非負曲率を持つ概エルミート多様体上の 負の小平次元

Negative Kodaira dimension on almost Hermitian manifolds with nonnegative curvature

川村昌也 Masaya Kawamura

相山女学園大学 Sugiyama Jogakuen University

11/21/2023

Table of Contents

- 1. Kodaira dimension on almost complex manifolds
- 2. Chern connection, torsion and curvature on almost Hermitian manifolds
- 3. Conditions for the negative Kodaira dimension
- 4. The t-Gauduchon connection
- 5. Positive Hermitian curvature flow (positive HCF)
- 6. Parabolic flows on almost Hermitian manifolds
- Preserved properties along the positive HCF on an almost Hermitian manifold

1. Kodaira dimension on almost complex manifolds

Complexified tangent vector bundle

Let (M, J) be a real 2n-dimensional almost complex manifold. Let TM be the real tangent vector bundle and let $\Lambda^1 M$ be the dual of TM. We consider the complexified tangent vector bundle:

$$T^{\mathbb{C}}M = TM \otimes_{\mathbb{R}} \mathbb{C} = T^{1,0}M \oplus T^{0,1}M,$$

$$T^{1,0}M = \{X - \sqrt{-1}JX \mid X \in TM\}, \quad T^{0,1}M = \{X + \sqrt{-1}JX \mid X \in TM\}.$$

We have that

$$\Lambda^1 M \otimes_{\mathbb{R}} \mathbb{C} = \Lambda^{1,0} M \oplus \Lambda^{0,1} M$$
,

$$\Lambda^{1,0}M = \{\eta + \sqrt{-1}J\eta \big| \eta \in \Lambda^1M \}, \ \Lambda^{0,1}M = \{\eta - \sqrt{-1}J\eta \big| \eta \in \Lambda^1M \}.$$

Define

$$\Lambda^{p,q}M:=\Lambda^p(\Lambda^{1,0}M)\otimes\Lambda^q(\Lambda^{0,1}M).$$

Then we have

$$\Lambda^r M \otimes_{\mathbb{R}} \mathbb{C} = \bigoplus_{p+q=r} \Lambda^{p,q} M.$$

Exterior differential operator

On an almost complex manifold (M, J), we split the exterior differential operator

$$d: \Lambda^p M \otimes_{\mathbb{R}} \mathbb{C} \to \Lambda^{p+1} M \otimes_{\mathbb{R}} \mathbb{C},$$

into four components

$$d = A + \partial + \bar{\partial} + \bar{A}$$

with

$$\partial: \Lambda^{p,q} M \to \Lambda^{p+1,q} M, \quad \bar{\partial}: \Lambda^{p,q} M \to \Lambda^{p,q+1} M,$$

$$A: \Lambda^{p,q} M \to \Lambda^{p+2,q-1} M, \quad \bar{A}: \Lambda^{p,q} M \to \Lambda^{p-1,q+2} M.$$

Kodaira dimension on almost complex manifolds

Define the canonical bundle

$$\mathcal{K}_M := \Lambda^n(\Lambda^{1,0}M).$$

We extend the operator

$$\bar{\partial}: \Gamma(M, \mathcal{K}_M) \to \Gamma(M, \Lambda^{n,1}M) \cong \Gamma(M, \Lambda^{0,1}M \otimes \mathcal{K}_M)$$

to

$$\bar{\partial}_m: \Gamma(M, \mathcal{K}_M^{\otimes m}) \to \Gamma(M, \Lambda^{0,1}M \otimes \mathcal{K}_M^{\otimes m})$$

by $ar\partial_1 := ar\partial$ and for $m \in \mathbb{Z}_{\geq 2}$ inductively by the product rule

$$\bar{\partial}_m(s_1\otimes s_2)=\bar{\partial}s_1\otimes s_2+s_1\otimes\bar{\partial}_{m-1}s_2$$

for $s_1 \in \Gamma(M, \mathcal{K}_M)$ and $s_2 \in \Gamma(M, \mathcal{K}_M^{\otimes (m-1)})$. the operator $\bar{\partial}_m$ satisfies the Leibniz rule $\bar{\partial}_m(fs) = \bar{\partial} f \otimes s + f \bar{\partial}_m s$ for any smooth function f and any section $s \in \Gamma(M, \mathcal{K}_M^{\otimes m})$. Hence, $\bar{\partial}_m$ is a pseudoholomorphic structure on the pluricanonical bundle $\mathcal{K}_M^{\otimes m}$.

Kodaira dimension on almost complex manifolds

Define the space of pseudoholomorphic sections of $\mathcal{K}_M^{\otimes m}$ for $m\in\mathbb{Z}_{\geq 1}$ by

$$H^0(M,\mathcal{K}_M^{\otimes m}):=\{s\in\Gamma(M,\mathcal{K}_M^{\otimes m})|\bar{\partial}_ms=0\}.$$

We define the *m*-th plurigenus

$$P_m(M,J) := \dim_{\mathbb{C}} H^0(M,\mathcal{K}_M^{\otimes m})$$

and the kodaira dimension of an almost complex manifold (M, J):

$$\kappa(M,J) := \left\{ \begin{array}{l} -\infty, & \text{if } P_m(M,J) = 0 \text{ for any } m \in \mathbb{Z}_{\geq 1} \\ \\ \limsup_{m \to \infty} \frac{\log P_m(M,J)}{\log m}, & \text{otherwise.} \end{array} \right.$$

Example 1. (The Kodaira-Thurston surface)

$$M := \mathbb{S}^1 \times (\Gamma \setminus \mathsf{Nil}^3), \ \ \mathsf{Nil}^3 := \{A \in \mathit{GL}(3,\mathbb{R}) | A = \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \},$$

