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Sec. 1 - Polar actions on Riemannian manifolds (1/4)

Recall

smooth left action
G ↷ M

Lie group smooth mfd

An action of G on M is proper

⇐⇒
def

the map G × M → M × M, (g, p) 7→ (g · p, p) is proper

=⇒ • the orbit space M/G is a Hausdorff space;

• the orbit G · p = {g · p | g ∈ G} through p ∈ M is
a properly embedded submanifold of M;

• the isotropy subgroup Gp = {g ∈ G | g · p = p} is compact.

Note
G: compact =⇒ the action of G on M is proper.
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Sec. 1 - Polar actions on Riemannian manifolds (2/4)

Def (Hermann 1962, see also Bott-Samelson 1958)

proper, isometric
G ↷ M

Lie group complete Riem mfd

the action of G on M is polar

⇐⇒
def
∃ Σ: connected complete submfd of M which meets every

G-orbit orthogonally (Here Σ is called a section of the action)
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Sec. 1 - Polar actions on Riemannian manifolds (3/4)

Note
It follows that section Σ is totally geodesic in M.

Moreover, in many examples, Σ is flat in the induced metric.

A polar action with flat section is called hyperpolar.

Example

The action of O(n) on Sym(n,R) by A · X := AX A−1 is hyperpolar,
where Σ = diag(n). (Inner product: 〈X, Y〉 := tr(XY))

Example (adjoint action)
G: connected compact Lie group with bi-inv metric. Then the action
G ↷ G by g · h := ghg−1 is hyperpolar (Σ: maximal torus)
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Sec. 1 - Polar actions on Riemannian manifolds (4/4)

Example (isotropy action)
G/K: compact symmetric space. Then the action K ↷ G/K by
g · hK := (gh)K is hyperpolar (Σ: maximal flat)

Example (Hermann action)
G/K, G/H: compact symmetric spaces. Then the actions H ↷ G/K
and K ↷ G/H are hyperpolar.

Note
If M = En, then “polar⇐⇒ hyperpolar”.

If M , En, then polar action is not necessarily hyperpolar.

Such examples are known when
M: compact symmetric sp of rank 1,

M: non-compact symmetric sp (not necessarily of rank 1).
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Sec. 2 - Exceptional orbits (1/4)

Recall

Left smooth action
G ↷ M

Lie group smooth mfd

The orbit G · p is principal

⇐⇒
def
∀q ∈ M, ∃g ∈ G s.t. Gp ⊂ gGq g−1.

=⇒ G · p (� G/Gp) is maximal dimensional.

The orbit G · p is exceptional
⇐⇒

def
G · p is maximal dimensional, and not principal.

The orbit G · p is singular
⇐⇒

def
G · p is not maximal dimensional.
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Sec. 2 - Exceptional orbits (2/4)

Examples

The rotational action SO(2) ↷ RP2

is hyperpolar and has an exceptional orbit (equator).

(Note: the manifold is not simply connected)

The action R × {±1}↷ E2 defined by (a,±1) · (x, y) := (x + a,±y)
is hyperpolar and has an exceptional orbit (x-axis).

(Note: the group is not connected)
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Sec. 2 - Exceptional orbits (3/4)

Theorem (Alexandrino-Töben 2006, Alexandrino 2011,
Grove-Ziller 2012)
G: connected Lie group,
M: simply connected complete Riemannian manifold.
=⇒ Polar action of G on M has no exceptional orbits.

The proof is not easy.

However, in the Euclidean case M = En,
a simple geometric proof is known (next page):
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Sec. 2 - Exceptional orbits (4/4)

Recall (Terng 1985)
A submanifold N of En is isoparametric
⇐⇒

def
(1) the normal bundle T⊥N is flat;

(2) the principal curvatures in the direction of any parallel
normal vector field are constant.

=⇒ T⊥N is globally flat (: non-trivial result).

G ↷ En: polar, N: principal orbit =⇒ N: isoparam submfd of En

Proof in the Euclidean case (due to Berndt-Console-Olmos)
Suppose G ↷ En: polar. There are two steps:

(1) N: maximal dimensional orbit =⇒ N: isoparametric submfd of En

(2) T⊥N: globally flat =⇒ N: principal orbit.

My question
Can we generalize their theorem to the case of Hilbert space?
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Sec. 3 - Polar actions on Hilbert space (1/4)

Definition (Palais-Terng 1988)

smooth left action
L ↷ V

Hilbert Lie group (separable) Hilbert sp
(Hilbert mfd with smooth group str)

The action of L on V is Fredholm

⇐⇒
def

For each p ∈ M, the map ωp : L → V, g 7→ g · p is Fredholm.

