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0. Preliminaries

Let
φ : Mm −→ Nn

be a smooth immersion of a smooth manifold M into a
Riemannian manifold (N, gN).

gM := φ∗gN: induced Riemannian metric on M by φ

∇M : Levi-Civita connection of TM with respect to gM

∇N : Levi-Civita connection of TN with respect to gN

E = φ−1TN : pull-back vector bundle on M by φ from TN

∇φ : pull-back connection from ∇N by φ on φ−1TN

TN

π (∇φ, φ−1gN) π (∇N , gN)

Nn

-φ−1TN
φ̃

? ?
Mm

φ
-
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The Gauss and Weingarten formulas are

∇φ
X
(dφ(Y)) = dφ(∇M

X
Y) + αM(X , Y)

∇φ
X
ξ = −dφ(AM

ξ
(X)) + ∇⊥

X
ξ

for each X , Y ∈ X(M) and each ξ ∈ C∞(T⊥M).
Here

αM : the second fundamental form of φ : M → N,

AM : the shape operator of φ : M → N,

∇⊥ : the normal connection on T⊥M for φ : M → N.

Note that
gM(AM

ξ
(X), Y) = gN(α

M(X , Y), ξ).

The mean curvature vector fieldH for φ : M → N is defined by

H := trgMα
M =

m∑
i=1

αM(ei , ei) ∈ C∞(T⊥M),

where {ei} is an orthonornal frame on (M, gM).
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A smooth immersion φ : M → N is called a minimal immersion
or a minimal submanifold immersed in N if

H ≡ 0.

Definition

The covariant derivative of the second fundamental form αM of
φ : M → N with respect to the Levi-Civita connection ∇M is
defined by

(∇∗
X
αM)(Y , Z) := ∇⊥

X
(αM(Y , Z)) − αM(∇M

X
Y , Z) − αM(Y ,∇M

X
Z)

for each X , Y , Z ∈ X(M).
φ : M → N is said to have parallel second fundamental form
(with respect to the Levi-Civita connection) if

∇∗αM = 0.
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1. R-spaces and their standard imbeddings

Suppose

(G,K , θ): compact Riemannian symmetric pair.

Here G: connected compact Lie group.
〈 , 〉: Ad(G)- and θ-inv. inner product of g.

g = k + p

: the canonical decomp. of g as a symm. Lie alg.
a: a maximal abelian subspace of p.
For each E ∈ a, the compact homogeneous space

K/KE � Adp(K)E ⊂ p
is called an R-space (an orbit of s-representation), where

KE := {a ∈ K | Adp(a)(E) = E} (isot. subgp. of K at E).

It has the standard imbedding into the Euclidean space p:

φE : K/KE 3 aKE 7−→ Adp(a)(E) ∈ p.
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Notice that an R-space is not a symmetric space in general.

An R-space K/KE is called a symmetric R-space
if (K ,KE) is a symmetric pair.

Theorem (D. Ferus, 1974)

Let N be a connected submanifold of the Euclidean space Rℓ.
Then the following two conditions are equivalent each other:
(a) N is a parallel submanifold, that is,

∇∗αN = 0. (1)

(b) N is congruent to an open piece of a standardly imbedded
symmetric R-space.
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Olmos-Sánchez’s characterization on R-spaces

In general, (N, gN): a Riemannian manifold,
∇g: the Levi-Civita connection of gN.

An affine connection ∇̃ on N is called a metric connection with
respect to gN if

∇̃gN = 0.

⇐⇒ gN(DX Y , Z) + gN(Y ,DX Z) = 0 (∀Y , Z ∈ TN),

where D := ∇N − ∇̃: a tensor field on N of type (1, 2).
A metric connection ∇c on N is called a canonical connection
on (N, gN) if ∇c satisfies the condition

∇cDc = 0, (2)

where Dc := ∇N − ∇c : a tensor field on N of type (1, 2).
The Levi-Civita connection is a trivial example (Dc = 0) of a
canonical connection on (N, gN).
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Suppose that N is a submanifold immersed in a Riemannian
manifold.