 Γ is the subgroup in Nil³ consisting of element with integer entries, acting by left multiplication. Let t be the coordinate of \mathbb{S}^1 . For $\forall a \neq 0 \in \mathbb{R}$, the almost complex structure J_a is defined by

$$\begin{split} J_a(\frac{\partial}{\partial t}) &= \frac{\partial}{\partial x}, \ J_a(\frac{\partial}{\partial x}) = -\frac{\partial}{\partial t}, \\ J_a(\frac{\partial}{\partial y} + x \frac{\partial}{\partial z}) &= \frac{1}{a} \frac{\partial}{\partial z}, \ J_a(\frac{\partial}{\partial z}) = -a(\frac{\partial}{\partial y} + x \frac{\partial}{\partial z}). \end{split}$$

$$P_m(M,J_a) = \left\{ egin{array}{ll} 0, & a
otin rac{4}{m}\pi\mathbb{Z} \ & \kappa(M,J_a) = \left\{ egin{array}{ll} -\infty, & a
otin \pi\mathbb{Q} \ & 0, & a
otin \pi\mathbb{Q} \setminus \{0\}_{0,0,\infty} \end{array}
ight.$$

Example 2.

$$M:=\mathbb{T}^2\times\Sigma,$$

 $\mathbb{T}^2=\mathbb{R}^2/\mathbb{Z}^2$ with coordinate (x,y), Σ is a compact Riemannian surface with genus $g\geq 2$. The almost complex structure J is defined by

$$J(\frac{\partial}{\partial x}) = -h\frac{\partial}{\partial x} + \frac{\partial}{\partial y}, \ J(\frac{\partial}{\partial y}) = -(1+h^2)\frac{\partial}{\partial x} + h\frac{\partial}{\partial y},$$

h is a smooth real nonconstant function on Σ .

$$P_m(M, J) = (2m - 1)(g - 1)$$
 for $m > 1$, $\kappa(M, J) = 1$

Remark

Since we have $\kappa(M_1 \times M_2) = \kappa(M_1) + \kappa(M_2)$ for any two compact almost complex manifolds (M_1, J_1) , (M_2, J_2) .

2. Chern connection, torsion and curvature on almost Hermitian manifolds

Chern connection

Let (M^{2n}, J, ω) be a real 2n-dimensional almost Hermitian manifold with the associated almost Hermitian metric g w.r.t. ω .

There exists a unique affine connection preserving g and J whose torsion has vanishing (1,1)-part, which is called the Chern connection denoted by ∇ .

Choose a local (1,0)-frame $\{e_r\}$ w.r.t. the metric g. Since ∇ preserves J, we can define the Christoffel symbols:

$$\nabla_{e_i} e_j = \Gamma^k_{ij} e_k, \quad \nabla_{e_i} e_{\bar{j}} = \Gamma^{\bar{k}}_{i\bar{j}} e_{\bar{k}}.$$

The structure coefficients of Lie bracket are defined by

$$[e_{i},e_{j}]=:B_{ij}^{r}e_{r}+B_{ij}^{\bar{r}}e_{\bar{r}},\quad [e_{i},e_{\bar{j}}]=:B_{i\bar{j}}^{r}e_{r}+B_{i\bar{j}}^{\bar{r}}e_{\bar{r}}.$$

Torsion of the Chern connection

Since the torsion $\mathcal T$ of the Chern connection ∇ has no (1,1)-part, the only non-vanishing components are as follows:

$$(T'=)T_{ij}^s = \Gamma_{ij}^s - \Gamma_{ji}^s - B_{ij}^s,$$

$$(T''=)T_{ij}^{\bar{s}} = -B_{ij}^{\bar{s}},$$

which tells us that T splits in T = T' + T'', where $T' \in \Gamma(\Lambda^{2,0}(M) \otimes T^{1,0}M)$ and $T'' \in \Gamma(\Lambda^{0,2}(M) \otimes T^{1,0}M)$. Note that T'' depends only on J and it can be regarded as the Nijenhuis tensor of J, that is,

J is integrable $\Leftrightarrow T''$ vanishes.

Curvature of the Chern connection

Let Ω^g denote the curvature of the Chern connection ∇ w.r.t. g. The Chern curvature $\Omega^g \in \Gamma(\Lambda^2(M) \otimes \operatorname{End}(T^{1,0}M))$ splits in

$$\Omega^{g} = H^{g} + R^{g} + \bar{H}^{g},$$

where $R^g \in \Gamma(\Lambda^{1,1}(M) \otimes \operatorname{End}(T^{1,0}M))$, $H^g \in \Gamma(\Lambda^{2,0}(M) \otimes \operatorname{End}(T^{1,0}M))$, $\bar{H}^g \in \Gamma(\Lambda^{0,2}(M) \otimes \operatorname{End}(T^{1,0}M))$. We define the Chern scalar curvature s_ω and the Riemannian type scalar curvature \hat{s}_ω of the almost Hermitian metric g w.r.t. ∇ :

$$s_{\omega} := g^{i\bar{j}} g^{k\bar{l}} R^{g}_{i\bar{l}k\bar{l}}, \quad \hat{s}_{\omega} := g^{i\bar{l}} g^{k\bar{l}} R^{g}_{i\bar{l}k\bar{l}}.$$

The holomorphic sectional curvature

For a point $p \in M$ and a non-zero (1,0)-vector $\xi \in T_p^{1,0}M$, the holomorphic sectional curvature \mathcal{H}^g of ω at the point p and the direction ξ is define by

$$\mathcal{H}_p^g(\xi) := R^g(\xi, \bar{\xi}, \xi, \bar{\xi})|_p = R^g_{i\bar{j}k\bar{l}}|_p \xi^i \xi^{\bar{l}} \xi^k \xi^{\bar{l}}.$$

We write $HSC(\omega) > 0$ when we have that $\mathcal{H}_p^g(\xi) > 0$ for any point $p \in M$ and any non-zero (1,0)-vector $\xi \in \mathcal{T}_p^{1,0}M$.

3. Conditions for the negative Kodaira dimension

In 1992, S.-T. Yau proposed "100 open problems in geometry" and the following question is Problem 67.

Question (S.-T. Yau 1992)

If (M, J, ω) is a compact Kähler manifold with $HSC(\omega) > 0$, does M have negative Kodaira dimension, i.e., $\kappa(M) = -\infty$?

