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1. Kodaira dimension on almost complex manifolds
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Complexified tangent vector bundle

Let (M, J) be a real 2n-dimensional almost complex manifold.
Let TM be the real tangent vector bundle and let A'M be the dual
of TM. We consider the complexified tangent vector bundle:

T°M=TM @ C=T"M o T%'M,

THOM = {X—V-1UX|X € TM}, TO'M = {X+V—1JX|X € TM}.
We have that
AM @r C =AM @ A M,
NOM = {n+v/—=1JIn|n € N'M}, AO*M = {n—v/—1Jn|n € A*M}.
Define
APAM = NP(ARO M) @ AI(AOIM).

Then we have
ANM g C = @ AP9M.
p+qg=r
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Exterior differential operator

On an almost complex manifold (M, J), we split the exterior
differential operator

d:N°M g C — APHIM @R C,
into four components
d=A+0+0+A

with

0: NPIM — N\PTLIM, 5 NPIM — NPT,
A:NIM — NPH2I7IM A NPIM — NPHITE M
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Kodaira dimension on almost complex manifolds

Define the canonical bundle
K == A"(NOM).
We extend the operator
:T(M,Kp) = T(M,A™IM) =2 T(M,A*M @ Ky)

to
O : T(M, K™ — T(M, AN M @ K§™)

by 01 := 0 and for m € Z>> inductively by the product rule
Om(s1 ® $2) = 051 @ $2 + 51 ® Om—152

for s; € I(M,Kp) and s, € T(M, Kﬁ(m_l)). the operator Jp,
satisfies the Leibniz rule 0,,(fs) = Of ® s + fOp,s for any smooth
function f and any section s € I'(M,K%™). Hence, 9, is a
pseudoholomorphic structure on the pluricanonical bundle IC%,’".
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Kodaira dimension on almost complex manifolds

Define the space of pseudoholomorphic sections of IC‘;\%,’" for
m & ZZl by

HO(M,KC5™) == {s € T(M,KZ™)|Oms = 0}.
We define the m-th plurigenus
Pm(M,J) := dim¢ HO(M, K$™)

and the kodaira dimension of an almost complex manifold (M, J):

—00, if Pm(M,J) =0 forany me Z>1
WMD) =y log Pm(M, J) |
limsup,, .., —————, otherwise.
log m
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Example 1. (The Kodaira-Thurston surface)

1 x z
M = St x (M\Nil®), Nil®:={A e GL(3,R)|A= (o 1 y)},
00 1

I is the subgroup in Nil® consisting of element with integer entries,
acting by left multiplication. Let t be the coordinate of S*.
For Va # 0 € R, the almost complex structure J, is defined by

0 0 0 0
=2 =2
0 0 10 0 0 0
Ja(aiy‘i‘XE):gE, Ja(g):—a(@ +X$)

0, a¢ 2nZ —00, a¢mQ
k(M, J;) = {

Pon(M, J;) =
{ 1, a€ 472\ {0} 0, ac7Q\ {0}
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Example 2.

M:=T?x ¥,

T2 = R2/Z? with coordinate (x, y), £ is a compact Riemannian
surface with genus g > 2. The almost complex structure J is

defined by
0 0 0 0 0 0
“V=—h—+4—, J=)=—-(1+h)—+h—
J(ax) 8x+8y7 J(ﬁy) (1+ )8x+ oy’

h is a smooth real nonconstant function on X.
Pm(M,J)=(2m—1)(g —1) for m>1, K(M,J)=1

RENELS

Since we have k(M; x M) = k(M) + k(My) for any two compact
almost complex manifolds (My, J1), (Ma, J).
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2. Chern connection, torsion and curvature on almost

Hermitian manifolds
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Chern connection

Let (M?", J,w) be a real 2n-dimensional almost Hermitian
manifold with the associated almost Hermitian metric g w.r.t. w.

There exists a unique affine connection preserving g and J whose
torsion has vanishing (1, 1)-part, which is called the Chern
connection denoted by V.

Choose a local (1,0)-frame {e;} w.r.t. the metric g.
Since V preserves J, we can define the Christoffel symbols:

k k
Ve e = FUek, Veiej = r,.je;.

