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0. Preliminaries

Let
¢:M™ — N"

be a smooth immersion of a smooth manifold M into a
Riemannian manifold (N, gn).

dgm = ¢*gn: induced Riemannian metric on M by ¢

VM . Levi-Civita connection of TM with respect to gu

VvV : Levi-Civita connection of TN with respect to gy

E = ¢ 'TN : pull-back vector bundle on M by ¢ from TN

V¢ : pull-back connection from VN by ¢ on o' TN

¢ TN TN
m (V% ‘P_1 gn) T (VN’ gn)
Mm N7
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The Gauss and Weingarten formulas are
V2(de(Y)) = dp(VY) + (X, Y)
Pe __ _ M 1
Vo = —dp(AM(X)) + Vié

for each X, Y € ¥(M) and each £ € C*(T*M).

Here
a™ : the second fundamental form of ¢ : M — N,
AM : the shape operator of ¢ : M — N,
V+ : the normal connection on T*M for ¢ : M — N.

Note that
am(Al'(X), ¥) = gn(@™(X, Y),).
The mean curvature vector field H for ¢ : M — N is defined by

m
H = trgyat = 3 aM(ei,e) € C(TM),
i=1

where {e;} is an orthonornal frame on (M, gu).
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A smooth immersion ¢ : M — N is called a minimal immersion
or a minimal submanifold immersed in N if

H=0.

Definition
The covariant derivative of the second fundamental form aM of

@ : M - N with respect to the Levi-Civita connection VM is
defined by

(V3 @")(Y,2) := V5 (a"(Y,2)) - M(VY, 2Z) - M(Y, V] 2)

foreach X, Y,Z € X(M).

¢ : M — N is said to have parallel second fundamental form
(with respect to the Levi-Civita connection) if

vV = 0.
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1. R-spaces and their standard imbeddings

Suppose
(G, K, 0): compact Riemannian symmetric pair.

Here G: connected compact Lie group.
(,): Ad(G)- and @-inv. inner product of g.

g="F%+p

: the canonical decomp. of g as a symm. Lie alg.
a: a maximal abelian subspace of p.
For each E € a, the compact homogeneous space

K/Ke = Ady(K)E cp
is called an R-space (an orbit of s-representation), where
Ke := {a € K | Ady(a)(E) = E} (isot. subgp. of K at E).
It has the standard imbedding into the Euclidean space p:
¢e : K/Ke > aKg — Ady(a)(E) € ».
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Notice that an R-space is not a symmetric space in general.
An R-space K/KE is called a symmetlric R-space
if (K, Kg) is a symmetric pair.

Theorem (D. Ferus, 1974)

Let N be a connected submanifold of the Euclidean space R¢.
Then the following two conditions are equivalent each other:

(a) N is a parallel submanifold, that is,
vV =o0. (1)

(b) N is congruent to an open piece of a standardly imbedded
symmetric R-space.
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Olmos-Sanchez’s characterization on R-spaces

In general, (N, gn): @ Riemannian manifold,
V9: the Levi-Civita connection of gy.
An affine connection V on N is called a metric connection with
respect to gy if
VgN =0.

&  agn(DxY,Z)+gn(Y,DxZ) =0 (VY,Z e TN),

where D := VN — V: a tensor field on N of type (1,2).

A metric connection V¢ on N is called a canonical connection
on (N, gn) if V€ satisfies the condition

v°D° =0, (2)

where D¢ := VN — v¢: atensor field on N of type (1,2).
The Levi-Civita connection is a trivial example (D¢ = 0) of a
canonical connection on (N, gn).
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Suppose that N is a submanifold immersed in a Riemannian
manifold.

Definition
The covariant derivative of the second fundamental form aN of

N with respect to the canonical connection V¢ and the normal
connection V+ is defied by

(V5a™)(Y,2) = Vi (a"(Y,2)) - (V5 Y, Z) - aN(V, V5 2)

for each X, Y,Z € X(N).
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Theorem (Olmos-Sanchez, 1991)

Let N be a connected compact submanifold fully embedded in
the Euclidean space R¢. Then the following three conditions are
equivalent each other:

(1) There is a canonical connection V¢ on N such that
véal = 0. 3)
(2) N is a homogeneous submanifold with constant principal
curvatures.
(3) N is an orbit of an s-representation, that is, a standardly
imbedded R-space.

