Morse index and first Betti number for self-shrinkers in higher codimension

櫻井陽平氏(埼玉大学)との共同研究

國川慶太 (徳島大学)

2023. 11. 21

部分多様体幾何とリー群作用 2023 ~小池直之先生還暦記念研究集会~

Introduction

- 1. Minimal submanifolds and their Morse index estimates
- 2. Index estimates for self-shrinkers (our results)
- 3. Open Questions

We start the introduction of minimal submanifolds

Setting

- (M^m,g) : complete Riem. mfd
- $\Sigma^n \subset M^m :$ complete submfd with trivial normal bundle
- m n = 1: trivial normal bundle = two-sided

Comment

- Most of my talk is forcused on closed (cpt w/o boundary) case
- Sometimes I show non-compact examples

First variation

- Σ_t : normal variation with cpt supported $V \in \Gamma(T^{\perp}\Sigma)$
- First variation formula is given by

$$\frac{d}{dt}\Big|_{t=0}\operatorname{vol}\left(\Sigma_{t}\right) = -\int_{\Sigma}\langle H, V\rangle\,dv$$

• H is the mean curvature vector field of $\boldsymbol{\Sigma}$

Minimal submanifolds : \iff critical points of vol

Second Variation

- $\Sigma \subset M$ minimal submanifold (H = 0)
- Second variation formula is given by

$$\frac{d^2}{dt^2}\Big|_{t=0}\operatorname{vol}(\Sigma_t) = \int_{\Sigma} |\nabla^{\perp} V|^2 - \langle \mathcal{B}(V), V \rangle - \langle \operatorname{Ric}^M(V), V \rangle \, dv$$
$$= -\int_{\Sigma} \langle V, \mathcal{J}_{\Sigma} V \rangle \, dv$$

for $V \in \Gamma(T^{\perp}\Sigma)$

- \mathcal{B} is the so-called Simons' operator (defined by 2nd f.f. B)
- $\mathcal{J}_{\Sigma} := \Delta_{\Sigma}^{\perp} + \mathcal{B} + \operatorname{Ric}^{M} (\text{Jacobi operator acting on } \Gamma(T^{\perp}\Sigma))$

Morse Index

- $\bullet \ \Sigma \subset M \quad {\rm cpt \ minimal \ submanifold}$
- Morse Index is the number of negative eigenvalues of J_Σ (counted with multiplicity):

$$\mathcal{J}_{\Sigma}V + \lambda V = 0, \qquad V \in \Gamma(T^{\perp}\Sigma)$$
$$\lambda_1 \le \lambda_2 \le \dots \le \lambda_k \le \dots \to +\infty$$

Index Form

• \mathcal{J}_{Σ} defines the quadratic form (Hessian of vol):

$$Q(V,V) := -\int \langle V, \mathcal{J}_{\Sigma}V \rangle \, dv$$

• Morse index of $\Sigma\,=\,$ Index of Σ as a critical point of vol

Stability of Minimal Submanifolds

Stability

• Minimal submanifold Σ is stable if

$$Q(V,V) = \frac{d^2}{dt^2} \Big|_{t=0} \operatorname{vol}(\Sigma) \ge 0$$

for all cpt supported $V \in \Gamma(T^{\perp}\Sigma)$

• Q is positive semidefinite \cdots Morse index is zero

$$0 \le \lambda_1 \le \lambda_2 \le \dots \to +\infty$$

- If Σ is not stable, then we call it unstable
- Morse index measures the instability of $\boldsymbol{\Sigma}$

$$\lambda_1 \leq \cdots \leq \lambda_k < 0 \leq \lambda_{k+1} \leq \cdots \to +\infty$$

Second Variation for Minimal Hypersurfaces

For minimal hypersurface case (m - n = 1)

- N: (globally defined) unit normal
- $V = \phi N$ with $\phi \in C^{\infty}(\Sigma)$
- Then the second variation formula becomes

$$Q(\phi, \phi) = \int_{\Sigma} |\nabla \phi|^2 - |B|^2 \phi^2 - \operatorname{Ric}^M(N, N) \phi^2 \, dv$$
$$= -\int \phi \cdot J_{\Sigma} \phi \, dv$$