The structure coefficients of Lie bracket are defined by

. r r . r r
[ei, ej] =: Bjjer + Bjer, [ei, ef] =: Bi]er + Bi]ef.
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Torsion of the Chern connection

Since the torsion T of the Chern connection V has no (1, 1)-part,
the only non-vanishing components are as follows:

/ S __ S s s

(1" =)T; = —Bj,
which tells us that T splitsin T = T’ + T"”, where

T' e T(N>°(M) ® TYOM) and T” € T(A°2(M) @ THOM).
Note that T” depends only on J and it can be regarded as the
Nijenhuis tensor of J, that is,

J is integrable < T” vanishes.
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Curvature of the Chern connection

Let Q28 denote the curvature of the Chern connection V w.r.t. g.
The Chern curvature Q8 € I'(A2(M) @ End(T1OM)) splits in

Q8 = HE + RE + HE,

where R € [(AV(M) ® End(T1OM)),

H& € T(A>9(M) @ End(T+OM)), H8 € T(A%2(M) @ End(THOM)).
We define the Chern scalar curvature s, and the Riemannian type
scalar curvature §,, of the almost Hermitian metric g w.r.t. V:

] kIpg & . kj p&
so =8¢ Rap Swi=g gJR,Jk,
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The holomorphic sectional curvature

For a point p € M and a non-zero (1, 0)-vector & € T,}’OM, the
holomorphic sectional curvature H& of w at the point p and the
direction £ is define by

HE(E) = RE(£,8,6, )], = RE, lo'gleke].

We write HSC(w) > 0 when we have that H§(£) > 0 for any point
p € M and any non-zero (1,0)-vector & € T,}’OM.
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3. Conditions for the negative Kodaira dimension
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In 1992, S.-T. Yau proposed " 100 open problems in geometry” and
the following question is Problem 67.

Question (S.-T. Yau 1992)

If (M, J,w) is a compact Kahler manifold with HSC(w) > 0, does
M have negative Kodaira dimension, i.e., K(M) = —oc0?

X. Yang has given a answer for Yau's question in a general setting.

Theorem (X. Yang 2016)

Let (M, J,w) be a compact Hermitian manifold with HSC(w) > 0.
Then, k(M) = —oc.

At this point, we ask the following more general question.

Question
What about the almost Hermitian case?
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The almost Kahlerity

An almost Hermitian metric w is called almost Kahler if

dw = 0.

The almost Kahlerity is equivalent to

TE=0and TE+ T/, + T) =0 forVij,k=1,...,n.
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The almost Hermitian case

Theorem (K.)

Let (M?", J,w) be a compact almost Kihler manifold with n > 3,
HSC(w) > 0. Then, x(M, J) = —cc.

Theorem (K.)

Let (M*, J,w) be a real 4-dimensional compact almost Hermitian
manifold with HSC(w) > 0. Then, k(M*, J) = —cc.
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A condition for the negative Kodaira dimension

An almost Hermitian metric w is called Gauduchon if
9w = 0.
Theorem (P. Gauduchon 1977)

Let (M?", J,w) be a compact almost Hermitian manifold with
n > 2. Then 3u € C*°(M), unique up to addition of a constant,
s.t. the conformal almost Hermitian metric e“w is Gauduchon.

Theorem (H. Chen, W. Zhang 2023)

Let (M?", J) be a compact almost complex manifold with n > 2.
If M admits a Gauduchon metric wg with fM Swewg > 0, then
k(M,J) = —o0.

It suffices to show that a conformal metric wp has [,, su,wg > 0.
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The key formula

Lemma (K.)

Let (M2", J,w) be compact almost Hermitian manifold with n > 2.
One has that

Sw — 8 = (00*w, W)+ TL Tr’j, (1)
where 0" = — O is the adjoint operator,
(00*w, w) = ’Jg”q(88 e — — JV i, wi =gkl T, Note
that T’ T’ = gf" ’Sg”q T,Jquks, where T,Jp = T T

T;_( = qurs

Lemma (P. Li 2021)

HSC(w) >0 = s, + 8, > 0.
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The key lemmas

Let (M?", J,w) be a real 2n-dimensional compact almost Hermitian
manifold with n > 2. Define the set of the conformal class of w:

{w} = {e"w|u € C(M;R)}.