X. Yang has given a answer for Yau's question in a general setting.

Theorem (X. Yang 2016)

Let (M, J, ω) be a compact Hermitian manifold with $HSC(\omega) > 0$. Then, $\kappa(M) = -\infty$.

At this point, we ask the following more general question.

Question

What about the almost Hermitian case?

The almost Kählerity

Definition

An almost Hermitian metric ω is called almost Kähler if

$$d\omega = 0$$
.

Remark

The almost Kählerity is equivalent to

$$T^k_{ij}=0$$
 and $T^{\overline{k}}_{ij}+T^{\overline{j}}_{ki}+T^{\overline{i}}_{jk}=0$ for $\forall i,j,k=1,\ldots,n$.

The almost Hermitian case

Theorem (K.)

Let (M^{2n}, J, ω) be a compact almost Kähler manifold with $n \geq 3$, $HSC(\omega) > 0$. Then, $\kappa(M, J) = -\infty$.

Theorem (K.)

Let (M^4, J, ω) be a real 4-dimensional compact almost Hermitian manifold with $HSC(\omega) > 0$. Then, $\kappa(M^4, J) = -\infty$.

A condition for the negative Kodaira dimension

Definition

An almost Hermitian metric ω is called Gauduchon if

$$\partial\bar{\partial}\omega^{n-1}=0.$$

Theorem (P. Gauduchon 1977)

Let (M^{2n}, J, ω) be a compact almost Hermitian manifold with $n \geq 2$. Then $\exists u \in C^{\infty}(M)$, unique up to addition of a constant, s.t. the conformal almost Hermitian metric $e^u \omega$ is Gauduchon.

Theorem (H. Chen, W. Zhang 2023)

Let (M^{2n},J) be a compact almost complex manifold with $n\geq 2$. If M admits a Gauduchon metric ω_0 with $\int_M s_{\omega_0} \omega_0^n > 0$, then $\kappa(M,J) = -\infty$.

It suffices to show that a conformal metric ω_0 has $\int_M s_{\omega_0} \omega_0^n > 0$.

The key formula

Lemma (K.)

Let (M^{2n}, J, ω) be compact almost Hermitian manifold with $n \ge 2$. One has that

$$s_{\omega} - \hat{s}_{\omega} = \langle \bar{\partial} \bar{\partial}^* \omega, \omega \rangle + T^{\bar{r}}_{ij} T^{i}_{\bar{r}\bar{j}}, \tag{1}$$

where $\partial^* = - * \bar{\partial} *$ is the adjoint operator, $\langle \bar{\partial} \bar{\partial}^* \omega, \omega \rangle = g^{i\bar{j}} g^{p\bar{q}} (\bar{\partial} \bar{\partial}^* \omega)_{i\bar{q}} \overline{\omega_{j\bar{p}}} = - g^{i\bar{j}} \nabla_{\bar{j}} w_i, \ w_i := g^{k\bar{l}} T_{ik\bar{l}}.$ Note that $T^{\bar{r}}_{ij} T^i_{\bar{r}\bar{j}} := g^{j\bar{k}} g^{i\bar{s}} g^{p\bar{q}} T_{ijp} T_{\bar{q}\bar{k}\bar{s}}$, where $T_{ijp} = T^{\bar{l}}_{ij} g_{p\bar{l}}$, $T_{\bar{q}\bar{k}\bar{s}} = T^r_{\bar{q}\bar{k}} g_{r\bar{s}}$.

Lemma (P. Li 2021)

$$HSC(\omega) > 0 \implies s_{\omega} + \hat{s}_{\omega} > 0.$$

The key lemmas

Let (M^{2n}, J, ω) be a real 2n-dimensional compact almost Hermitian manifold with $n \ge 2$. Define the set of the conformal class of ω :

$$\{\omega\} := \{e^u \omega | u \in C^{\infty}(M; \mathbb{R})\}.$$

We may take a Gauduchon metric ω_0 in the conformal class of ω such that $\omega_0 = f_0^{\frac{1}{n-1}} \omega \in \{\omega\}$, f_0 is a positive smooth function.

Lemma (A. Balas 1985)

$$\int_M (s_{\omega_0}+\hat{s}_{\omega_0})\omega_0^n = \int_M f_0(s_\omega+\hat{s}_\omega)\omega^n.$$

$$\mathsf{HSC}(\omega) > 0 \implies \int_M f_0(s_\omega + \hat{s}_\omega)\omega^n > 0.$$

The proof for the almost Hermitian case

Choose a Gauduchon metric ω_0 in the conformal class of ω such that $\omega_0 = f_0^{\frac{1}{n-1}} \omega \in \{\omega\}$, where f_0 is a positive smooth function. Then, by integrating the formula (1) for ω_0 :

$$s_{\omega_0} - \hat{s}_{\omega_0} = \langle \bar{\partial} \bar{\partial}^* \omega_0, \omega_0 \rangle + T_{si}^{\bar{r}} T_{\bar{r}\bar{i}}^{\bar{r}}$$
, and assuming $T_{ij}^{\bar{r}} T_{\bar{r}\bar{i}}^{\bar{i}} \geq 0$,

$$\int_{M} (s_{\omega_{0}} - \hat{s}_{\omega_{0}}) \omega_{0}^{n} = \int_{M} \langle \bar{\partial} \bar{\partial}^{*} \omega_{0}, \omega_{0} \rangle \omega_{0}^{n} + \int_{M} T_{ij}^{\bar{r}} T_{\bar{r}j}^{i} \omega_{0}^{n}
= \int_{M} |\bar{\partial}^{*} \omega_{0}|^{2} \omega_{0}^{n} + \int_{M} T_{ij}^{\bar{r}} T_{\bar{r}j}^{i} \omega_{0}^{n} \ge 0.$$

Under the assumption $HSC(\omega) > 0$, since $HSC(\omega) > 0$ implies that $s_{\omega} + \hat{s}_{\omega} > 0$, we obtain that

$$\begin{split} \int_{M} \mathbf{s}_{\omega_{0}} \omega_{0}^{n} &= \frac{1}{2} \int_{M} (\mathbf{s}_{\omega_{0}} + \hat{\mathbf{s}}_{\omega_{0}}) \omega_{0}^{n} + \frac{1}{2} \int_{M} (\mathbf{s}_{\omega_{0}} - \hat{\mathbf{s}}_{\omega_{0}}) \omega_{0}^{n} \\ &\geq \frac{1}{2} \int_{M} (\mathbf{s}_{\omega_{0}} + \hat{\mathbf{s}}_{\omega_{0}}) \omega_{0}^{n} = \frac{1}{2} \int_{M} f_{0} (\mathbf{s}_{\omega} + \hat{\mathbf{s}}_{\omega}) \omega^{n} > \mathbf{0}. \end{split}$$

The almost Hermitian case

Proposition (K.)