Definition

The covariant derivative of the second fundamental form αN of
N with respect to the canonical connection ∇c and the normal
connection ∇⊥ is defied by

(∇c
X
αN)(Y , Z) := ∇⊥

X
(αN(Y , Z)) − αN(∇c

X
Y , Z) − αN(Y ,∇c

X
Z)

for each X , Y , Z ∈ X(N).
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Theorem (Olmos-Sánchez, 1991)
Let N be a connected compact submanifold fully embedded in
the Euclidean space Rℓ. Then the following three conditions are
equivalent each other:
(1) There is a canonical connection ∇c on N such that

∇cαN = 0. (3)

(2) N is a homogeneous submanifold with constant principal
curvatures.

(3) N is an orbit of an s-representation, that is, a standardly
imbedded R-space.

Note that the argument of Olmos-Sánchez 1991 also works to
have the local version of this theorem, by the extension
theorem of isoparametric submanifolds (C.-L. Terng, Olmos).
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On (1)⇒ (2): ∇cαN = 0⇒ ∇cRc = 0 & ∇cTc = 0
(Homog. str. of N by Kobayashi-Nomizu I, Tricerri-Vanhecke).
The proof of (2)⇒ (3) uses
[Palais-Terng1987] R. S. Palais and C. L. Terng, A general
theory of canonical forms, Trans. Amer. Math. Soc. 300 no. 2 ,
(1987), 771–789.
[HOT1991] E. Heintze, C. Olmos and G. Thorbergsson,
Submanifolds with constant principal curvatures and normal
holonomy groups. Internat. J. Math. 2 (1991), 167–175.
and the classification of polar representations by Dadok (1985),
[DadokTAMS1985] J. Dadok, Polar coordinates induced by
actions of compact Lie groups, Trans. Amer. Math. Soc. 288,
no. 1 (1985), 125–137.
which clams that any orthogonal polar representation is
orbit-equivalent to an s-representation.
Its geometric proof is investigated by Eschenburg-Heintze
(1999), Bergmann (2001).

11 / 42



1. Kähler submanifolds and R-spaces

Theorem (Nakagawa-Takagi, 1976)
M is a parallel Kähler submanifold fully immersed in CPn if and
only if M is congruent to an open piece of the following seven
Kähler submanifolds:

M1 = CPm(4) ⊂ CPm(4) totally geodesic

M2 = CPm(2) ⊂ CPm+ 1
2 m(m+1)(4)

M3 = CPm−s(4) × CPs(4) −→ CPm+s(m−s)(4)

M4 = Qm(C) −→ CPm+1(4) (m ≥ 3)

M5 = SU(s + 2)/S(U(2) × U(s)) −→ CPs+ 1
2 s(s+1)(4) (s ≥ 3)

M6 = SO(10)/U(5) −→ CP15(4)

M7 = E6/((U(1) × Spin(10))/Z4) −→ CP26(4)

They are HSS of at most rank 2 and
1
2

-pinched hol. sect. curv.
12 / 42



Nakagawa-Takagi’s theorem was reproved (secondly) and
generalized by Takeuchi (1978) to homogeneous Kähler
submanifolds by more sophisticated use of unitary
representation theory.
The third proof of Nakagawa-Takagi,’s theorem was given by
Takeuchi (1984) by the algebraic method of Jordan triple
systems, based on the correspondence between positive
definite Hermitian Jordan triple systems and irreducible
symmetric bounded domains. Particularly his work contains

Theorem (Takeuchi,1984)
Any parallel Kähler submanifold of CPn can be obtained by the
projection of an R-space obtained as an orbit of the isotropy
representation of an irreducible Hermitian symmetric space,
under the Hopf fibration π : S2n+1(1) → CPn.
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The inverse images of complex Kähler submanifolds
Suppose that Mm is a complex m-dimensional complex
submanifold immersed in CPn. The inverse image of the
submfd. M under the Hopf fib.π : S2n+1(1) → CPn is defined as

M̂ =π−1(M)

={(p, x) ∈ M × S2n+1(1) | p ∈ M, x ∈ π−1(φ(p)) ⊂ S2n+1(1)}.

