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A submanifoldN immersed in a quaternionic Kähler manifold (M4n, g, Q)
([4]) is called a totally complex submanifold if N has an open covering
N =

⋃
λ Uλ such that there exists a smooth section Jλ of the quater-

nionic Kähler structure Q on each neighborhood Uλ such that Jλ◦Jλ =
−IdTpM , Jλ(TpN) = TpN and ∇̃XJ

λ = 0 (∀X ∈ TpN, ∀p ∈ Uλ) ([3],
[6]). They form a special class of minimal submanifolds. Note that a to-
tally complex submanifold is of even dimension 2ℓ and ℓ ≤ n. If ℓ = n,
then N is called a maximal dimensional totally complex submanifold.

The n-dimensional quaternionic projective space HP n over the quater-
nionic number field H = R1 + Ri + Rj + Rk has the quaternionic
Kähler structure naturally induced from Hn+1 and the Hopf fibration
π : S4n+3(1) −→ HP n．

The (2n + 1)-dimensional complex propjective space CiP
2n+1 over

Ci = R1+Ri with the unit imaginary unit i and the (2n+1)-dimensional
complex propjective space CjP

2n+1 over Cj = R1 + Rj with the unit
imaginary unit i play a role of twistor spaces for HP n.

Now let φ : N2ℓ −→ HP n (1 ≤ ℓ ≤ n) be a totally complex sub-
manifold immersed in a quaternionic projective space. Totally complex
submanifolds induce several special types of minimal submanifolds in
each manifold equipped with different geometric structures. Especially
maximal dimensional totally complex submanifolds produce minimal
submanifolds in other spaces such as complex Legendre submanifolds
in CjP

2n+1, minimal Legendrian submanifolds in S4n+3(1) and minimal
Lagrangian submanifoldfs in CiP

2n+1 as in the following diagram:
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The inverse image of a totally complex submanifold N N̂2ℓ+3 =
π−1(N2ℓ) = {(p,x) ∈ N × S4n+3(1) | φ(p) = π(x)} under the Hopf
fibration π : S4n+3(1) ⊂ HP n, is a (2ℓ + 3)-dimensional minimal sub-
manifold of S4n+3(1).

N̂2ℓ+3 = π−1(N) =
⋃

λ∈Λ π
−1(Uλ) S4n+3(1) ⊂ Hn+1

N2ℓ =
⋃

λ∈Λ Uλ HP n

Sp(1)π

φ̂

Sp(1)π

φ

Then we proved the following:

Theorem 0.1 ([1], [2]). Assume that N is a maximal dimensional
totally complex submanifold of HP n. Then there exists a canonical

connection ∇c = ∇N̂ − D (a metric connection satisfying ∇cD = 0

different from the Levi-Civita connection ∇N̂) on the tangent vector

bundle TN̂ such that the parallelism of the second fundamental form

αN̂ of N̂ with respect to ∇c

(∇c
Xα

N̂)(Y, Z) :=∇⊥
X(α

N̂(Y, Z))− αN̂(∇c
XY, Z)− αN̂(Y,∇c

XZ)

=0 (∀X,Y, Z ∈ TN̂)
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is equivalent to the parallelism of the second fundamental form αN of a
totally complex submanifold N with respect to the Levi-Civita connec-
tion in the usual sense

(∇∗
Xα

N)(Y, Z) :=∇⊥
X(α

N(Y, Z))− αN(∇N
XY, Z)− αN(Y,∇N

XZ)

=0 (∀X,Y, Z ∈ TN).

Thus applying Olmos-Sánchez’s theorem on differential geometric
characterization of standardly embedded R-spaces ([5]) to the canonical
connection ∇c which we constructed and the observation of Sp(n+1)×
Sp(1)-symmetry of N̂ , we obtain

Corollary 0.1 ([1], [2]). If N is a maximal dimensional totally com-

plex submanifold HP n with ∇∗αN = 0, then N̂ is obtained as an or-
bit (standardly embedded R-space) of the isotropy representation (s-
representation) of a quaternionic Kähler symmetric pair (U,K).

Moreover, we can determine concretely such R-spaces by complu-
tation of Lie algebras and root systems for each quaternionic Kähler
symmetric pair (U,K). Therefore we obtain a classification of maxi-
mal dimensional totally complex submanifolds with ∇∗αN = 0 of HP n.
This provides a new geometric proof by a different method for totally
complex submanifolds of HP n with parallel second fundamental form
due to Kazumi Tsukada in 1985.

In the case when (U,K) = (G2, SO(4))，a totally complex subman-
ifold N2 of HP 1 = S4 with parallel second fundamental form is the
Veronese minimal surface RP 2 ⊂ S4 and the corresponding minimal
Lagrangian submanifold L3 of CP 3 is an SU(2)-orbit, which is well-
known as the River Chiang Lagrangian.
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