Let (M^{2n},J,ω) be a compact almost Hermitian manifold with $n\geq 2$. Assume that $T^{\bar{r}}_{ij}T^i_{\bar{r}\bar{j}}\geq 0$ and $HSC(\omega)>0$. Then, $\kappa(M,J)=-\infty$.

Some conditions for $T^{ar{r}}_{ij}T^i_{ar{r}ar{i}}\geq 0$

Lemma (K.)

Let (M^{2n}, J, ω) be an almost Kähler manifold. Then we have that

$$T_{ij}^{\bar{r}}T_{\bar{r}\bar{i}}^{i}\geq 0.$$

The equality $T_{ij}^{\bar{r}}T_{\bar{r}\bar{j}}^{i}=0$ holds if and only if the almost Kähler manifold is Kähler.

By applying $T_{ij}^{\bar{k}} + T_{ki}^{\bar{j}} + T_{jk}^{\bar{i}} = 0$, we compute that

$$\begin{split} T^{\bar{r}}_{ij}T^{i}_{\bar{r}\bar{j}} &= -T^{\bar{r}}_{ij}T^{j}_{\bar{i}\bar{r}} - T^{\bar{r}}_{ij}T^{r}_{\bar{j}i} \\ &= -T^{\bar{r}}_{ji}T^{j}_{\bar{r}\bar{i}} + T^{\bar{r}}_{ij}T^{r}_{\bar{i}j} \\ &= -T^{\bar{r}}_{ji}T^{i}_{\bar{r}\bar{j}} + |T''|_{g}^{2} \Leftrightarrow T^{\bar{r}}_{ij}T^{i}_{\bar{r}\bar{j}} = \frac{1}{2}|T''|_{g}^{2}(\geq 0), \end{split}$$

where $|T''|_g^2 := g^{j\bar{k}}g^{i\bar{s}}g_{r\bar{l}}T^{\bar{l}}_{ij}T^r_{\bar{s}\bar{k}}$.

In the case of n=2

On a real 4-dimensional almost Hermitian manifold (M^4, J, ω) ,

$$\begin{split} T^{\bar{r}}_{ij}T^{i}_{\bar{r}\bar{j}} &= g^{j\bar{k}}\delta_{qr}\delta_{il}T^{\bar{r}}_{i\bar{j}}T^{l}_{\bar{q}\bar{k}} \\ &= g^{j\bar{k}}(T^{\bar{1}}_{1j}T^{1}_{\bar{1}\bar{k}} + T^{\bar{2}}_{1j}T^{1}_{\bar{2}\bar{k}} + T^{\bar{1}}_{2j}T^{2}_{\bar{1}\bar{k}} + T^{\bar{2}}_{2j}T^{2}_{\bar{2}\bar{k}}) \\ &= T^{\bar{1}}_{12}T^{1}_{\bar{1}\bar{2}} + T^{\bar{2}}_{12}T^{1}_{\bar{2}\bar{1}} + T^{\bar{1}}_{21}T^{2}_{\bar{1}\bar{2}} + T^{\bar{2}}_{21}T^{2}_{\bar{2}\bar{1}} \\ &= T^{\bar{1}}_{12}T^{1}_{\bar{1}\bar{2}} - T^{\bar{2}}_{12}T^{1}_{\bar{1}\bar{2}} - T^{\bar{1}}_{12}T^{2}_{\bar{1}\bar{2}} + T^{\bar{2}}_{12}T^{2}_{\bar{1}\bar{2}} \\ &= (T^{\bar{1}}_{12} - T^{\bar{2}}_{12})(T^{\bar{1}}_{12} - T^{\bar{2}}_{12}) \geq 0. \end{split}$$

The equality $T_{ij}^{\bar{r}}T_{\bar{r}j}^{i}=0$ holds if and only if $T_{12}^{\bar{1}}=T_{12}^{\bar{2}}$.

Remark

Since on a nearly Kähler manifold ($(D_XJ)X=0$ for any tangent vector field X, $DJ\neq 0$, D is the Levi-Civita connection), we have $T^{\bar{r}}_{i\bar{j}}T^i_{\bar{r}\bar{j}}=-|T''|_g^2\leq 0$, we obtain $T^{\bar{r}}_{i\bar{j}}T^i_{\bar{r}\bar{j}}=0$ (then $T''\equiv 0$) on a real 4-dimensional nearly Kähler manifold and it must be Kähler.

Another condition for the negative Kodaira dimension

Theorem (H. Chen, W. Zhang 2023)

Let (M^{2n}, J) be a compact almost complex manifold with $n \geq 2$. If M admits an almost Hermitian metric ω with $\mathbf{s}_{\omega} > \mathbf{0}$, then $\kappa(M, J) = -\infty$.

Question

What about the other scalar curvature?

Quasi-Kählerity

Definition

An almost Hermitian metric ω is called quasi-Kähler if

$$\bar{\partial}\omega=0,$$

which is equivalent to $T^k_{ij}=0$ for $\forall i,j,k=1,\ldots,n$.

$$\stackrel{(1)}{\Rightarrow} s_{\omega} = \hat{s}_{\omega} + T^{\bar{k}}_{ri} T^{r}_{\bar{k}\bar{i}}$$

Real 4-dimensional quasi-Kähler case

Since we have $T_{ri}^{\bar{k}}T_{k\bar{i}}^{r}\geq 0$ on a real 4-dimensional almost Hermitian manifold, we have the following.

