x = (allxoy.

Then the above Weitzenbock formula becomes

AX = ApX + RicF(X), X eD(TD), (8)

where Ric?(X ) = (Ric?(X ;) € T(TY). Now, using the Gauss equation, the Weitzenbock
formula (8) for f-minimal submanifolds yields the following.

Lemma 7. Let x : X" — R™ be an f-minimal submanifold. For any X € T'(TX), we have

AVX = A;X + (Vi V)T =3 AP (ey). (9)
i=1

In particular, if x : X" — R™ is a self-shrinker, then the following holds:

1 n
A‘[fl]X:AfX+§XizAB(€i,X)(ei)‘ (10)
=1
On the other hand, using (3), (4) and the Codazzi equation, we can compute the Laplacian
of the tangent part of a parallel vector field V' € P.

Lemma 8. Let x : ¥ — R™ be a smooth submanifold (not necessarily be f-minimal) and

V € P, then it holds that

AVT = 30 (AP e - (TEH Ve ). (1)
i=1

In addition, for an f-minimal submanifold x : X" — R™, we have

AfVT =AVT + vaVT = ZAB(ei,VT)(e,-) + (ﬁvaf)T. (12)
=1
and
AVVT = (W VAT = (Vi V)T + (Ve V)T (13)

Moreover, if x : X — R™ is a self-shrinker, then we have

my,T Loyt W_} T
APV = ST+ =5V (14)

Finally, using f-minimality, (3), (9) and (12), we can compute the following.

Lemma 9. Let x : X" — R™ be a smooth submanifold (not necessarily be f-minimal) and
V € P. Then for any X € I'(TY), we have

V(V,X) = anv, Ve, X)e; + AV (X). (15)

=1



Moreover, if x : X" — R™ is f-minimal then we have
Ap(V, X) == AV, X) +(V[,V(V, X))
= —Hess;(V', X) + Hessp (V1, X) + (V,AlX) +242(vT, X) - 2(4"", VX),
(16)

where

(A7 VX) =Y (A (&), (VX)(er)).

i=1

For a self-shrinker, it additionally holds that

Ap(V, X) = —(V, X) + (VA x) 4 242(vT, X) - 247" vX).

1
2
3 Index estimate for f-minimal submanifolds

3.1 Test functions

For X € I'(TR™) and V,W € P, we define the test function
dyw(X) = (W, X))Vt —(V, X)W,

Sometimes we just write ®(X) omitting V, W for simplicity. Using formulas (4), (5) and (16),
we can compute

Proposition 10. Let x : ¥ — R™ be an f-minimal submanifold, X € T'(TX) and V,W € P.
Then we have

LO(X) = —2((VxVA)T) = (Vo) V' + (A} X)
+ 28 (ABXe) (¢,)) + 2B (V(W, X), VT> 2B(V(V,X), W) + 2,
where
Z:= =28(B(e;, Ve, X)) + S(VXV)T) = (W, X)(Vyr V)T +(V, X)(Vyr V)

3.2 Integration formulas

Let U C P be a set of all parallel vector fields with unit length. Then U can be identified
with the unit hypersphere S™~! C R™. We put the normalized volume measure

1
d6:= —=——do on U,
B™|

where |B™] is the volume of the unit ball B” C R™ and do is the standard volume element on
the sphere. The following proposition is an elementary application of the divergence theorem.

Proposition 11. For any vector fields X, Y € T'(TR™), we have
/u (X V)Y, V)6 (V) = (X, V),
Lemma 12. For any X,Y € T'(TR™), the following holds:
/u [V2d6(V) = codim(Z) = m — n,

[ (@0 (3. By () (V )5 (W) = 2m =) (X.V) = 2(X. 7).
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As a direct consequence of this lemma, for any X € I'(T'Y) and N € I'(NX), we see

/ (2(X), 2(X))ds(V)de(W) = 2(m —n)| X[, / (@(X), ®(N))do(V)de(W) = 0.
Uuxu Uuxu

Now we list other integral formulas which will play important roles in our index estimate.

These are derived by Lemma 12, identity (15) and Proposition 11.
Lemma 13. For any X € I'(TY) and N € I'(TX), it holds that

— /UXM@(X), O(VxVf)")) = —2(m —n) Hess (X, X),
/MXM@(X), e(AV1X) = 2(m — n)(x, AlVX),
2 [ @0, 047 e)) = dfm - n) 42(X. X),

2 [ (BOVOV.X)VT) — BOV(V,X), W) = ~44%(X, X),
UxuU

m—n

- /MW@(X), (Vo VL) = —21X[2 Y Hessp(va, va),

a=1
/ (P(X),2Z)=0.
Uuxu
Remark 14. The Gauss equation and f-minimality of x : ¥ — R™ implies
A*(X,X) = Hess;(X, X) — Ric} (X, X).

3.3 Eigenvalue comparison theorem for f-minimal immersions

Let x : ¥ — (R™, g, e~/ vol) be a compact smoothly immersed f-minimal submanifold. In
this section, we assume

codim(¥) =m —n =2, Hessy =Ricy > K >0, Ric? > -k, K>kr>0.