Cn+1

∪

S2n+1(1)

π π S1

CPn

-M̂ = π−1(M)
φ̂

? ?
S1

M
φ

-

M̂ is a real 2m + 1-dimensional submanifold immersed in
S2n+1(1) ⊂ Cn+1 � R2n+2 (an invariant submanifold of a
Sasakian manifold). 14 / 42



Homogeneous structures on the inverse images of
parallel Kähler submanifolds

Then our main result here is as follows:

Theorem (OhnitaCONM2021)

There exists a canonical connection ∇c on TM̂, which is not the
Levi-Civita connection, such that

∇cαM̂ = 0 ⇐⇒ ∇∗αM = 0 .

By use of this result we can give the fourth proof of Takeuchi’s
theorem and Nakagawa-Takagi’s theorem.
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The canonical connection on the inverse images of Kähler
submanifolds

Such a canonical connection ∇c = ∇M̂ − D can be explicitly
constructed from the tensor field D of type (1, 2) on
M̂ = π−1(M) ⊂ S2n+1(1) defined by

DX̃ (Ỹ) := −〈
√
−1X̃ , Ỹ〉

√
−1x ∈ VxM̂,

DX̃ (V) :=
√
−1X̃ = J̃X ∈ HxM̂,

DV(X̃) :=
1
2

√
−1X̃ =

1
2

J̃X ∈ HxM̂,

DV(V) := 0

(4)

for each horizontal vectors X̃ , Ỹ and the vertical vector
V =

√
−1x at a point x ∈ M̂ on M̂.

Remark. More recently we knew that this canonical connection
coincides with Masafumi Okumura’s connection on a Sasakian
manifold with r = −1

2
(see [Ohnita23rdProc2021] ).
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Suppose that M is a parallel Kähler submanifold of CPn.
Then by Olmos-Sánchez’s theorem our result implies

補題
M̂ is an R-space obtained as an orbit of the isotropy
representation of a compact Riemannian symmetric pair (G,K).

Moreover by discussing symmetries and irreducibility of the
submanifolds M̂ we can show

補題
(G,K) can be taken as a Hermitian symmetric pair.

and

補題
(G,K) must be an irreducible Hermitian symmetric pair of
compact type.

Therefore we obtain Takeuchi’s theorem.
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By Lie algebraic argument on R-spaces associated with
irreducible Hermitian symmetric pairs of compact type
(cf. Hyunjung Song, Tsukuba J. Math. 2001), we can explicitly
determine parallel Kähler submanifolds
ME = K/Kπ(E) = K/CK (α̃) as follows:

(G,K) ME

(SU(m + 2), S(U(m + 1) × U(1))) CPm(4)
(Sp(m + 1),U(m + 1)) CPm(2)

(SU(m + 2), S(U(s + 1) × U(m − s + 1))) CPs(1) × CPm−s(1)
(SO(m + 4), SO(m + 2) × SO(2)) Qm(C)

(SO(2(s + 2)),U(s + 2))
SU(s + 2)

S(U(2) × U(s))

(E6, (Spin(10) × U(1))/Z4)
SO(10)

U(5)

(E7, (E6 × U(1))/Z3)
E6

(Spin(10) × U(1))/Z4)

Therefore we obtain Nakagawa-Takagi’s theorem.
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3. Totally complex submanifolds and R-spaces

Let (M, g,Q) be a quaternionic Kähler manifold, that is, a
Riemannian manifold with a Riemannian metric g and a
quaternionic Kähler structure Q (see [ShigeruIshihara1974]).
Then dim M = 4n. Denote by ∇ = ∇M Levi-Civita conn. of g.
The quaternionic Kähler structure Q is a rank 3 vector
subbundle of the skew-symmetric endomorphism bundle
End(TM) over (M, g) invariant under the parallel displacements
with respect to the Levi-Civita connection ∇, which has a local
field of bases {I, J, K } in a nbd. U of each point p ∈ M
satisfying the quaternionic ralations:

I ◦ I = −Id, J ◦ J = −Id, K ◦ K = −Id,
I ◦ J = −J ◦ I = K , J ◦ K = −K ◦ J = I, K ◦ I = −I ◦ K = J.