Corollary (K.)

If $\hat{s}_{\omega} > 0$ on a real 4-dimensional compact quasi-Kähler manifold (M^4, J, ω) , then $\kappa(M, J) = -\infty$.

Since on a real 4-dimensional quasi-Kähler manifold, (J. Fu, X. Zhou 2022)

$$\hat{s}_{\omega} = \frac{1}{2}s + \frac{1}{32}|N|^2 \ge \frac{1}{2}s, \ \ s_{\omega} = \frac{1}{2}s + \frac{1}{16}|N|^2 \ge \frac{1}{2}s$$

where s is the Riemannian scalar curvature w.r.t. D, and N is the Nijenhuis tensor of J, we have the following.

Corollary (K.)

If s > 0 on a real 4-dimensional compact quasi-Kähler manifold (M^4, J, ω) , then $\kappa(M, J) = -\infty$.

Almost Kähler case

Since we have $T_{ri}^{\bar{k}}T_{k\bar{i}}^{r}\geq 0$ on an almost Kähler manifold, we have the following.

Corollary (K.)

If $\hat{s}_{\omega} > 0$ on a compact almost Kähler manifold (M^{2n}, J, ω) with $n \geq 2$, then $\kappa(M, J) = -\infty$.

Since on an almost Kähler manifold, (J. Fu, X. Zhau 2022)

$$\hat{s}_{\omega} = \frac{1}{2}s + \frac{1}{32}|N^{0}|^{2} \ge \frac{1}{2}s, \ \ s_{\omega} = \frac{1}{2}s + \frac{1}{16}|N^{0}|^{2} \ge \frac{1}{2}s$$

where $N^0 := N - \mathfrak{b}N$, $\mathfrak{b}N$ is the skew-symmetric part of N, we have the following.

Corollary (K.)

If s > 0 on a compact almost Kähler manifold (M^{2n}, J, ω) with $n \ge 2$, then $\kappa(M, J) = -\infty$.

4. The *t*-Gauduchon connection

The t-Gauduchon connection

connection:

Let (M, J, g) be an almost Hermitian manifold. Let ∇ be the Chern (second canonical) connection, and let D be the Levi-Civita connection and let LD denote the restriction to $T^{1,0}M$, which is called the Lichnerowicz (first canonical)

$$\Gamma(M, T^{\mathbb{C}}M) \xrightarrow{D} \Gamma(M, (T^{\mathbb{C}}M)^* \otimes T^{\mathbb{C}}M)$$

$$\cup$$

$$\Gamma(M, T^{1,0}M) \xrightarrow{L_{D=D|_{T^{1,0}M}}} \Gamma(M, (T^{\mathbb{C}}M)^* \otimes T^{1,0}M),$$

$$L_{D_X}Y = D_XY - \frac{1}{2}J(D_XJ)Y \text{ for } X, Y \in \Gamma(TM).$$

We define the *t*-Gauduchon connection for $t \in \mathbb{R}$ on (M, J, g) by

$$^{t}\nabla := t\nabla + (1-t)^{L}D.$$

 ${}^t\nabla$ is reduced to LD when the manifold is quasi-Kähler.

Scalar curvature

$$\begin{split} {}^ts_\omega := g^{i\overline{j}}g^{k\overline{l}\,t}R^g_{i\overline{j}k\overline{l}}, \quad {}^t\hat{s}_\omega := g^{i\overline{l}}g^{k\overline{j}\,t}R^g_{i\overline{j}k\overline{l}}. \end{split}$$
 Note that ${}^1s_\omega = s_\omega, \ {}^1\hat{s}_\omega = \hat{s}_\omega.$
$${}^ts_\omega = ts_\omega + (1-t)(\hat{s}_\omega + T^{\overline{r}}_{ki}T^k_{\overline{r}i}), \end{split}$$

$${}^t\hat{s}_\omega = t\hat{s}_\omega + (1-t)(s_\omega - T^{\overline{r}}_{ki}T^k_{\overline{r}i}) - \left(\frac{1-t}{2}\right)^2(|T'|^2 + |w|^2), \end{split}$$
 where $w_i = g^{r\overline{s}}T_{ir\overline{s}}.$

Theorem (K.)

Let (M^{2n}, J, ω) be a compact almost Hermitian manifold with $n \geq 2$. Suppose that one of the following conditions holds:

$$\bullet$$
 $t_{s_{\omega}} + (1-t)\langle \bar{\partial} \bar{\partial}^* \omega, \omega \rangle > 0$ for some $t \in \mathbb{R}$.

Then,
$$\kappa(M,J) = -\infty$$
.

Semi-Kähler case

Definition

An almost Hermitian metric ω is called semi-Kähler if

$$d\omega^{n-1}=0.$$

$$\overset{(1)}{\Rightarrow} s_{\omega} = \hat{s}_{\omega} + T^{\bar{k}}_{ri} T^{r}_{\bar{k}\bar{i}}$$

Theorem (K.)

Let (M^{2n}, J, ω) be a compact semi-Kähler manifold with $n \geq 2$. Then, we have that for any $t \in \mathbb{R}$,

$$^{t}s_{\omega}=s_{\omega}.$$

Corollary (K.)

If ${}^ts_{\omega}>0$ for some $t\in\mathbb{R}$ on a compact semi-Kähler manifold (M^{2n},J,ω) with $n\geq 2$, then $\kappa(M,J)=-\infty$.