We may take a Gauduchon metric wg in the conformal class of w
1

such that wo = fy"'w € {w}, fo is a positive smooth function.

Lemma (A. Balas 1985)

/ (Sup + 800 )0l = / o5 + )"
M

M

HSC(w) > 0 —> / o5 + 80)w" > 0,
M
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The proof for the almost Hermitian case

Choose a Gauduchon metric wp in the conformal class of w such
1

that wo = fy' 'w € {w}, where fy is a positive smooth function.
Then, by integrating the formula (1) for wo:
Suwo — Swo = (00*wo, wo) + TL Z and assuming T,-JF-Tr_’JT >0,

[t = [ @Fwowog+ [ TiT
M M M

_ /|5*w0|2wg+/ TiTiwg > 0.
M M

Under the assumption HSC(w) > 0,
since HSC(w) > 0 implies that s,, + &, > 0, we obtain that
n 1 a n 1 a n
wo =5 (Swo + Swo)wg + 2 (Swo — Swo)wg
M M M

1
> / (sw0—|—§wo)wg:/ fo(sw + 8u)w™> 0.
2 /m 2 /m
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The almost Hermitian case

Proposition (K.)

Let (M2", J,w) be a compact almost Hermitian manifold with
n > 2. Assume that TUFTriJ— > 0 and HSC(w) > 0. Then,
k(M,J) = —o0.
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Some conditions for T/ T.-> 0

Lemma (K.)
Let (M2, J,w) be an almost Kihler manifold. Then we have that

TiT->0.
7
The equality TUFTriJ— = 0 holds if and only if the almost Kahler
manifold is Kahler.
By applying T,-j; + Ti,- + Tﬁ( = 0, we compute that
Fri . _
Ty = T T
_ FJ 7
= —T;T-+ T,-J’-Tﬁ
r i 1!
= —T; Tr"j +|T

S 1
2 _ 2
2o TITE=2IT"E(> 0)

where |T”|Z, = gﬂ;giggrl_Tij_‘ T
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In the case of n =2

On a real 4-dimensional almost Hermitian manifold (M*, J, w),
TiTE = g*oq0uT]Tl:
= gNTLTh + TETh + THTR + T3T3)
= TLTh+ THTh+ TATS + TATE
= ThTh - ToTh - ThTa+ ToHTs
= (Th- T1§2)(T112 ~-T3)>0.
The equality T/ T/- = 0 holds if and only if TL =72,

RENELS

Since on a nearly Kahler manifold ((DxJ)X = 0 for any tangent
vector field X, DJ # 0, D is the Levi-Civita connection), we have
TjT:=—|T"|z< 0, we obtain T/ T =0 (then 7" =0) on a

real 4-dimensional nearly Kahler manifold and it must be Kahler.
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Another condition for the negative Kodaira dimension

Theorem (H. Chen, W. Zhang 2023)

Let (M2",J) be a compact almost complex manifold with n > 2.
If M admits an almost Hermitian metric w with s, > 0, then
Kk(M,J) = —c0.

Question

What about the other scalar curvature?
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Quasi-Kahlerity

An almost Hermitian metric w is called quasi-Kahler if

which is equivalent to T,-j? =0forVi,j,k=1,...,n.

. A _
(:st:sw-i—T,’lef’f
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Real 4-dimensional quasi-Kahler case

Since we have Tr’} TE’IT > 0 on a real 4-dimensional almost
Hermitian manifold, we have the following.

Corollary (K.)

If §, > 0 on a real 4-dimensional compact quasi-Kahler manifold
(M*, J,w), then K(M,J) = —

Since on a real 4-dimensional quasi-Kahler manifold, (J. Fu, X.
Zhou 2022)

1 1

1 1
Sw —s+f|N|2 55 sw—fs+—]N|2

where s is the Riemannian scalar curvature w.r.t. D, and N is the
Nijenhuis tensor of J, we have the following.