We call such {I, J,K } a local canonical basis of the quaternionic
Kähler structure Q.
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Totally complex submanifolds of q. K. mfds.

A smooth immersion φ : N → M of a smooth manifold N into a
quaternionic Kähler manifold (M, g,Q) with τ , 0 is called a
totally complex immersion if N has an open covering

N =
⋃
λ∈Λ

Uλ

such that there exists a smooth section Jλ defined on each Uλ
for the pull-backed quaternionic Kähler structure φ−1Q over N
satisfying

Jλ ◦ Jλ = −IdTpM , (5)

Jλ((dφ)pTpN) = (dφ)pTpN (6)

and
∇φ

X
Jλ = 0 (7)

for each X ∈ TpN and each p ∈ Uλ. Then N is called a totally
complex submanifold immesed in M.
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Then note that there is a local canonical basis {Iλ, Jλ,Kλ} of
φ−1Q such that

Iλ((dφ)p(TpN)) ⊥ (dφ)p(TpN),

Kλ((dφ)p(TpN)) ⊥ (dφ)p(TpN)

(∀p ∈ Uλ ⊂ N)

(8)

(cf. [KTsukada1985]).
Thus it must be dim N = 2ℓ for some 1 ≤ ℓ ≤ n. In the case
when ℓ = n, N is called a maximal dimensional totally complex
submanifold.

Remark
A totally complex submanifold N is not necessary a complex
manifold, but if necessary N can be doubly covered by a
complex manifold Ñ. A totally complex submanifold N is a
minimal submanifold of M and a totally complex immersion
φ : Ñ → M is a pluriharmonic map.
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Theorem (Tsukada, 1985)

A maximal dimensional totally complex submanifold Ñ2n of HPn

with parallel second fundamental form is locally congruent to
one of the following immersions (Tsukada immersions):

(0) CP1 −→ RP2 ⊂ S4 = HP1（Veronese minimal surface）
(1) CPn ⊂ HPn（totally geodesic）
(2) Sp(3)/U(3) −→ HP6

(3) SU(6)/S(U(3) × U(3)) −→ HP9

(4) SO(12)/U(6) −→ HP15

(5) E7/((U(1) × E6)/Z3) −→ HP27

(6) CP1(c̃) × CP1(c̃/2) −→ HP2

(7) CP1(c̃) × CP1(c̃) × CP1(c̃) −→ HP3

(8) CP1(c̃) ×
SO(n + 1)

SO(2) × SO(n − 1)
−→ HPn (n ≥ 4)
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In order to get this theorem, Professor Kazumi Tsukada used
the classification theory of homogeneous Kähler submanifolds
in complex projective spaces based on the representation
theory (Hisao Nakagawa and Ryoichi Takagi 1976, Masaru
Takeuchi 1978).

So our question is as follows:

Question
Why do those submanifolds appear there?
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The canonical connection on the inverse images
of totally complex submanifolds in HPn

Suppose that N2ℓ is a 2ℓ-dimensional totally complex
submanifold immersed in HPn. The inverse image of N under
the Hopf fibration π : S4n+3(1) −→ HPn is defined as

N̂ =π−1(N)

={(p, x) ∈ N × S4n+3(1) | p ∈ N, π(x) = φ(p)}.

S4n+3(1) ⊂ Hn+1

π π Sp(1) = S3

HPn

-N̂ = π−1(N)
φ̂

? ?
S3

N
φ

-

N̂ is a (2ℓ + 3)-dimensional minimal submanifold immersed in
S4n+3(1) ⊂ Hn+1 � R4n+4.
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Such maximal dim. totally complex submfds. produce minimal
submfds. in other spaces such as complex Legendre
submfds. in CjP2n+1, minimal Legendrian submfds. in S4n+3(1)
and minimal Lagrangian submfds. in CiP2n+1 as follows.
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Then we explicitly constructed a new canonical connection on
the inverse image N̂ = π−1(N) of any maximal dimensional
totally complex submanifold N of HPn.