5. Positive Hermitian curvature flow (Positive HCF)

The positive HCF with non-negative Griffiths curvature

We consider the following type of the HCF, called the positive HCF or Ustinovskiy's flow, on a compact Hermitian manifold (M, J, g_0) :

$$egin{aligned} \mathsf{HCF}_+ & \left\{ egin{aligned} rac{\partial}{\partial t} g(t) &= -S^{g(t)} - Q^{g(t)}, \ g(0) &= g_0, \end{aligned}
ight. \end{aligned}$$

where $S^{g}_{i\bar{j}}=g^{k\bar{l}}R^{g}_{k\bar{l}i\bar{j}}$ is the second Chern-Ricci curvature with the specific torsion quadratic term:

$$Q^{g}_{i\bar{j}}:=\frac{1}{2}g^{p\bar{s}}g^{m\bar{n}}T_{\bar{s}\bar{n}i}T_{pm\bar{j}}.$$

Preservation of Griffiths positivity along the HCF₊

Theorem (Y. Ustinovskiy 2019)

On a compact Hermitian manifold (M,J,g_0) , let $g(t), t \in [0,\tau)$ be the solution of the HCF $_+$ with $g(0)=g_0$ for any $\tau<\tau_{\max}<\infty$, where τ_{\max} is the finite explosion time of the HCF $_+$. Assume that the Chern curvature R^{g_0} is Griffiths nonnegative (resp. Griffiths positive) on M, i.e., for any $x\in M$ and any non-zero $\xi,\eta\in T_x^{1,0}M$:

$$R_{\scriptscriptstyle X}^{g_0}(\xi, ar{\xi}, \eta, ar{\eta}) \geq 0 \quad ({\sf resp.} > 0).$$

Then for $t \in [0, \tau)$, the Chern curvature $R^{g(t)}$ remains Griffiths nonnegative (resp. Griffiths positive) on M. If, moreover, the Chern scalar curvature R^{g_0} is Griffiths positive at least at one point, then for any $t \in (0, \tau)$ the Chern curvature is Griffiths positive everywhere on M.

Uniformization theorem

Theorem (Y. Ustinovskiy 2019)

Let (M, J, g_0) be a compact complex *n*-dimensional Hermitian manifold such that

- its Chern curvature R^{g_0} is Griffiths nonnegative on M;
- Q R^{g_0} is Griffiths positive at least at one point.

Then M is biholonorphic to the complex projective space \mathbb{CP}^n .

6. Parabolic flows on almost Hermitian manifolds

Almost Hermitian flow

On a compact almost Hermitian manifold (M, J, ω_0) , we define a parabolic flow starting at the almost Hermitian metric ω_0 .

$$\text{AHF} \quad \left\{ \begin{array}{l} \frac{\partial}{\partial t}\omega(t) = \partial \partial_{g(t)}^*\omega(t) + \bar{\partial}\bar{\partial}_{g(t)}^*\omega(t) - P^{g(t)}, \\ \\ \omega(0) = \omega_0, \end{array} \right.$$

where $\partial_{g(t)}^*$, $\bar{\partial}_{g(t)}^*$ are the L^2 -adjoint operators w.r.t. g(t), and $P_{i\bar{j}}^g = g^{k\bar{l}} R_{i\bar{j}k\bar{l}}^g$ denote the first Chern-Ricci curvature.

Short time existence and uniqueness of the AHF

Proposition (K. 2019)

For an almost Hermitian metric ω , the right-hand side of the AHF $\partial \partial_{\sigma}^* \omega + \bar{\partial} \bar{\partial}_{\sigma}^* \omega - P^g$ is strictly elliptic.

Let $\{e_r\}$ be a local (1,0)-frame w.r.t. g around an arbitrary chosen point.

- $(\partial \partial_g^* \omega)_{i\bar{i}} + (\bar{\partial} \bar{\partial}_g^* \omega)_{i\bar{i}}$ involves the second derivatives of g; $g^{k\bar{l}}e_ke_{\bar{l}}(g_{i\bar{l}})-g^{k\bar{l}}e_{\bar{l}}e_{\bar{l}}(g_{k\bar{l}}),$
- ② $P_{i\bar{i}}^g$ involves the second derivatives of g; $-g^{k\bar{l}}e_{\bar{i}}e_i(g_{k\bar{l}})$.
- 3 the right-hand side of the AHF involves the second derivative of g; $g^{k\bar{l}}e_ke_{\bar{l}}(g_{i\bar{l}})=g^{k\bar{l}}\partial_k\partial_{\bar{l}}g_{i\bar{l}}+g^{k\bar{l}}B^{\bar{s}}_{k\bar{l}}e_{\bar{s}}(g_{i\bar{l}}).$

Therefore, the right-hand side of the AHF is strictly elliptic since g is positive definite, which implies that the AHF is strictly parabolic. From the standard parabolic theory, we obtain the short-time unique existence result since the manifold is supposed to be compact.

Short time existence and uniqueness of the AHF

Theorem (K. 2019)

 $\exists ! \omega(t)$ the short-time solution of the AHF starting at ω_0 on $M \times [0, \varepsilon)$ for some $\varepsilon > 0$.

Almost Hermitian curvature flow

We define another parabolic flow on a compact almost Hermitian manifold (M,J,g_0) :

$$\text{AHCF} \quad \left\{ \begin{array}{l} \frac{\partial}{\partial t} g(t) = -S^{g(t)} - Q^7 - Q^8 + B*T' + \bar{e}(T'), \\ \\ g(0) = g_0, \end{array} \right.$$

where $S_{i\bar{j}}^{g} = g^{k\bar{l}} R_{k\bar{l}i\bar{j}}^{g}$ is the second Chern-Ricci curvature,

$$Q^{7}_{i\bar{j}}:=g^{r\bar{s}}g^{k\bar{l}}T_{irk}T_{\bar{s}\bar{l}\bar{j}},\quad Q^{8}_{i\bar{j}}:=g^{r\bar{s}}g^{k\bar{l}}T_{irk}T_{\bar{j}\bar{l}\bar{s}},$$

and $w_i = g^{r\bar{s}} T_{ir\bar{s}}$,

$$(B*T')_{i\bar{j}} := g^{r\bar{s}} g^{p\bar{q}} B^{j}_{\bar{s}p} T_{ir\bar{q}} + g^{p\bar{q}} B^{r}_{\bar{q}i} T_{pr\bar{j}} + g^{s\bar{r}} B^{p}_{\bar{r}s} T_{pi\bar{j}} + B^{r}_{\bar{j}i} w_{r},$$

and

$$\bar{e}(T')_{i\bar{j}} := -g^{r\bar{l}}e_{\bar{l}}(T^s_{ri})g_{s\bar{j}} + g^{r\bar{l}}e_{\bar{j}}(T^s_{ri})g_{s\bar{l}}.$$

Relation between the AHCF and the HCF_{Q^1}

Definition

A Hermitian metric ω is called pluriclosed or SKT if

$$\partial \bar{\partial} \omega = 0.$$

Let g_0 be a pluriclosed metric on a compact Hermitian manifold.