Note that the argument of Olmos-Sanchez 1991 also works to
have the local version of this theorem, by the extension
theorem of isoparametric submanifolds (C.-L. Terng, Olmos).
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On (1) = (2): VéaN = 0= VR =0 & V°T¢ =0

(Homog. str. of N by Kobayashi-Nomizu |, Tricerri-Vanhecke).
The proof of (2) = (3) uses

[Palais-Terng1987] R. S. Palais and C. L. Terng, A general
theory of canonical forms, Trans. Amer. Math. Soc. 300 no. 2,
(1987), 771-789.

[HOT1991] E. Heintze, C. Olmos and G. Thorbergsson,
Submanifolds with constant principal curvatures and normal
holonomy groups. Internat. J. Math. 2 (1991), 167-175.

and the classification of polar representations by Dadok (1985),
[DadokTAMS1985] J. Dadok, Polar coordinates induced by
actions of compact Lie groups, Trans. Amer. Math. Soc. 288,
no.1 (1985), 125—-137.

which clams that any orthogonal polar representation is
orbit-equivalent to an s-representation.

Its geometric proof is investigated by Eschenburg-Heintze
(1999), Bergmann (2001).

11/42



1. Kahler submanifolds and R-spaces

Theorem (Nakagawa-Takagi, 1976)

M is a parallel Kdhler submanifold fully immersed in CP" if and
only if M is congruent to an open piece of the following seven
Kéhler submanifolds:

M; = CP™(4) c CP™(4) totally geodesic

M, = CP™(2) c CP™+2m(m+1)(4)

M; = CP™5(4) x CPS(4) — CP™ts(m-5)(4)

M; = Qm(C) — CP™(4) (m > 3)

Ms = SU(s + 2)/S(U(2) x U(s)) — CPsT25(5t1)(4) (s > 3)
Ms = SO(10)/U(5) — CP'3(4)

M; = Eg/((U(1) x Spin(10))/Zs) — CP**(4)

They are HSS of at most rank 2 and %-pinched hol. sect. curv.
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Nakagawa-Takagi’'s theorem was reproved (secondly) and
generalized by Takeuchi (1978) to homogeneous Kahler
submanifolds by more sophisticated use of unitary
representation theory.

The third proof of Nakagawa-Takagi,’s theorem was given by
Takeuchi (1984) by the algebraic method of Jordan triple
systems, based on the correspondence between positive
definite Hermitian Jordan triple systems and irreducible
symmetric bounded domains. Particularly his work contains

Theorem (Takeuchi,1984)

Any parallel Kéhler submanifold of CP" can be obtained by the
projection of an R-space obtained as an orbit of the isotropy
representation of an irreducible Hermitian symmetric space,
under the Hopf fibration x : §"*+1(1) - CP".
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The inverse images of complex Kahler submanifolds

Suppose that M™ is a complex m-dimensional complex
submanifold immersed in CP". The inverse image of the
submfd. M under the Hopf fib. z : §2"*1(1) - CP" is defined as

M =z~ (M)
={(p,x) e Mx S2""'(1) | p e M,x € 77" (¢(p)) c S2"1(1)}.

@n+1
V)

i —1 ‘;b 2n+1

=y 2. g2y

n|S? n|S?

M 4 cp"

M is a real 2m + 1-dimensional submanifold immersed in
§21(1) c ¢! = R27+2 (an invariant submanifold of a

Sasakian manifold). 14/42



Homogeneous structures on the inverse images of

parallel Kahler submanifolds

Then our main result here is as follows:
Theorem (OhnitaCONM2021)

There exists a canonical connection V€ on TII7!, which is not the
Levi-Civita connection, such that

Vea’ =0 &= VM —o.