Theorem (Cho-Hasimoto-O. [CHO2023pp])
Assume that ℓ = n. Then there exists a (non Levi-Civita)
canonical connection ∇c = ∇N̂ − D on the tangent vector
bundle TN̂ such that

(∇c
X
αN̂)(Y , Z) =(∇c

HX
αN̂)(HY ,HZ)

=((∇∗
π∗X
αN)(π∗Y , π∗Z))̃

(9)

for each X , Y , Z ∈ TN̂. In particular,

∇cαN̂ = 0 if and only if ∇∗αN = 0.
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Let φ : N2ℓ → HPn be a totally complex immersion.
Let {IN , JN ,KN} be a local canonical basis of φ−1Q on each
U = Uλ ⊂ N.
For each point x ∈ π−1(U) ⊂ N̂, there are

λ1(x), λ2(x), λ3(x) ∈ Sp(1)

such that

IN
π(x)

(x) = xλ1(x), JN
π(x)

(x) = xλ2(x), KN
π(x)

(x) = xλ3(x).
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We define the tensor field D of type (1, 2) on U ⊂ N̂ as follows:
At each point x ∈ π−1(U) ⊂ N̂, for each X , Y ∈ Tπ(x)N,
V ∈ VxN̂, v1, v2, v3 ∈ R,

•DX̃ (Ỹ) = 〈 ˜(JN
π(x)

X), Ỹ〉JN
π(x)

(x) = gN(JN
π(x)

X , Y)JN
π(x)

(x) ∈ VxN̂,

•DX̃ (V) = v2X̃λ2(x) = −v2
˜(JN
π(x)

X) ∈ HxN̂ (∀V = x

 3∑
a=1

vaλa(x)

),
•DV(X̃) =

v2

2
X̃λ2(x) = −

v2

2
˜(JN
π(x)

X) ∈ HxN̂ (∀V = x

 3∑
a=1

vaλa(x)

),
•DU(V) = x {(v2u3 +

1
2

v3u2)λ1(x) + (v3u1 − v1u3)λ2(x)

+ (−1
2

v1u2 − v2u1)λ3(x)}

= x

∣∣∣∣∣∣∣∣∣∣∣
v1 v2 v3

u1 −1
2

u2 u3

λ1(x) λ2(x) λ3(x)

∣∣∣∣∣∣∣∣∣∣∣ ∈ VxN̂.
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Then D is well-defined entirely on N̂ and it satisfies

Lemma

∇c = ∇N̂ − D satisfies
∇cgN̂ = 0

and
∇cD = 0

and hence ∇c is a non Levi-Civita canonical connection on TN̂.

Lemma
If ℓ = n, then

(∇c
X
αN̂)(Y , Z) =(∇c

HX
αN̂)(HY ,HZ)

=((∇∗
π∗X
αN)(π∗Y , π∗Z))̃

(10)

for each X , Y , Z ∈ TN̂. In particular,

∇cαN̂ = 0 if and only if ∇∗αN = 0. 29 / 42



So by applying Theorem of [Olmos-Sanchez1991] to this
canonical connection ∇c and our observation of the
Sp(n + 1) × Sp(1)-symmetry, we obtain

Theorem [CHO2023pp]
If N is a maximal dimensional totally complex submanifold of
HPn with ∇∗αN = 0, then N̂ is obtained as a certain singular
orbit of the isotropy representation (i.e. standardly imbedded
R-space) of a quaternionic Kähler symmetric pair (G,K).