Corollary (K.)

If s > 0 on a real 4-dimensional compact quasi-Kahler manifold
(M*, J,w), then k(M,J) = —
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Almost Kahler case

Since we have T5 TE’IT > 0 on an almost Kahler manifold, we have
the following.

Corollary (K.)

If 5, > 0 on a compact almost Kahler manifold (M?", J,w) with
n > 2, then K(M, J) = —o0.
Since on an almost Kahler manifold, (J. Fu, X. Zhau 2022)

1

1
= =5+ —|N°2> s, s, = s—i——]NO]z 5S

where NO := N — bN, b\ is the skew-symmetric part of N, we
have the following.

Corollary (K.)

If s > 0 on a compact almost Kihler manifold (M?", J,w) with
n > 2, then k(M, J) = —oc.
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The t-Gauduchon connection

Let (M, J, g) be an almost Hermitian manifold.

Let V be the Chern (second canonical) connection, and let D be
the Levi-Civita connection and let LD denote the restriction to
T1OM, which is called the Lichnerowicz (first canonical)

connection:
r(m,7M) —25 (M, (TSM)* @ TCM)
U
LD=D
(M, T1OM) oM M (TEMY @ TEOM),

1
LDxY = DxY — 5J(DxJ)Y for X, Y € [(TM).
We define the t-Gauduchon connection for t € R on (M, J, g) by

'V =tV +(1-t)'D.

tV is reduced to LD when the manifold is quasi-Kahler.
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Scalar curvature

te, = giJgkItR

ta . il _kjt
’Jkl, S(JJ _g gj R

ikl
Note that s, = s, 1§, = §,.

sy = ts, + (1 —t)(5, + Tk, T_.)

- 1-t\2
8= t8+ (1— (s — THTE) = (S5 ) (TE+|wp),

where w; = g™ Tjs.
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Theorem (K.)

Let (M2", J,w) be a compact almost Hermitian manifold with
n > 2. Suppose that one of the following conditions holds:

Q s, +(t—1)(5 + TrETErF) > 0 for some t > 0,

Q s, +(t—1)(5 + TZ‘.TI_:IT) < 0 for some t < 0,

Q ‘s, + (1 - t)(00*w,w) > 0 for some t € R.
Then, (M, J) = —cc.
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Semi-Kahler case

An almost Hermitian metric w is called semi-Kahler if

dw" 1l =0.

. A _
(:>)sw:sw+T,’le—:7

Theorem (K.)

Let (M2", J,w) be a compact semi-Kihler manifold with n > 2.
Then, we have that for any t € R,

ts, = s

Corollary (K.)

If ts, > 0 for some t € R on a compact semi-Kahler manifold
(M?", J,w) with n > 2, then K(M, J) = —c0.
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5. Positive Hermitian curvature flow (Positive HCF)
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The positive HCF with non-negative Griffiths curvature

We consider the following type of the HCF, called the positive HCF
or Ustinovskiy's flow, on a compact Hermitian manifold (M, J, go):

2 g(t) = —SE() _ Q8.
HCF,
g(0) = go,

where 557 = gk’Rf,-ij is the second Chern-Ricci curvature with the
specific torsion quadratic term:

1 - _
Qgr = Egpsgmn Tsai Tpmj-
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Preservation of Griffiths positivity along the HCF ..

Theorem (Y. Ustinovskiy 2019)

On a compact Hermitian manifold (M, J, go), let g(t), t € [0,7) be
the solution of the HCF_ with g(0) = go for any 7 < Tmax < 00,
where Thax is the finite explosion time of the HCF,.. Assume that
the Chern curvature R# is Griffiths nonnegative (resp. Griffiths
positive) on M, i.e., for any x € M and any non-zero &, 7 € THO0Mm:

Rfo(fvf_an»ﬁ) Z 0 (resp. > O)

Then for t € [0,7), the Chern curvature R&(t) remains Griffiths
nonnegative (resp. Griffiths positive) on M. If, moreover, the
Chern scalar curvature R&° is Griffiths positive at least at one
point, then for any t € (0,7) the Chern curvature is Griffiths
positive everywhere on M.
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Uniformization theorem

Theorem (Y. Ustinovskiy 2019)

Let (M, J, go) be a compact complex n-dimensional Hermitian
manifold such that

@ its Chern curvature R is Griffiths nonnegative on M;
@ R#0 is Griffiths positive at least at one point.