By use of this result we can give the fourth proof of Takeuchi’s
theorem and Nakagawa-Takagi’'s theorem.
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The canonical connection on the inverse images of Kahler
submanifolds

Such a canonical connection V¢ = V¥ — D can be explicitly
constructed from the tensor field D of type (1,2) on
M = n~1(M) c S2"t1(1) defined by

Dy (Y) := —(V=1X, Y) Y=1x € VM,
Dy (V) := V=1X = JX € Hyll,
3 1 1= . (4)
Dy(X) := 3 V-1X = 59X € HxlM,
Dy(V):=0

for each horizontal vectors X, Y and the vertical vector
V = Y—1x at a point x € Mon M.

Remark. More recently we knew that this canonical connection
coincides with Masafumi Okumura’s connection on a Sasakian

manifold with r = —% (see [Ohnita23rdProc2021] ).
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Suppose that M is a parallel Kahler submanifold of CP".
Then by Olmos-Sanchez’s theorem our result implies

e

M is an R-space obtained as an orbit of the isotropy
representation of a compact Riemannian symmetric pair (G, K).

Moreover by diAscussing symmetries and irreducibility of the
submanifolds M we can show

R
(G, K) can be taken as a Hermitian symmetric pair.
and

R
(G, K) must be an irreducible Hermitian symmetric pair of
compact type.

Therefore we obtain Takeuchi’s theorem.
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By Lie algebraic argument on R-spaces associated with
irreducible Hermitian symmetric pairs of compact type

(cf. Hyunjung Song, Tsukuba J. Math.2001), we can explicitly
determine parallel Kéhler submanifolds

Me = K/K;) = K/Ck(@) as follows:

(G,K) Mg
(SU(m +2),S(U(m+ 1) x U(1))) CP™(4)
(Sp(m+1),U(m + 1)) CP™(2)
(SUm+2),S(U(s+1)x Um - s + 1))) CP3(1) x CP™*(1)
(SO(m + 4),SO(m + 2) x SO(2)) Qn(C)
SO(2 2),U(s+2 M
(S0(2(s +2)), U(s +2)) S e
Es, (Spin(10) x U(1))/Z4) S0(19)
( 69 4 Ué5)
6

(E7, (Es x U(1))/Zs)

(Spin(10) x U(1))/Z4)

Therefore we obtain Nakagawa-Takagi’s theorem.
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3. Totally complex submanifolds and R-spaces

Let (M, g, Q) be a quaternionic Kahler manifold, that is, a
Riemannian manifold with a Riemannian metric g and a
quaternionic Kahler structure Q (see [Shigerulshihara1974]).
Then dim M = 4n. Denote by V = VM Levi-Civita conn. of g.

The quaternionic Kahler structure Q is a rank 3 vector
subbundle of the skew-symmetric endomorphism bundle
End(TM) over (M, g) invariant under the parallel displacements
with respect to the Levi-Civita connection V, which has a local
field of bases {I, J, K} in a nbd. U of each pointp € M
satisfying the quaternionic ralations:

lol=-Id, JodJ =-1Id, Ko K = -Id,
lod=-Jol=K, JoK=-KoJd=I,Kol=-IoK =J.

We call such {l, J, K} a local canonical basis of the quaternionic

Kahler structure Q.
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Totally complex submanifolds of q. K. mfds.

A smooth immersion ¢ : N - M of a smooth manifold N into a
quaternionic K&hler manifold (M, g, Q) with T # 0 is called a
totally complex immersion if N has an open covering

N=]Ju
AEN

such that there exists a smooth section J* defined on each U,
for the pull-backed quaternionic Kahler structure ¢~1Q over N

satisfying
o Jt = ~Idr,u, (5)
J/l((dQD)prN) = (dp)pTpN (6)
and
Vit =0 (7)

for each X € TpN and each p € U,. Then N is called a totally

complex submanifold immesed in M.
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Then note that there is a local canonical basis {I, J1, K} of
¢~1Q such that

I'((d@)p(TpN)) L (de)p(TpN),
K'((dp)p(TpN)) L (dg)p(TpN) (8)
(VYpe Uy cN)

(cf. [KTsukada1985]).

Thus it must be dim N = 2¢ for some 1 < £ < n. In the case
when ¢ = n, N is called a maximal dimensional totally complex
submanifold.