Moreover, we can concretely determine such R-spaces by root
system computation involved to each quaternionic Kähler
symmetric pair ([CHO2023pp]). Thus we obtain a classification
of totally complex submanifolds of HPn with ∇∗αN = 0. This
gives a geometric proof by a different method for the
classification theorem of totally complex submanifolds with
parallel second fundamental form due to Tsukada.
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Remark
In the case when (G,K) = (G2, SO(4)),
a totally complex submanifold with ∇∗αN = 0

N2 ⊂ HP1 = S4

is a Veronse minimal surface RP2 ⊂ S4, and
a corresponding minimal Lagrangian submanifold

L3 = πi(L̃3) ⊂ CiP3

is a minimal Lagrangian SU(2)-orbit which is well-known
as the River Chiang Lagrangian ([Chiang2004]).
The relevant structures in this case were discussed in
[Ohnita2007], [Ohnita2009], which motivates our present work.
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Definition (Chiang2004)

The Chiang Lagrangian submanifold L3 ⊂ CP3 is defined by

L3 :=

[z0 : z1 : z2 : z3] ∈ CP3
∣∣∣∣∣∣ 3|z0|2 + |z1|2 − |z2|2 − 3|z3|2 = 0

z0z̄1 + z1z̄2 + z2z̄3 = 0


(1) minimal Lagrangian SU(2) orbit

L3 = ρ(SU(2))[1 : 0 : 0 : 1].
(2) conn. cpt. embedded minimal Lagranagian submanifold in
CP3.

(3) L3 does not possess parallel second fundamental forms.
∇∗αN , 0

(4) Homogeneous space but not symmetric space.
(5) Curvature characterization

(B. Y. Chen, Dillen, Verstraelen, Vrancken, Bolton, 1996)
Strictly Hamiltonian stable (Ohnita, Bedulli-Gori, 2007)

(6) Floer homology (Evans-Lekili, 2015), min.Maslov number
of L3 = 2
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Thank you very much for your kind attention!

Many Congratulations for the 60th birthday of
Professor Naoyuki Koike-san!!
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Classification of parallel Kähler submanifolds

Any irreducible Hermitian symmetric pair of compact type is
given as follows (J. A. Wolf,1964):
G: cpt. conn. simple Lie gp. with Lie alg. g
h: maximal abelian subalgebra of g
Π(G) = {α1, · · · , αl}: the fund. root syst. (Dynkin diagram) of g
{Λ1, · · · , Λl}: its corresponding fund. weight system
α̃ = m1α1 + · · · + mlαl: the highest root of root syst.∆+(G).

For each vertex αi0 with mi0 = 1, set K = CG(HΛi0
).

Then the Dynkin diagram of k is

Π(K) := {αj ∈ Π(G) | j , i0}

and (G,K) is an irreducible Hermitian symmetric pair of
compact type:
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g = k + p, h ⊂ k

k = h +
∑
α∈∆+

k

(R(Xα − X−α) + R
√
−1(Xα + X−α)),

p =
∑
α∈∆+

p

(R(Xα − X−α) + R
√
−1(Xα + X−α)).

Note that α̃ ∈ ∆+
p

. We can choose a maximal system

{γ1 = α̃, γ2, · · · , γr}

of strongly orthogonal roots in ∆+
p

. Here r = rank(G,K).
Then

a :=
r∑

i=1

R
√
−1(Xγi + X−γi ).

is a maximal abelian subspace of p.
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For any E ∈ a ∩ S2n+1(1) ⊂ p � Cn+1, set an R-space

M̂E := (AdpK)E ⊂ S2n+1(1) ⊂ p

and its projection

ME := π((AdpK)E) = K/Kπ(E) ⊂ CPn.

Here
Kπ(E) := {a ∈ K | Ad(a)π(E) = π(E)}.

Theorem (Hyunjung Song, 2001)
ME is a complex submanifold of CPn if and only if
E ∈ R

√
−1(Xγ1 + X−γ1) after a suitable change of E on M̂E

under the action of K .
In this case ME always has parallel second fundamental form.

Since γ1 = α̃, we have

E ∈ R
√
−1(Xα̃ + X−α̃).
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Then (K ,Kπ(E)) is a compact Hermitian symmetric pair,

Kπ(E) = CK (Hα̃)

and its Dynkin diagram is

Π(Kπ(E)) = {αj ∈ Π(K) | (αj , α̃) = 0}.

Hence by root system computations of each type we can
explicitly determine parallel Kähler submanifolds

ME = K/Kπ(E) = K/CK (α̃)

as follows:

42 / 42