- $\bullet \ J_{\Sigma} = \Delta_{\Sigma} + |B|^2 + \operatorname{Ric}^M(N,N) \ \text{ on } \ C^\infty(\Sigma)$
- Our eigenvalue problem

$$J_{\Sigma}\phi + \lambda\phi = 0$$
 on $C^{\infty}(\Sigma)$

Some Known Results for Stability

As for general ambient space, we know

```
Theorem (Simons)
```

 $\operatorname{Ric}^M \geq 0$ and $\Sigma^n \subset M^{n+1}$ closed stable minimal

 $\Rightarrow \quad \Sigma \text{ is totally geodesic}$

Theorem (Schoen-Yau)

 $\operatorname{Scal}_M > 0$ and $\Sigma^2 \subset M^3$ closed stable minimal

 $\Rightarrow \quad \Sigma \text{ is topologically } \mathbb{S}^2 \text{ or } \mathbb{RP}^2$

Note In \mathbb{R}^m , $\not\exists$ closed minimal submanifold

In 1980's Fischer-Corbrie–Schoen and Do Carmo–Peng independently proved generalized Bernstein type theorem:

Theorem

 $\Sigma^2 \subset \mathbb{R}^3$ complete stable minimal \Rightarrow plane

• Stable \Rightarrow (topological) simplicity of Σ

Recently, in \mathbb{R}^4 Chodosh–Li solved a long standing conjecture:

Theorem (Chodosh–Li, 2021)

 $\Sigma^3 \subset \mathbb{R}^4$ complete stable minimal \Rightarrow hyperplane

• Catino-Mastrolia-Roncoroni (2023) gave another proof

Higher dimensions

- Higher dimension case, not much is known for stability
- "Stable \Rightarrow simplicity" is still true

Theorem (Cao–Shen–Zhu, 1997)

$$\Sigma^n \subset \mathbb{R}^{n+1} \ (n \ge 3)$$
 complete stable minimal

 $\Rightarrow \quad \Sigma \text{ has only one end}$

Theorem (Palmer, 1991)

 $\Sigma^n \subset \mathbb{R}^{n+1} \ (n \geq 2)$ complete stable minimal =

$$\Rightarrow \quad \not\exists \text{ codim } 1 \text{ cycle } \gamma \subset \Sigma \text{ s.t.}$$

 $\Sigma \setminus \gamma$ is connected

- Miyaoka(1993): In non-negatively curved ambient spaces
- K.-Saito(2019): For stable translating solitons

Palmer's argument is proof by contradiction:

Assume: \exists codim 1 cycle $\gamma \subset \Sigma$ with $\Sigma \setminus \gamma$ is connected

- $\Rightarrow \quad \mathcal{H}^1_{L^2}(\Sigma) \neq \{0\} \quad \text{(by Doziuk)}$
- \Rightarrow \exists nontrivial L^2 -harmonic 1-form ω on Σ
- $\Rightarrow \quad \omega$ gives a cpt supported variation with Q < 0

This contradicts the stability of $\boldsymbol{\Sigma}$

Observation

• Harmonic 1-forms ~~> Volume decreasing variation

Index Estimates for Minimal Hypersurfaces by Betti Numbers

Theorem (Ros, 2006) Let $\Sigma^2 \subset T^3$ be a non-flat closed minimal surface in a flat 3-torus. Then

$$\operatorname{index}(\Sigma) \ge \frac{2\operatorname{genus}(\Sigma) - 3}{3} = \frac{b_1(\Sigma) - 3}{3}$$

• $b_1(\Sigma)$ is the first Betti number, i.e., dimension of

$$\mathcal{H}^1(\Sigma) \cong H^1_{\mathrm{dR}}(\Sigma) \cong H^1(\Sigma, \mathbb{R})$$