Remark

A totally complex submanifold N is not necessary a complex
manifold, but if necessary N can be doubly covered by a
complex manifold N. A totally complex submanifold N is a
minimal submanifold of M and a totally complex immersion
¢ : N > Mis a pluriharmonic map.
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Theorem (Tsukada, 1985)

A maximal dimensional totally complex submanifold N2 of HP"
with parallel second fundamental form is locally congruent to
one of the following immersions (Tsukada immersions):

N AN /N /N /S /S /S A/
N OO O A WO N = O
N~ N N N N ~— ~— ~—~—

~—~
(2]
~—

CP' — RP2 c S* = HP' (Veronese minimal surface)

CP" c HP" (totally geodesic)
Sp(3)/U(3) — HP®
SU(6)/S(U(3) x U(3)) — HP®
SO0(12)/U(6) — HP'®
E;/((U(1) x Eg)/Z3) — HP?7
CP'(é) x CP1(&/2) — HP?

(¢) x CP'(¢) x CP'(¢) — HP3

SO(n+1)

) X — HP"
S0(2) x SO(n—1)

cPl(¢

CcP(

o2
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In order to get this theorem, Professor Kazumi Tsukada used
the classification theory of homogeneous Kahler submanifolds
in complex projective spaces based on the representation
theory (Hisao Nakagawa and Ryoichi Takagi 1976, Masaru
Takeuchi 1978).

So our question is as follows:

Question
Why do those submanifolds appear there?
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The canonical connection on the inverse images

of totally complex submanifolds in HP"

Suppose that N? is a 2¢-dimensional totally complex
submanifold immersed in HP". The inverse image of N under
the Hopf fibration  : $4™+3(1) — HP" is defined as

N ==""(N)
={(p,x) € Nx 8*""3(1) | p € N,x(x) = ¢(p)}-

A

N=x'(N) —%. s%3(1) c mn+!
n|S3 7r\Sp(1)—S3
N HP"

N is a (2¢ + 3)-dimensional minimal submanifold immersed in
S4n+3(1) c {1 ~ Rant+4
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Such maximal dim. totally complex submfds. produce minimal
submfds. in other spaces such as complex Legendre

submfds. in C;P2"+1, minimal Legendrian submfds. in S4"3(1)
and minimal Lagrangian submfds. in C;P?"+1 as follows.

]I_‘n+l

- — 5 3 T
min. | Leg. C; P2+l

N =7"Y(N) Py
VD Lag.

T2n+1 _ =177
=m; (N)

——='gpr

min.

S L2n+1 — Tfj(fx)

cplx.| Leg. tot. eplx.
53 . .

;\‘; i N 2n
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Then we explicitly constructed a new canonical connection on
the inverse image N = n~1(N) of any maximal dimensional
totally complex submanifold N of HP".

Theorem (Cho-Hasimoto-O.[CHO2023pp])

Assume that £ = n. Then there exists a (non Levi-Civita)
canonical connection V¢ = VN — D on the tangent vector
bundle TN such that

(V5@™)(Y.2) =(V5 ™) (HY, HZ)
:((V:*ch”)(ﬂ* Y, n.Z))

for each X, Y,Z € TN. In particular,

veeN =0 ifandonlyif V*eN = 0.
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Let ¢ : N? — HIP" be a totally complex immersion.

Let {IN, JN, KN} be a local canonical basis of ¢~1Q on each
U=U,CcN.
For each point x € 7~(U) c N, there are

A1(x), A2(x), 43(x) € Sp(1)

such that
N _ N _ N .
Iﬂ(x)(x) = xA4(x), Jn(x)(x) = xA2(x), Kn(x)(x) = xA3(X).
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We define the tensor field D of type (1,2) on U c N as follows:
At each point x € z7(U) c N, for each X, Y € Tx)N,
Ve q/xﬁ Vi, Vo, V3 € IR,

o Dy ( )_((J” X), Y)J7':'(x)(x):gN(JN X, Y)JN (x) € VN,

7(x) n(x)

3
e Dz (V) = vaXAa(x) = —v2(J”( 0 X)e HN (YV =x Z va/la(x)J),

a=1
3
eDy(X) = %Tuz(x) = —E(J”(x) )e HyN (YV = X(Z va/la(x)]),
)