Let {N;}3, be an orthonormal system of I'(NX) which consists of eigensections of the
stability operator L with corresponding eigenvalues {1;}7°,. For a positive interger £ > 1, we
want to find a non-zero vector field X € I'(T'Y) satisfying

/<<1>V,W(X),N1>ef dvol = ---:/@V,W(X),Nk_l)ef dvol = 0 (17)
b b
for any pair of (V,W) € P x P. Since @y () is skew-symmetric for (V, W) € P x P, finding a
non-zero solution X to (17) is equivalent to find a non-zero solution to a homogeneous system
with )

d(k) = §m(m - 1)(k-1)

equations and d unknown variables. Of course, such a solution exists whenever the number of
valuables d > d(k) + 1. Let



which is the direct sum of first d eigenspaces Vi, ..., Vg of AE}] with corresponding eigenvalues

A, ..., A\¢. By the argument above, we can find a non-zero vector field X € EU%) gsatisfying
(17). Then by the min-max principle, we have

2€_f A%e) e_f A%e)
e / B(X) e dvol < / (@(X), LO(X))e~ dvol
< [ (#00.~8(TxTNT) = (Tap) V1) + 2(A}X)

+20(ABEX) () + 2B(V(W, X), V) = 2B(V(V, X), W) + 2 Ye~/ dvol

Integrating both sides of this inequality w.r.t. (V,W) € U x U, Fubini’s theorem and Lemma
13 imply

2(m — n),uk/2|X|2e_f dvol
<{2(m—n)— 4}/ZHGSSf(X,X)€_f dvol —QWZ_:n/Z | X |? Hess (Vo Va)e ™ dvol
a=1
+2(m —n) /E (X, AP X)e ! dvol —4(m —n — 1) /Z Ric} (X, X)e~f dvol
<{2(m—n)— 4}/ZHGSSf(X,X)€f dvol —2T§1/E | X|? Hess f (Va, va)e~f dvol
a=1

+2(m — n) A A | X ?e=/ dvol —4(m — n — 1) /E Ric (X, X)e f dvol. (18)

where we have used
/Z (X, AlX)e™! dvol < Ay /E X2~ dvol,

since X € EU%) . Now we will use the assumption
codim(¥) =m —n =2, Hessy > K >0, Ric? >—k, K>k>0
to obtain
7 /E | X|2e=/ dvol < —4(K — k) /E | X [?e™7 dvol +4A 4 /Z | X 2e=7 dvol,
hence
pe < — (K = K) 4 Agep) -
This completes the proof of the eigenvalue comparison theorem between L and AB}}.

Theorem 15. Let x : ¥ — (R™, g,e~f vol) be a closed smoothly embedded f-minimal subman-
ifold. Assume that

codim(¥) =m —n =2, Hessy =Ricy > K >0, Ric? > -k, K>krk>0.
Then for all k > 1, we have

m(m —1)(k—1)

e < —(K — k) + )\d(kz) with d(k) := 5

+1,
where {p;} and {\;} are eigenvalues of the operators L and AE}], respectively.
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If x: ¥ — (R™, g,e/ vol) with f = % is a self-shrinker, then

g.

DN |

Hess; =
Hence, without codimension restriction, (18) reduces to
2(m — n)uk/Z | X >~ dvol
<{-2+2(m - n))\d(k)}/z | X |2e=/ dvol —4(m — n — 1) /E Ric?(X, X)e ' dvol.

Moreover, if Ric? > k, then we have

1 2(m —n—1)k
Mké)\d(k)—m_nJr S

Note that the sum of the last two terms is negative if

1

0<h< 77
=" 2(m—n—1)

Corollary 16. Let x : ¥ — (Rm,g,e_f vol) be a closed embedded self-shrinker with f = %.
Assume that

Ric? > -k, k>0
Then for all k > 1, we have

1 2(m —n — 1)k
e < Adk) — + ( ) ;o d(k) =

m-—n m-—n 2

where {p;} and {\;} are eigenvalues of the operators L and AE}], respectively.

3.4 Index estimate for f-minimal submanifolds

Finally, we use the same method as Impera—Rimoldi-Savo [4] to estimate the Morse index
of L below by the first Betti number b; = b1(X). For any positive number a > 0, let

NAf (a) := #{positive eigenvalues of Ay which are less than a}.

Theorem 17. Let x : ¥" — (R"2,g,e7/vol) be a closed smoothly embedded f-minimal sub-
manifold of codimention two. Assume that

Ricy > K >0, Ric} > —r (K >r>0).
Then we have

. 2
ind;(¥) > CEICES) {Na, (K —k)+b1(2)}.

Proof. Let | € Z be any fixed positive integer and choose 8 € Z such that

(=1 (n+1)(n+2)
2

<p< l(n+1;(n+2).