• Topological complexity \Rightarrow highly unstable

Savo' index estimate in a Round Sphere

Theorem (Savo, 2010)

Let $\Sigma^n \subset \mathbb{S}^{n+1}(1) \subset \mathbb{R}^{n+2}$ be a closed minimal surface. Then

$$\operatorname{index}(\Sigma) \ge \frac{2b_1(\Sigma)}{(n+2)(n+1)}$$

Moreover, if Σ^n is non-totally geodesic and $n\geq 3,$ then

$$\operatorname{index}(\Sigma) \ge \frac{2b_1(\Sigma)}{(n+2)(n+1)} + n + 2$$

- For non-totally geodesic minimal surface $\Sigma^2 \subset \mathbb{S}^3$

 $\operatorname{index}(\Sigma) \ge 5$

• Clifford torus $T^2 \subset \mathbb{S}^3$ has $index(\Sigma) = 5$ (Urbano, 1990)

Conjecture (Marques-Neves, Schoen)

- (M^{n+1},g) closed Riem mfd with $\operatorname{Ric} > 0$
- $\exists C = C(n,g) > 0$ s.t. for $\forall \Sigma^n \subset M^{n+1}$ closed minimal,

 $\operatorname{index}(\Sigma) \ge Cb_1(\Sigma)$

Conjecture (Ambrozio–Carlott–Sharp)

- Under the same assumption as MNS conjecture
- $\exists C = C(n,g) > 0$ s.t. for $\forall \Sigma^n \subset M^{n+1}$ closed minimal,

$$\operatorname{index}(\Sigma) \ge C \sum_{p=1}^{n} b_p(\Sigma)$$

Song's Result

Theorem (Song, 2023)

Let:

- (M^{n+1},g) closed Riem mfd with $3\leq n\leq 7$
- $\bullet \ A>0$

Then:

$$\begin{split} \exists \, C = C(n,g,A) > 0 \text{ s.t. } \forall \, \Sigma^n \subset M^{n+1} \text{ with } \operatorname{vol}(\Sigma) < A, \\ \operatorname{index}(\Sigma) \geq C \sum_{p=0}^n b_p(\Sigma) - 1 \end{split}$$

Note: We do not need to impose curvature assumption on ${\cal M}$

Ambrozio-Carlott-Sharp's Index Estimate

Theorem (Ambrozio–Carlott–Sharp, 2016) Let:

- $\bullet \ (M^{n+1},g) \hookrightarrow \mathbb{R}^d \ \ {\rm closed} \ {\rm Riem} \ {\rm mfd}$
- $\Sigma^n \subset M^{n+1}$ closed minimal hypersurface

Assume some curvature condition for $M^{n+1} \subset \mathbb{R}^d$:

$$\int_{\Sigma} \{ |\mathrm{II}(\cdot, X)|^2 - |\mathrm{II}(X, N)|^2 + (|\mathrm{II}(\cdot, N)|^2 - |\mathrm{II}(N, N)|^2) |X|^2 - \mathrm{tr}_{\Sigma}(\mathrm{Rm}^M(\cdot, X, \cdot, X)) - \mathrm{Ric}^M(N, N) |X|^2 \} \, dv < 0$$

for every nonzero $\forall X \in \Gamma(T\Sigma).$

Then:

$$\operatorname{index}(\Sigma) \ge \frac{2}{d(d-1)} b_1(\Sigma)$$

Application for ACS

• We need to check the curvature condition (ACS condition)

$$\begin{split} &\int_{\Sigma} \operatorname{ACS}(X,X) \, dv \\ &:= \int_{\Sigma} \{ |\operatorname{II}(\cdot,X)|^2 - |\operatorname{II}(X,N)|^2 + (|\operatorname{II}(\cdot,N)|^2 - |\operatorname{II}(N,N)|^2) |X|^2 \\ &- \operatorname{tr}_{\Sigma}(\operatorname{Rm}^M(\cdot,X,\cdot,X)) - \operatorname{Ric}^M(N,N) |X|^2 \} \, dv < 0 \end{split}$$