⇐⇒
def

For each p ∈ M, the differential

dωp : TeL → TpV

is a Fredholm operator (i.e. Ker and Coker are finite dim).

=⇒ • the isotropy subgroup Lp has finite dimension.

• every orbit L · p has finite codimension.



Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5

Sec. 3 - Polar actions on Hilbert space (2/4)

Definition (Palais-Terng 1988)

isometric
proper, Fredholm (PF)

L ↷ V
Hilbert Lie group (separable) Hilbert sp

The action of L on V is polar

⇐⇒
def
∃ Σ: closed affine subspace of V

s.t. Σ meets every L-orbit orthogonally.
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Sec. 3 - Polar actions on Hilbert space (3/4)

Example (Palais-Terng 1989, Pinkall-Thorbergsson 1990, Terng 1995)

G: connected compact Lie grp with a bi-inv metric, g: its Lie algebra.

path group (pointwise multiplication (gh)(t) = g(t)h(t))

G := H1([0, 1],G) = {g : [0, 1] → G : Sobolev H1-map} (⊂ C([0, 1],G))

Hilbert space

Vg := L2([0, 1], g) = {u : [0, 1] → g : L2-map}

The isometric PF action of G on Vg is defined by:

g ∗ u := gug−1 − g′g−1 (⇒ transitive)

For any closed subgroup U of G × G, the subgroup is defined by

P(G,U) := {g ∈ G | (g(0), g(1)) ∈ U}.

The action of P(G,U) on Vg is polar if and only if
the action of U on G by (b, c) · a := bac−1 is hyperpolar.
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Sec. 3 - Polar actions on Hilbert space (4/4)

In particular:
Hyperpolar action on compact symmetric space G/K can be lifted:

G ⊃ P(G, H × K) ↷ Vg : polar

⇔

G × G ⊃ U = H × K ↷ G : hyperpolar

π ↓ ⇔

G ⊃ H ↷ G/K : hyperpolar
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Sec. 4 - Results (1/2)

Remark
In the case of PF actions:

Principal orbits are defined similarly to the finite dim case.

Principal orbits have minimal codimension.

Definition
In the case of PF actions:

An exceptional orbit is an orbit of minimal codimension which is
not principal.

A singular orbit is an orbit which is not of minimal codimension.
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Sec. 4 - Results (2/2)

Theorem (M., preprint)
L: connected Hilbert Lie group, V: Hilbert space.
=⇒ Polar action of L on V has no exceptional orbits.

Note
The strategy of proof is similar to that in the Euclidean case.

An isoparametric PF submanifold N of a Hilbert space V is
defined similarly to the finite dim case (Terng 1989).
N: isoparametric submanifold in V =⇒ T⊥N: globally flat.
(Heintze-Liu-Olmos 2006)

My proof is complete and valid also in the Euclidean case.

Corollary
G/K: simply connected compact Riemannian symmetric space.
H: closed connected subgroup of G.
=⇒ Hyperpolar action of H on G/K has no exceptional orbits.
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Sec. 5 - Toward the generalization (1/2)

Difficulty 1: The lift of polar action?

P(G, H × K) ↷ Vg : polar ??

Φ ↓ ⇔ ⇔

H × K ↷ G : hyperpolar ??

π ↓ ⇔ ⇔

H ↷ G/K : hyperpolar polar

Here Φ : Vg → G denotes the parallel transport map
(natural Riemannian submersion).

The lifted action has low copolarity?
The lifted action is taut?

Related problem: Polar actions on G/K of higher rank.
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Sec. 5 - Toward the generalization (2/2)

Difficulty 2: Extension to the non-compact case?
The problem is the lack of bi-invariant Riemannian metric on G.
(⇒ the lifted action (gauge transformation) is not isometric)

P(G, H × K) ↷ (Vg, 〈·, ·〉L2)

Φ ↓
H × K ↷ (G, gG)

π ↓
H ↷ (G/K, gG/K)

The relation of the affine connections?
The relation of the topology?
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Appendix: Method of Gorodski-Thorbergsson

Definition
N: submanifold of En.
N is taut ⇔

det
every non-degenerate squared distance function

is a perfect Morse function.

A representation is taut ⇔
det

their orbits are taut submanifolds.

Theorem (Gorodski-Thorbergsson (2003))
=⇒ Taut representation on En has no exceptional orbits.

Remark
Their method is also valid in the case of Hilbert spaces

The squared distance function to a PF submanifold satisfies
the Palais-Smale condition =⇒ Morse theory can be applied.

Polar actions on Hilbert spaces are taut.
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Thank you for your attention !


	Polar actions on Riemannian manifolds
	Exceptional orbits
	Polar actions on Hilbert space
	Results
	Toward the generalization