Then it is easy to see that the largest integer k € Z satisfying

(n+1)(n+2)

d(k) := 5

(k—1)+1<p

28

is k = l. Therefore, for such k, we have k > Gk

Now let
B := #{eigenvalues of AE}] which are less than K — k}.

Choose k € Z as the largest integer which satisfies d(k) < 8. Above observation shows that

2p
“(n+1)(n+2)

Then Theorem 15 implies that
pr < S < — (K = K) + Agry) < —(K — k) + A <0.

Therefore, the Morse index, i.e., the number of negative eigenvalues of L is estimated as

2B
(n+1)(n+2)

Now we will associate 8 with b1 (X) and Na, (K — ). Let v := Na, (K — k) and ug,...,uy €
C>(X) be L%-orthogonal eigenfunctions of Ay with associated positive eigenvalues which are
less than K — k > 0. By the Stokes formula, we compute

ind (%) > k > (19)

/E<dui,duj>ef dvol = /E(Afui)uj e~ dvol = 65,

so that duy,...,du, € QL(X) are also orthogonal. Moreover, as the weighted Hodge Laplacian

AB}} commutes with exterior derivative d, we see

AlVdu; = da pu; = Ndu;,
i)

i.e., duy,...,du, are eigenforms of Af associated to the eigenvalues 0 < Ay <--- <\, < K —k.
As duy, ..., duy are all perpendicular to the space of f-harmonic 1-forms ”H}(E) whose dimension
coincides with b1 (), it follows that S > b1(X) + 7. Combining this with (19), we have
2
ind¢(X) > ———(b1(Z
which is the desired one. O

3.5 Index estimate for self-shrinkers in higher codimension
In this subsection, we will estimate the Morse index of self-shrinkers in higher codimension
below by the first Betti number b; = b1 (X).

Corollary 18. Let x : ¥ — (R™,g,e 7/ vol) be a closed embedded self-shrinker with f = %.
Assume that

-1
S
Then we have
2b1(2
indf(z) > M
m(m — 1)

9



Proof. Let k € Z be the lagest integer satisfying d(k) < b1(X). Then by Corollary 16 and the
lower bound on Ric? imply pur < 0. So,

indf(X) > k.
On the other hand, as in the proof of Theorem 15, we have k > m(nf_l). Therefore, we can
estimate

2b1(X)

ind() >k > o g 1

This completes the proof. O

Remark 19. The lower bound assumption on Ric? is equivalent to say that B?(X,X) < |X|?,
which is very restrictive. However, in codimension one, such an assumption on Ric? can be
removed (see [4]). Moreover, for a codimension one self-shrinker x : ¥® — R"*! Impera—
Rimoldi—Savo showed much better estimate that
201(%)
n(n+1)
This follows from the eigenvalue comparison theorem for codimension one self-shrinkers and the
fact that all self-shrinkers (even if they are in higher codimension) satisfy

indg(X) > +n+1

1
Lyt — 24t
Yy 29

for any vector y € R*H1,

4 Examples

Here we compute Ric? explicitly. Recall that on a self-shrinker x : ¥* — (R™, g, e vol)
with f = %, we have
z _ L _ L 1 1
Hess7(X, X) = Hessy (X, X) + (B(X, X), V- J) = L|XP + L (B(X, X).x")
for any X € I'(TY).
Example 20. Let ©" = S"(v/2n) C R™. Since the normal part x of the position vector x € S™
is x itself,

Hess} (X, X) = %]X]Q + %(VXX, xT)
= P = X T
= SIXP = X, TxX)

1 1
= 5|Xy2 - (X, X) =0.

So that, we have

2n

This can be generalized to spherical self-shrinkers. A spherical self-shrinker is a self-shrinker
X : ¥" — R™ which is contained in some sphere S! € R™ with appropriate radius. It is well-
known that being a spherical self-shrinker is equivalent to being minimal submanifold of the
sphere.

1
bei

. . n
Ric7 (X, X) = Ric”(X, X) =

10



Example 21. Let x : X — R™ be a spherical self-shrinker. Then again the position vector
of ¥." satisfies x = x since x is outward pointing to the sphere. By the same computation we
have Hess?(X, X) =0, so that

Ricy (X, X) = Ric” (X, X).
For example, Clifford torus x : T2 — R* defined by
(0, ) = V2(cos ,sin b, cos ¢, sin ¢) € S1(V2) x S'(v2) c $3(2) c R?
is a spherical self-shrinker. Since Ric™ = 0 on the Clifford torus, we see
Ric7 (X, X) = Ric”(X, X) = 0.

Now, we can apply Corollary 18 to obtain

, 2b1(T?) 1
4 (D) > =
ind(¥) 2 == =3

The Morse index is an integer, so we conclude that ind¢(¥X) > 1. Unfortunately, this estimate
is useless. In fact, for every self-shrinkers in R™, we already know inds(X) > m + 1 because
the mean curvature vector field H and normal part y* of any vector y € R™ have negative
eigenvalues —1 and —1/2, respectively.
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