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Introduction



Plan of the Talk

1. Minimal submanifolds and their Morse index estimates
2. Index estimates for self-shrinkers (our results)

3. Open Questions
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We start the introduction of minimal submanifolds

Setting

e (M™, g): complete Riem. mfd
e > C M™: complete submfd with trivial normal bundle

e m —n = 1: trivial normal bundle = two-sided

Comment

e Most of my talk is forcused on closed (cpt w/o boundary) case

e Sometimes | show non-compact examples
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First Variation and Minimal Submanifolds

First variation

e ¥;: normal variation with cpt supported V € T'(T+%)

e First variation formula is given by

d

= vol (X¢) = /E<H, V) dv

e [ is the mean curvature vector field of X

Minimal submanifolds : <= critical points of vol

e H=0
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Second Variation Formula

Second Variation

e X C M minimal submanifold (H = 0)

e Second variation formula is given by

d2

pro) t:Ovol(Et):/EWLV?—<B(V),V)—<RicM(V),V> dv

= — / (V,I=V) dv
by
for V e I'(T+X)

e B is the so-called Simons’ operator (defined by 2nd f.f. B)
o Jy = As + B+ RicM (Jacobi operator acting on I'(T+%))
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Morse Index of minimal submanifolds

Morse Index

e X C M cpt minimal submanifold
e Morse Index is the number of negative eigenvalues of Jx
(counted with multiplicity):

JsV4+AV =0, Vel(Tiy)

M <A< <A <o o0

Index Form
e Jx, defines the quadratic form (Hessian of vol):
QV.V) =~ [V FV) o
e Morse index of 3 = Index of 3 as a critical point of vol
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Stability of Minimal Submanifolds

Stability

e Minimal submanifold ¥ is stable if
d2
V)= =
@ ) dt? lt=0
for all cpt supported V € T(T+X)

e () is positive semidefinite - -- Morse index is zero

vol(X) >0

0< <A< = 400

e If X is not stable, then we call it unstable

e Morse index measures the instability of X
A< S <0 Mg 000 = F00
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Second Variation for Minimal Hypersurfaces

For minimal hypersurface case (m —n = 1)

e N: (globally defined) unit normal
o V =¢N with ¢ € C*(%)

e Then the second variation formula becomes
Q(6.6) = [ V6" ~ B*6* ~ RicM (N, N} v
>
—— [ 6 oo

Js = Ax + |B?> + Ric™ (N, N) on C®(%)

Our eigenvalue problem

Jup+Ap=0 on C®(X)
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Some Known Results for Stability



Simons and Schoen—Yau

As for general ambient space, we know

Theorem (Simons)

Ric™ > 0 and X" ¢ M"™t! closed stable minimal

= X is totally geodesic

Theorem (Schoen—Yau)

Scalys > 0 and X2 € M3 closed stable minimal

= Y is topologically S? or RP?
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Fischer—Corbrie—Schoen, Do Carmo—Peng

Note In R™, A closed minimal submanifold

In 1980’s Fischer-Corbrie-Schoen and Do Carmo—Peng
independently proved generalized Bernstein type theorem:

Theorem

2 C R? complete stable minimal = plane

e Stable = (topological) simplicity of
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Chodosh-Li and Catino—Mastrolia—Roncoroni

Recently, in R* Chodosh-Li solved a long standing conjecture:

Theorem (Chodosh-Li, 2021)

3 C R?* complete stable minimal = hyperplane

e Catino—Mastrolia—Roncoroni (2023) gave another proof
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Cao—Shen-Zhu

Higher dimensions

e Higher dimension case, not much is known for stability

e “Stable = simplicity” is still true
Theorem (Cao—Shen—-Zhu, 1997)

¥" C R*! (n > 3) complete stable minimal
= X has only one end
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Theorem (Palmer, 1991)

¥ C R*! (n >2) complete stable minimal
=  Acodim 1 cycle v C ¥ s.t.

¥\ v is connected

e Miyaoka(1993): In non-negatively curved ambient spaces

e K.—Saito(2019): For stable translating solitons
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Palmer’s argument

Palmer’s argument is proof by contradiction:

Assume: 3 codim 1 cycle v C 3 with X\ «y is connected

= Hi.(X)#{0} (by Doziuk)
= 3 nontrivial L2-harmonic 1-form w on X

=  w gives a cpt supported variation with @ < 0

This contradicts the stability of X O

Observation

e Harmonic 1-forms ~»  Volume decreasing variation
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Index Estimates for Minimal
Hypersurfaces by Betti Numbers




Ros’ index estimate in a Flat Torus

Theorem (Ros, 2006)
Let ¥2 C T3 be a non-flat closed minimal surface in a flat
3-torus. Then
2genus(X) —3  b1(X) -3
3 3

index(X) >

e b1(X) is the first Betti number, i.e., dimension of
H'(Z) = Hig(Z) = H' (S, R)

e Topological complexity = highly unstable
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Savo’ index estimate in a Round Sphere