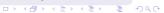
$$egin{aligned} \mathsf{HCF}_{Q^1} & \left\{ egin{aligned} rac{\partial}{\partial t} g(t) &= -S^{g(t)} + Q^1, \ g(0) &= g_0, \end{aligned}
ight. \end{aligned}$$

$$Q^1_{i\bar{j}} := g^{k\bar{l}} g^{r\bar{s}} T_{ik\bar{s}} T_{\bar{j}\bar{l}r}.$$

Notice that HCF_{Q^1} preserves the pluriclosedness.

Proposition (K. 2019)

If J is integrable, the AHCF coincides with the HCF $_{Q^1}$.



Proof.

Under our assumption that J is integrable, we have $Q^7=Q^8=B*T'=0$ and we may choose a local (1,0)-frame $e_r=\frac{\partial}{\partial z_r}=:\partial_r$ for holomorphic local coordinates $\{z_1,\ldots,z_n\}$. Since we have $\partial_{\bar{t}}T_{ri\bar{j}}=\partial_{\bar{j}}T_{ri\bar{t}}$ for a pluriclosed metric on a Hermitian manifold,

$$\begin{split} \bar{e}(T')_{i\bar{j}} &= -g^{r\bar{l}}\partial_{\bar{l}}(T^s_{ri})g_{s\bar{j}} + g^{r\bar{l}}\partial_{\bar{j}}(T^s_{ri})g_{s\bar{l}} \\ &= -g^{r\bar{l}}\partial_{\bar{l}}T_{ri\bar{j}} + g^{r\bar{l}}T^s_{ri}\partial_{\bar{r}}g_{s\bar{j}} + g^{r\bar{l}}\partial_{\bar{j}}T_{ri\bar{l}} - g^{r\bar{l}}T^s_{ri}\partial_{\bar{j}}g_{s\bar{l}} \\ &= -g^{r\bar{l}}\partial_{\bar{j}}T_{ri\bar{l}} + g^{r\bar{l}}\partial_{\bar{j}}T_{ri\bar{l}} + g^{r\bar{l}}T^s_{ri}\Gamma^{\bar{k}}_{r\bar{j}}g_{s\bar{k}} - g^{r\bar{l}}T^s_{ri}\Gamma^{\bar{k}}_{\bar{j}\bar{l}}g_{s\bar{k}} \\ &= g^{r\bar{l}}g^{k\bar{s}}T_{ir\bar{s}}T_{\bar{j}\bar{l}k} \\ &= Q^1_{i\bar{i}}. \end{split}$$

Difference between P^g and S^g

Lemma (L. Vezzoni 2011)

$$P^g - S^g = \operatorname{div}^{\nabla} T' - \nabla \bar{w} + Q^7 + Q^8$$

holds for any almost Hermitian metric g, where

$$\operatorname{div}^{\nabla} T'_{i\bar{j}} := g^{k\bar{l}} \nabla_{\bar{l}} T_{ki\bar{j}}, \quad (\nabla \bar{w})_{i\bar{j}} := g^{k\bar{l}} \nabla_{i} T_{\bar{j}\bar{l}k}.$$

Generalized version of PF and HCF_{Q^1} equivalence

Since the AHF takes the expression

$$\frac{\partial}{\partial t}\omega = -\nabla \bar{w} - \bar{\nabla}w - P^{g}$$

and we have that

$$P^{g} = \underline{\text{div}}^{\nabla} \underline{T'} + S^{g} - \nabla \bar{w} + Q^{7} + Q^{8}$$

$$= \underline{-\bar{\nabla}w - B * T' - \bar{e}(T')} + S^{g} - \nabla \bar{w} + Q^{7} + Q^{8}$$

$$\Leftrightarrow -\nabla \bar{w} - \bar{\nabla}w - P^{g} = -S^{g} - Q^{7} - Q^{8} + B * T' + \bar{e}(T').$$

Generalized version of PF and HCF_{Q^1} equivalence (K. 2019)

The AHF starting at ω_0 is equivalent to the AHCF starting at ω_0 .

Regularity result

Theorem (K. 2020)

Let $(M^{2n},J,g(t))$ be a solution to the AHCF starting at an almost Hermitian metric g_0 for a maximal time interval $[0,\tau_{\text{max}})$ on a compact almost Hermitian manifold. Choose arbitrary $0<\tau<\tau_{\text{max}}$. Assume that, for a positive constants α with $\alpha/\tau>1$, the following inequalities hold:

$$\sup_{M\times[0,\tau)}|R|_{g(t)}\leq\frac{\alpha}{\tau},\quad \sup_{M\times[0,\tau)}|T'|_{g(t)}^2\leq\frac{\alpha}{\tau},\quad \sup_{M\times[0,\tau)}|\nabla T'|_{g(t)}\leq\frac{\alpha}{\tau}.$$

Then, for any $m \in \mathbb{N}$, the following inequalities hold:

$$|\nabla^m R|_{g(t)} \leq \frac{C_{m,n,\alpha}}{\tau \cdot t^{\frac{m}{2}}}, \quad |\nabla^{m+1} T'|_{g(t)} \leq \frac{C_{m,n,\alpha}}{\tau \cdot t^{\frac{m}{2}}}$$

for any $t \in (0, \tau]$ on M, where $C_{m,n,\alpha}$ is some positive constant depending only on m, n and α .