Corollary (Ambrozio–Carlott–Sharp, 2016)

 $M^{n+1} \text{ is } {\sf CROSS} \quad \Rightarrow \quad {\sf ACS} \text{ is } {\sf OK} \quad \Rightarrow \quad {\sf Index \ est}$

• CROSS = Compact Rank One Symmetric Spaces:

$$\mathbb{S}^{n+1}, \mathbb{RP}^{n+1}, \mathbb{CP}^m, \mathbb{HP}^l, \mathbb{CaP}^2 \hookrightarrow \mathbb{R}^d$$

Preparation

- $\{v_A\}_{A=1}^d$ ONB of \mathbb{R}^d \rightsquigarrow $\{v_A \wedge v_B\}_{A < B}$ ONB of $\mathbb{R}^{\binom{d}{2}}$
- For a harmonic 1-form $\omega \in \mathcal{H}^1(\Sigma)$,

$$u_{AB} := \langle N \wedge \omega^{\sharp}, v_A \wedge v_B \rangle, \quad A < B$$

• These are coordinates of $N \wedge \omega^{\sharp}$ in $\mathbb{R}^{\binom{d}{2}}$

Trace (average) of the Hessian

• ACS condition
$$\Rightarrow \sum_{A < B} Q(u_{AB}, u_{AB}) < 0$$

- ACS condition makes the trace of \boldsymbol{Q} negative
- $\omega \in \mathcal{H}^1(\Sigma) \rightsquigarrow u_{AB}$: vol decreasing variation on average

Rough Skech of the Proof of ACS

Goal

$$\operatorname{index}(\Sigma) \ge \frac{2}{d(d-1)} b_1(\Sigma) = \frac{b_1(\Sigma)}{\binom{d}{2}}$$

Assume

$$\operatorname{index}(\Sigma) \times \binom{d}{2} < b_1(\Sigma) = \mathcal{H}^1(\Sigma)$$

 $\begin{array}{ll} \Rightarrow & \exists \, \omega \in \mathcal{H}^1(\Sigma) \setminus \{0\} \text{ s.t. for all } A < B, \\ & u_{AB} \perp (\underbrace{\text{negative eigenspaces of } J_{\Sigma})}_{\dim = \operatorname{index}(\Sigma) = k} \\ \Rightarrow & Q(u_{AB}, u_{AB}) \geq \lambda_{k+1} \int_{\Sigma} |u_{AB}|^2 \, dv \geq 0 \quad (\text{min-max}) \\ \Rightarrow & \sum_{A < B} Q(u_{AB}, u_{AB}) = \lambda_{k+1} \int_{\Sigma} |\omega|^2 \, dv \geq 0 \quad \text{contradiction} \quad \Box \end{array}$

Higher Codimension: Adauto-Batista in Sphere

Theorem (Adauto-Batista, 2022)

Assume:

- $\Sigma^n \subset \mathbb{S}^{n+m}(1) \subset \mathbb{R}^{n+m+1}$ closed min submfd $(m \ge 0)$
- $m \cdot \operatorname{Ric}^{\Sigma} > -(n-1)$

Then: index estimate

$$\operatorname{index}(\Sigma) \ge \frac{b_1(\Sigma)}{\binom{n+m+2}{2}}$$

- This is a higher codimensional generalization of Savo's result
- However, we addionally need curvature condition for $\boldsymbol{\Sigma}$
- Maybe it is possible: $index(\Sigma) \ge b_1(\Sigma)$

Higher Codimension: Adauto-Batista in Riemann

Theorem (Adauto-Batista, 2022)

Assume:

- $\Sigma^n \subset M^{n+m}(1) \hookrightarrow \mathbb{R}^d$ closed min submfd $(m \ge 0)$
- Curvature conditions M and Σ

$$\int_{\Sigma} \operatorname{ACS}(X, X) \, dv < 2m \int \operatorname{Ric}^{\Sigma}(X, X) \, dv$$

for any nonzero $X\in \Gamma(T\Sigma)$

Then: index estimate

$$\operatorname{index}(\Sigma) \ge \frac{2b_1(\Sigma)}{d(d-1)}$$

Index Estimates for Self-Shrinkers

Self-Shrinker

- Self-shrinkers $x:\Sigma^n\to \mathbb{R}^d$ are known as singularity models of mean curvature flow
- They are critical points of the Gaussian weighted volume

$$\operatorname{vol}_f(\Sigma) = \int_{\Sigma} e^{-f} \, dv$$

with $f = |x^2|/4$

• They can be considered as weighted minimal submanifolds

First variation

- Σ_t : normal variation with cpt supported $V \in \Gamma(T^{\perp}\Sigma)$
- First variation formula is given by

$$\frac{d}{dt}\Big|_{t=0}\operatorname{vol}_f(\Sigma_t) = -\int_{\Sigma} \langle H_f, V \rangle e^{-f} \, dv$$

•
$$H_f = H + \frac{x^{\perp}}{2}$$
 is the weighted mean curvature
• $x : \Sigma^n \to \mathbb{R}^d$ is a self-shrinker $\iff H = -\frac{x^{\perp}}{2}$

Second Variation

- $\Sigma^n \subset \mathbb{R}^d$ self-shrinker with $f = |x|^2/4$ $(H_f = 0)$
- Second variation formula is given by

$$\frac{d^2}{dt^2}\Big|_{t=0}\operatorname{vol}_f(\Sigma_t) = -\int \langle V, LV \rangle e^{-f} \, dv$$

•
$$L := \Delta_{\Sigma}^{\perp} - \frac{1}{2} \nabla_{x^{\top}}^{\perp} + \mathcal{B} + \frac{1}{2}$$
 (Jacobi op acting on $\Gamma(T^{\perp}\Sigma)$)

• Eigenvalue problem

$$LV + \lambda V = 0$$

• Morse index and stability are defined in the same way as usual minimal submanifolds

Stability for self-shrinkers

Stability

• Every self-shrinkers $\Sigma^n \subset \mathbb{R}^d$ are unstable:

$$LH = H, \quad Lv^{\perp} = \frac{1}{2}v^{\perp} \quad \text{for} \quad v \in \mathbb{R}^d$$

are unstable directions (and produce index)

F-stability

- Introduced by Colding-Minicozzi
- Stability which do not consider the trivial directions H and v^{\perp}
- Classification for closed self-shrinker $\Sigma^n \subset \mathbb{R}^{n+1}$

F-stable
$$\Rightarrow \Sigma^n = \mathbb{S}^n(\sqrt{2n}) \subset \mathbb{R}^{n+1}$$

• Partial classification resuls for higher codimension are found in the paper by Andrews-Li-Wei and Lee-Lue.

Harmonic 1-forms

- $\Sigma^n \subset \mathbb{R}^d$ closed self-shrinker with $f = |x|^2/4$
- Space of weighted harmonic 1-forms

$$\mathcal{H}_f^1(\Sigma) = \{ \omega \in \Omega^1(\Sigma) \mid (\delta_f d + d\delta_f) \omega = 0 \}$$

• The Hodge decomposition still holds in the weithed case:

$$\mathcal{H}^1_f(\Sigma) \cong H^1_{\mathrm{dR}}(\Sigma)$$

• First Betti number $b_1(\Sigma) = \dim \mathcal{H}^1_f(\Sigma)$

Index Estimate for Self-Shrinking Hypersurfaces

Theorem (Impera–Rimoldi–Savo, 2020) Let $x: \Sigma^n \to \mathbb{R}^{n+1}$ be a closed self-shrinker. Then $\operatorname{index}(\Sigma) \geq \frac{2}{n(n+1)}b_1(\Sigma) + n + 1$ In particular if n = 2, we have $\operatorname{index}(\Sigma) \geq \frac{2}{3}\operatorname{genus}(\Sigma) + 3$