Theorem (Savo, 2010)

Let ¥" C S"T1(1) C R"*2 be a closed minimal surface. Then

2b1(%)

index(X) > CESICE)

Moreover, if 3" is non-totally geodesic and n > 3, then

2b1 (%)

index(X) > mr2mLD)

+n+2

e For non-totally geodesic minimal surface ¥2 C S3
index(X) > 5
e Clifford torus 72 C S? has index(X) = 5 (Urbano, 1990)
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Marques—Neves, Schoen Conjecture

Conjecture (Marques—Neves, Schoen)

o (M™1 g) closed Riem mfd with Ric > 0
e 3C =C(n,g) > 0s.t. for YX" C M™* closed minimal,

index(X) > Cb (%)
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Ambrozio—Carlott—Sharp Conjecture

Conjecture (Ambrozio—Carlott-Sharp)

e Under the same assumption as MNS conjecture
e 3C =C(n,g) > 0s.t. for Y C M™* closed minimal,

index(X) > Ci bp(X)
p=1
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Song’s Result

Theorem (Song, 2023)
Let:

o (M™1 g) closed Riem mfd with 3 <n <7
e A>0

Then:
3C =C(n,g,A) >0st. VX" C M1 with vol(X) < A,

index(Z) > C Y by(%) — 1
p=0

Note: We do not need to impose curvature assumption on M
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Ambrozio—Carlott—Sharp’s Index Estimate

Theorem (Ambrozio—Carlott—Sharp, 2016)
Let:

o (M™! g)— R? closed Riem mfd

e X" C M"™! closed minimal hypersurface
Assume some curvature condition for M1 ¢ R¢:
/Z{\H(nX)Q = [II(X, N)J? + (|TI(, N)|* = [I(N, N)?) | X |2
—trg(RmM (-, X, -, X)) — Ric® (N, N)| X |*} dv < 0

for every nonzero VX € I'(TY).

Then:
index(X) >
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Application for ACS

e We need to check the curvature condition (ACS condition)
/ACS (X, X)dv
= LA X =[G )P + (I, WP = [T, )P X P
—trg(Rm™ (-, X, -, X)) — Ric™ (N, N)| X|*} dv < 0
Corollary (Ambrozio—Carlott—Sharp, 2016)

M™ 1 is CROSS = ACSis OK = Index est

e CROSS = Compact Rank One Symmetric Spaces:
sttt Rp*tY, CcP™, HP, CaP? < R¢
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Rough Skech of the Proof of ACS

Preparation
d
2

o {va}4_, ONBofR? ~ {vsAvplacs ONB of R(2)
e For a harmonic 1-form w € H1(%),
UAR = (N/\wﬁ,vA ANvg), A<B

e These are coordinates of N A w? in R(g)

Trace (average) of the Hessian

e ACS condition = > Q(uap, uap) <0
A<B

e ACS condition makes the trace of () negative

e w <€ HYX) ~ uap: vol decreasing variation on average
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Rough Skech of the Proof of ACS

Goal

Assume
d

index (%) x <2

)<mmzﬂwn

= Jwe H(T)\ {0} st forall A< B,

uap L (negative eigenspaces of Jy)

dim=index(X) =k

=  Q(uap,uap) > )\k+1/ |uAB\2dv >0 (min-max)
5

= Z Q(uap,uap) = )\k+1/ |w\2dv > (0 contradiction [J
A<B =
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Higher Codimension: Adauto—Batista in Sphere

Theorem (Adauto—Batista, 2022)

Assume:

e X" C S™™(1) Cc R™™*+L closed min submfd (m > 0)

e m-Ric® > —(n—1)

Then: index estimate

b1(%)

indeX(Z) Z W

e This is a higher codimensional generalization of Savo's result
e However, we addionally need curvature condition for X
e Maybe it is possible: index(X) > b1 (%)
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Higher Codimension: Adauto—Batista in Riemann

Theorem (Adauto—Batista, 2022)

Assume:

e ¥ C M"™(1) — R? closed min submfd (m > 0)

e Curvature conditions M and X
/ ACS(X, X)dv < 2m / Ric™(X, X) dv
)

for any nonzero X € I'(T%)

Then: index estimate

2b(3)
d(d—1)

index(X) >
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Index Estimates for Self-Shrinkers




Self-Shrinkers

Self-Shrinker

e Self-shrinkers z : " — R? are known as singularity models of

mean curvature flow

e They are critical points of the Gaussian weighted volume

volp(X) = / e~ dv
I

with f = |2?|/4

e They can be considered as weighted minimal submanifolds
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First Variation for Self-Shrinkers