Blow-up at the maximal time

Theorem (K. 2020)

If $\tau_{\text{max}} < \infty$, then

$$\limsup_{t \to \tau_{\max}} \max \left\{ |R|_{C^0(g(t))}, |T'|^2_{C^0(g(t))}, |\nabla T'|_{C^0(g(t))} \right\} = \infty.$$

7. Preserved properties along the positive HCF on an almost Hermitian manifold

The HCF₊ on an almost Hermitian manifold

We consider the HCF₊ on a compact almost Hermitian manifold (M, J, g_0) :

$$\mathsf{HCF}_+ \quad \left\{ egin{array}{l} rac{\partial}{\partial t} g(t) = -S^{g(t)} - Q^{g(t)}, \ g(0) = g_0. \end{array}
ight.$$

where S^g is the second Chern-Ricci curvature, Q^g is given by

$$Q_{i\bar{j}}^{g} = \frac{1}{2} g^{p\bar{s}} g^{m\bar{n}} T_{\bar{s}\bar{n}i} T_{pm\bar{j}}.$$

Since $-S_{i\bar{i}}^g$ involves the second derivatives of g; $g^{kl}e_ke_{\bar{l}}(g_{i\bar{j}})$, and the metric g is positive definite, the right-hand side of the HCF₊ is strictly elliptic, which implies that the HCF₊ is strictly parabolic. From the standard parabolic theory, we obtain the short-time unique existence result since the manifold is supposed to be compact.

Preserved properties along the HCF₊

Theorem (K.)

Let g(t), $t \in [0,\tau)$ be the solution of the HCF $_+$ on a compact almost Hermitian manifold (M,J,g_0) with $g(0)=g_0$ for any $\tau < \tau_{\text{max}} < \infty$, where τ_{max} is the finite explosion time of the HCF $_+$. Assume that the Chern curvature R^{g_0} is Griffiths nonnegative (resp. positive), i.e., for any $\xi, \eta \in T^{1,0}M$:

$$R^{g_0}(\xi,\bar{\xi},\eta,\bar{\eta})\geq 0 \quad (\text{resp.}>0).$$

Then for $t \in [0, \tau)$, the Chern curvature $R^{g(t)}$ remains Griffiths nonnegative (resp. positive). If, moreover, the Chern curvature R^{g_0} is Griffiths positive at least at one point, then for any $t \in (0, \tau)$, the Chern curvature $R^{g(t)}$ is Griffiths positive everywhere on M.

Application

Definition

We write $\tilde{g} \in \mathcal{G}(M,J)$ if \tilde{g} is an almost Hermitian metric on a compact almost complex manifold M whose Chern curvature $R^{\tilde{g}}$ is Griffiths nonnegative, and Griffiths positive at least at one point.

Corollary (K.)

Let (M, J) be a compact almost complex manifold. If $\exists g \in \mathcal{G}(M, J)$, then $\kappa(M, J) = -\infty$.

In the case of the 6-sphere \mathbb{S}^6

Remark

Let e_i $(i=1,\ldots,7)$ be the standard basis of \mathbb{R}^7 and let e^i $(i=1,\ldots,7)$ be the dual basis. Denote $e^{ijk}:=e^i\wedge e^j\wedge e^k$. Define

$$\Phi := e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}.$$

 Φ induces the cross product $\times: \mathbb{R}^7 \times \mathbb{R}^7 \to \mathbb{R}^7$ by $(u \times v) \cdot w = \Phi(u, v, w)$, where \cdot is the Euclidean metric on \mathbb{R}^7 . We define the cross product operator of $u \in \mathbb{S}^6 = \{u \in \mathbb{R}^7 : u \cdot u = 1\}$ by $J_u := u \times \cdot$, which gives the standard almost complex structure $J_{\text{std}} = \{J_u : u \in \mathbb{S}^6\}$. Then,

$$P_m(\mathbb{S}^6, J_{\mathsf{std}}) = 1 \text{ for } \forall m \in \mathbb{Z}_{\geq 1}, \text{ and } \kappa(\mathbb{S}^6, J_{\mathsf{std}}) = 0$$

(H. Chen, W. Zhang 2023), which implies that

$$\exists g \in \mathcal{G}(\mathbb{S}^6, J_{\mathsf{std}}).$$

Thank you for your attention.

This work was partially supported by JSPS KAKENHI Grant Number JP19K14543

Sugiyama Jogakuen University kawamura-m@sugiyama-u.ac.jp

- Chen, H., Zhang, W. Kodaira dimensions of almost complex manifolds I, Amer. J. Math., **145**, (2) (2023), 477-514.
- Chen, H., Zhang, W. Kodaira dimensions of almost complex manifolds II, Comm. Anal. Geom. (In Press)
- Fu, J., Zhou, X. Scalar curvatures in almost Hermitian geometry and some applications, Sci. China Math. **65** no. 12, (2022), 2583-2600.
- Streets, J., Tian, G. *A parabolic flow of pluriclosed metrics*, Int. Math. Res. Not. IMRN, (2010), no. 16, 3101-3133.
- Streets, J., Tian, G. *Hermitian curvature flow*, J. Eur. Math. Soc. (JEMS), **13** (3) (2011), 601-634.
- Ustinovskiy, Y. The Hermitian curvature flow on manifolds with non-negative Griffiths curvature, Amer. J. Math., **141** (6) (2019), 1751-1775.
- Vezzoni, L. On Hermitian curvature flow on almost complex manifolds, Diff. Geom. and its Appl., **29** (2011), 709-722.

- Kawamura, M. Parabolic flows on almost Hermitian manifolds, Kyushu J. Math., **73** (1) (2019), 69-87.
- Kawamura, M. Regularity results for the almost Hermitian curvature flow, Tsukuba J. Math., 44 (1) (2020), 63-120.
- Kawamura, M. Nonnegative holomorphic sectional curvature on almost Hermitian manifolds, preprint.
- Kawamura, M. On the t-Gauduchon connection on almost Hermitian manifolds, preprint.
- Rawamura, M. The positive Hermitian curvature flow on almost complex manifolds with the Griffiths nonnegative Chern curvature, preprint.