- No curvature condition for $\boldsymbol{\Sigma}$ is needed
- Similar to closed minimal hypersurfaces in the sphere (Savo)
- Possible: general weighted setting with ACS condition

Index Estimate for Self-Shrinkers in High Codimension

Theorem (K.–Sakurai, 2023)

Assume:

• $x: \Sigma^n \to \mathbb{R}^d$ closed self-shrinker

•
$$\operatorname{Ric}_{f}^{\Sigma} > -\frac{1}{2(d-n-1)}$$

Then:

$$\operatorname{index}(\Sigma) \ge \frac{2}{d(d-1)}b_1(\Sigma)$$

- Compare to the result by Adauto–Batista ($\Sigma^n\subset\mathbb{S}^{n+m}$: min)
- $\operatorname{Ric}_f^{\Sigma}$ condition is very restrictive (\leftarrow used for ACS argument)

Examples: Spherical Self-Shrinkers

Spherical Self-Shrinkers

• Self-shrinker $x: \Sigma^n \to \mathbb{R}^d$ is called **spherical** if

 $\Sigma^n \subset \mathbb{S}^m \subset \mathbb{R}^d$

- Equivalently, $\Sigma^n \subset \mathbb{S}^m$ is minimal
- $\operatorname{Ric}_f^{\Sigma} = \operatorname{Ric}^{\Sigma}$

Clifford torus

• Clifford torus $T^2 \subset \mathbb{S}^3 \subset \mathbb{R}^4$ is a spherical self-shrinker

•
$$\operatorname{Ric}_{f}^{T^{2}} = \operatorname{Ric}^{T^{2}} = 0$$

 $\operatorname{index}(\Sigma) \geq \frac{1}{3}$ useless...

Open Questions

- Index estimate by p-th Betti numbers $b_p(\Sigma)$
- Index estimate for CMC hypersurfaces
- Index estimate for λ -hypersurfaces

Index estimate for min hypersurf by *p*-th Betti numbers

• Remark in the ACS paper:

"Partially analogous computations for harmonic *p*-forms also yield formula similar to ACS condition. However the ACS condition contains terms that depend on the second fundamental form B of $\Sigma^n \subset M^{n+1}$."

- We need additional curvature condition w.r.t. B for the index estimate by $p\mbox{-th}$ Betti number
- In their paper, no computations for harmonic *p*-forms...

Index estimate by the Second Betti Number

Assume:

•
$$\Sigma^n \subset M^{n+1} \hookrightarrow \mathbb{R}^d$$
: closed minimal

$$\bullet \ |B|^2 < \frac{3n-5}{n}$$

Then:

$$\operatorname{index}(\Sigma) \ge \frac{2}{d(d-1)}b_2(\Sigma)$$

• If n = 4, we use the argument by Tanno to improve the curvature assumption (K.–Sakurai):

$$|B|^2 < 7$$

Index Estimate for CMC surfaces

Theorem	(Aiex-Hong,	2021)
---------	-------------	-------

Assume:

- $\Sigma^2 \subset M^3 \hookrightarrow \mathbb{R}^d$ CMC surface
- $M^3 \hookrightarrow \mathbb{R}^d$ satisfies ACS type condition

Then:

$$\operatorname{index} \ge \frac{\operatorname{genus}(\Sigma)}{d}$$

- The idea is basically the same as ACS
- Check: the coordinates of harmonic 1-form ω is admissible in the CMC sense (restricted to vol-preserving variations)
- Use: ω is a harmonic 1-form $\Rightarrow \star \omega$ is also a harmonic 1-form

λ -hypersurfaces

- Cheng–Wei (2014) introduced the notion of λ -hypersurface
- Weighted version of CMC hypersurfaces:

 $H_f = \lambda \left(\mathsf{constant} \right)$

Index estimate?

- We expect that the similar technique is also available for $\lambda\text{-hypersurfaces}$
- However, in this case, duality for harmonicity does not hold:

 ω is *f*-harmonic $\rightsquigarrow \star_f \omega$ may not be *f*-harmonic