Then M is biholonorphic to the complex projective space CP".
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6. Parabolic flows on almost Herm
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Almost Hermitian flow

On a compact almost Hermitian manifold (M, J,wp), we define a
parabolic flow starting at the almost Hermitian metric wy.

Sr(t) = 007 yw(t) + 97 eo(t) — PEE),
AHF
w(0) = wo,

where 8;‘,(t), 5;(t) are the [2-adjoint operators w.r.t. g(t), and

Pli‘} = gk'Rf?kr denote the first Chern-Ricci curvature.
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Short time existence and uniqueness of the AHF

Proposition (K. 2019)

For an almost Hermitian metric w, the right-hand side of the AHF
O00zw + 00w — P# is strictly elliptic.

Let {e,} be a local (1,0)-frame w.r.t. g around an arbitrary
chosen point.
(1) (68* )if (88* );j involves the second derivatives of g;

g~ eke/(gu) g~ eje,(gkr), ]
(2] Pg- involves the second derivatives of g; —gk’efe;(gk,-)
(3] the rlght hand side of the AHF involves the second derivative
of g; glecer(gy) = ¥ 0k0rg + 8B es(gp).
Therefore, the right-hand side of the AHF is strictly elliptic since g
is positive definite, which implies that the AHF is strictly parabolic.
From the standard parabolic theory, we obtain the short-time
unique existence result since the manifold is supposed to be
compact.
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Short time existence and uniqueness of the AHF

Theorem (K. 2019)

Jlw(t) the short-time solution of the AHF starting at wg on
M x [0, ¢) for some € > 0.
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Almost Hermitian curvature flow

We define another parabolic flow on a compact almost Hermitian
manifold (M, J, go) :

2g(t)=-580) — Q" — Q¥+ B T' + &(T"),
AHCF
g(0) = go,

where 5 > = gk’Rf/-ij is the second Chern-Ricci curvature,

Q,'7j — g gkl Tink T, Q?f = g S gh! Tink Tos,
and w; = g"* T,
(B« T/),-j3 quJ TG + qur T + g BP, T+ B W,

and

_g eI(TS)gSJ+g e(Ts)
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Relation between the AHCF and the HCF o

A Hermitian metric w is called pluriclosed or SKT if

90w = 0.
Let go be a pluriclosed metric on a compact Hermitian manifold.
eg(t) = =580 + Q*,
HCF o1
g(O) = 80,
Q,-lfiz g"g"” iks T57,-

Notice that HCF o1 preserves the pluriclosedness.

Proposition (K. 2019)
If Jis integrable, the AHCF coincides with the HCF 1.
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PROOF.

Under our assumption that J is integrable, we have
Q" = Q¥ = B« T' = 0 and we may choose a local (1,0)-frame

e = Baz =: O, for holomorphic local coordinates {z, ..., z,}.
Since we have 0 Tnj (9;7',,-; for a pluriclosed metric on a

Hermitian manifold,

&)y = —& 0T )gSJ + 8”0 T)er
— _grlal r/J rl Ts'afgsf + grlaT _ rl -,—s aj_gsl
_ _grla_ r/l_ rla T T + grl Ts rk_gsk rl Tsr /gsk
= £"g"Tis Ty,
= Ql,lf,

JIIAT Eith Masaya Kawamura FFEHIEIFOMTILS — FBHRELOEDNTRTT Negative K



Difference between P& and S&

Lemma (L. Vezzoni 2011)
P8 — 58 =divV T —Vw + Q" + Q°
holds for any almost Hermitian metric g, where

divV Ti/f = gle/‘Tk,-jy (VV_V)U_ = gklvi Tﬁk'
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Generalized version of PF and HCF o1 equivalence

Since the AHF takes the expression

9 = Vi —Vw— PE
ot

and we have that

P — divVT +S8-—Vw+Q +@Q8

—Vw—Bs«T —&T)+S85-Vw+Q + Q?
—VwW—Vw— P& =-58 Q" —Q®+BxT +&(T).