First variation

e ¥;: normal variation with cpt supported V € T'(T+Y%)

e First variation formula is given by

d

- - _ —f
i voly (X¢) /E<Hf,V>e dv

1L
o Hy=H + % is the weighted mean curvature

1

e z:Y" = R%is a self-shrinker < H = —%
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Second Variation Formula for self-shrinkers

Second Variation

e ¥ CR? self-shrinker with f = |z|>/4 (H; =0)
e Second variation formula is given by

2

3|, Vo (S = - /<V, LVYe  dv

1 1
o L:=Ay— iv# + B+ > (Jacobi op acting on T'(T+Y))

Eigenvalue problem

LV +AV =0

Morse index and stability are defined in the same way as
usual minimal submanifolds
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Stability for self-shrinkers

Stability
e Every self-shrinkers ¥ C R? are unstable:
LH =H, Lvt= %UL for veR?
are unstable directions (and produce index)
F-stability

e Introduced by Colding—Minicozzi
e Stability which do not consider the trivial directions H and v+
e Classification for closed self-shrinker X* C R**!

F-stable = ¥"=S"(v2n)c R""!

e Partial classification resuls for higher codimension are found in

the paper by Andrews—Li—Wei and Lee—Lue.
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Weighted harmonic forms and Betti numbers

Harmonic 1-forms

e " C R closed self-shrinker with f = |z|?/4

e Space of weighted harmonic 1-forms
H(Z) = {w € Q) | (67d + dbf)w = 0}
e The Hodge decomposition still holds in the weithed case:
H}(Z) = Hip(%)

e First Betti number b;(X) = dim’H}(E)
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Index Estimate for Self-Shrinking Hypersurfaces

Theorem (Impera—Rimoldi—Savo, 2020)

Let z : ¥ — R be a closed self-shrinker. Then

2
index(X) >

2 mbl(z)—kn—l—l

In particular if n = 2, we have

2
index(X) > ggenus(Z) +3

e No curvature condition for X is needed
e Similar to closed minimal hypersurfaces in the sphere (Savo)

e Possible: general weighted setting with ACS condition
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Index Estimate for Self-Shrinkers in High Codimension

Theorem (K.-Sakurai, 2023)

Assume:

e z:Y" 5 RY closed self-shrinker

) 1
. .L -
* Ricy > 2(d—n—1)
Then: 5
i ¥)> —b1(X
index(X) > d(d—l)bl( )

e Compare to the result by Adauto—Batista (X" C S"™: min)

. Ric? condition is very restrictive (< used for ACS argument)
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Examples: Spherical Self-Shrinkers

Spherical Self-Shrinkers
e Self-shrinker z : ¥® — R% is called spherical if
" CcS™ C R?
e Equivalently, ¥ C S™ is minimal

° Ric? = Ric”

Clifford torus
e Clifford torus T2 ¢ S® € R* is a spherical self-shrinker

o Ric}” =Ric™" =0

index(X) > useless...

Wl
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Open Questions




Open Questions

e Index estimate by p-th Betti numbers b, ()
e Index estimate for CMC hypersurfaces

e Index estimate for A-hypersurfaces
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Index estimate by p-th Betti Numbers

Index estimate for min hypersurf by p-th Betti numbers

e Remark in the ACS paper:

“Partially analogous computations for harmonic p-forms also
yield formula similar to ACS condition. However the ACS
condition contains terms that depend on the second
fundamental form B of £» ¢ M™*L. "

e We need additional curvature condition w.r.t. B for the index
estimate by p-th Betti number

e In their paper, no computations for harmonic p-forms...
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Index estimate by the Second Betti Number

Proposition (ACS)

Assume:

e Y c M™t!l <3 R%: closed minimal

. ‘B’2<3n—5

Then:
2

index(X) > A0

ba(X)

e If n =4, we use the argument by Tanno to improve the
curvature assumption (K.—Sakurai):

|B|? <7
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Index Estimate for CMC surfaces

Theorem (Aiex—Hong, 2021)

Assume:

o ¥2 C M3 — R% CMC surface
o M3 < R? satisfies ACS type condition

Then:
genus ()

index >
index > pi

e The idea is basically the same as ACS

e Check: the coordinates of harmonic 1-form w is admissible in
the CMC sense (restricted to vol-preserving variations)

e Use: w is a harmonic 1-form = *w is also a harmonic 1-form
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A-Hypersurfaces and Index Estimates

A-hypersurfaces

e Cheng—Wei (2014) introduced the notion of A\-hypersurface
e Weighted version of CMC hypersurfaces:

Hy = X(constant)

Index estimate?

o We expect that the similar technique is also available for
A-hypersurfaces

e However, in this case, duality for harmonicity does not hold:
w is f-harmonic ~»  %sw may not be f-harmonic
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