54

Generalized version of PF and HCF 1 equivalence (K. 2019)

The AHF starting at wyq is equivalent to the AHCF starting at wy.

JIIF E L Masaya Kawamura
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Regularity result

Theorem (K. 2020)

Let (M2, J, g(t)) be a solution to the AHCF starting at an almost
Hermitian metric go for a maximal time interval [0, 7max) ON a
compact almost Hermitian manifold. Choose arbitrary

0 < 7 < Tmax. Assume that, for a positive constants « with

a/T > 1, the following inequalities hold:

o o
sup |Rlg(e) < — sup T2y <=, sup |[VT'|ge < —
Mx[0,7) Mx[0,7) T Mx[0,7) T

Then, for any m € N, the following inequalities hold:

C C
|va|g (t) < m,n,n?c7 |vm+1 T/’g(t) < m7n;7(1x
- t2 T-1t2

for any t € (0,7] on M, where Cp, o is Some positive constant
depending only on m, n and «a.
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Blow-up at the maximal time

Theorem (K. 2020)

If Tmax < 00, then

lim sup max {|R|C0(g(t)), | T’ %o(g(t)), |VT/|CO(g(t))} = 0.

t—>Tmax
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7. Preserved properties along the positive HCF

on an almost Hermitian manifold
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The HCF, on an almost Hermitian manifold

We consider the HCF on a compact almost Hermitian manifold
(M7 J> gO):

%g(t) = —58(t) _ Q&1
HCF.,.

(0) = go.

where S8 is the second Chern-Ricci curvature, Q¥ is given by

Qi’ = %gpsgmn Tsai Tpmj-

Since —557 involves the second derivatives of g; gk’eke,-(g,-f), and
the metric g is positive definite, the right-hand side of the HCF is
strictly elliptic, which implies that the HCF is strictly parabolic.
From the standard parabolic theory, we obtain the short-time
unique existence result since the manifold is supposed to be
compact.
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Preserved properties along the HCF .

Theorem (K.)

Let g(t), t € [0,7) be the solution of the HCF on a compact
almost Hermitian manifold (M, J, go) with g(0) = go for any
T < Tmax < 00, Where Tmax is the finite explosion time of the
HCF_. Assume that the Chern curvature R8 is Griffiths
nonnegative (resp. positive), i.e., for any £,n € TYOM:

REO(E,€,1,7) 20 (resp. > 0).

Then for t € [0,7), the Chern curvature R8() remains Griffiths
nonnegative (resp. positive). If, moreover, the Chern curvature R&
is Griffiths positive at least at one point, then for any t € (0, 7),
the Chern curvature R8() is Griffiths positive everywhere on M.
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Application

Definition

We write g € G(M, J) if g is an almost Hermitian metric on a
compact almost complex manifold M whose Chern curvature R€ is
Griffiths nonnegative, and Griffiths positive at least at one point.

Corollary (K.)

Let (M, J) be a compact almost complex manifold.
If 3g € G(M, J), then (M, J) = —oc.
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In the case of the 6-sphere S°

Let ¢ (i =1,...,7) be the standard basis of R” and let e’
(i=1,...,7) be the dual basis. Denote e’* := e/ A e/ A e¥. Define

® = o123 | Q45 4 167 | 246 257 347 356
® induces the cross product x : R” x R” — R’ by
(ux v)-w = ®(u,v,w), where - is the Euclidean metric on R’.
We define the cross product operator of
ueSt={ueR":u-u=1} by J,:= u x -, which gives the
standard almost complex structure Jyq = {J, : u € S®}. Then,

Pin(S®, Jtg) = 1 for Vm € Zs1, and s(S®, Jig) = 0

(H. Chen, W. Zhang 2023), which implies that

Ag € G(S®, Ja).
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