1
L Du( V) =X {(V2U3 + §V3U2)/11 (X) + (V3U1 - Vq U3)/12(X

1
+ (—5 Vila — VolU4 )/lg(x)}
V1 Vo V3

=X| W —=Us us | € (Vxn-
A41(x)  A2(x)  23(x)
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Then D is well-defined entirely on N and it satisfies

Lemma
ve — VN _ D satisfies

chn =0
and

VD =0

and hence V¢ is a non Levi-Civita canonical connection on TN.
Lemma
If £ = n, then

(VeaM)(Y,2) =(V5, ")(HY, HZ)

10
:((V:*XaN)(n*Y,yr*Z)T e

for each X, Y,Z € TN. In particular,

veeN =0 ifandonlyif V*eN = 0.
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So by applying Theorem of [OImos-Sanchez1991] to this
canonical connection V¢ and our observation of the
Sp(n + 1) x Sp(1)-symmetry, we obtain

Theorem [CHO2023pp]

If N is a maximal dimensional totally complex submanifold of
HP" with V*aN = 0, then N is obtained as a certain singular
orbit of the isotropy representation (i.e. standardly imbedded
R-space) of a quaternionic Kahler symmetric pair (G, K).

Moreover, we can concretely determine such R-spaces by root
system computation involved to each quaternionic Kahler
symmetric pair ((CHO2023pp]). Thus we obtain a classification
of totally complex submanifolds of HP" with V*eN = 0. This
gives a geometric proof by a different method for the
classification theorem of totally complex submanifolds with
parallel second fundamental form due to Tsukada.
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Q.K.Symm.Sp. G/K N I(G,K) | n
, SU(2) o )

(Sp(1) x Sp(1))/Z, SU(1) x U(1)) ’

SU(n+3) SU(n+1) B
S(U2) x U(n+1)) S(U(1) x U(n)) ? "
1 Sp(3) P 6

(Sp(1) x Sp(3))/Zs U(3) !
Es SU(6) r 0

(Sp(1) x SU(6)) /Z, S(U(3) x U(3)) !
. SO(12) - .
(SU(2) x Spin(12))/Zs U(6) ! '
B k7 r 27

(.S'U(z) X E7) Zz (U(l) X Ee) Zg 4
SO(7) SO{) 50(3) 5 5
50(4) x SO(3) U(2) ~ S0(2) ’ B
SO(8) 50(4) SO(4) 5 3

S50(4) x SO(4) U(2) " 50(2) % S0(2) !

SO(n+5) 80 50m+1)
— (n >4) _ . By n
SO(4) x SO(n+1) U(2) " S0(2) x SO(n—1)
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Remark

In the case when (G, K) = (Go, SO(4)),
a totally complex submanifold with V*aN = 0

N2 c HP' = §*

is a Veronse minimal surface RP? c S*, and
a corresponding minimal Lagrangian submanifold

L® = (L3 c GP?

is @ minimal Lagrangian SU(2)-orbit which is well-known
as the River Chiang Lagrangian ([Chiang2004]).

The relevant structures in this case were discussed in

[Ohnita2007], [Ohnita2009], which motivates our present work.
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Definition (Chiang2004)
The Chiang Lagrangian submanifold L3 c CP? is defined by

312012 + |12 = |z2]? - 3|z3]2 = 0
L3 = {[20:21 12y 23] €CP3| 0 ! 2 :

2021 + 212 + 223 = 0

(1) minimal Lagrangian SU(2) orbit
L3 = p(SU(2))[1:0:0:1].

(2) conn. cpt. embedded minimal Lagranagian submanifold in
CcPs.

(3) L3 does not possess parallel second fundamental forms.
vaN £0

(4) Homogeneous space but not symmetric space.

(5) Curvature characterization
(B. Y. Chen, Dillen, Verstraelen, Vrancken, Bolton, 1996)
Strictly Hamiltonian stable (Ohnita, Bedulli-Gori, 2007)

(6) Floer homology (Evans-Lekili, 2015), min.Maslov number
of L3 =2
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Thank you very much for your kind attention!

Many Congratulations for the 60th birthday of
Professor Naoyuki Koike-san!!
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Classification of parallel Kahler submanifolds

Any irreducible Hermitian symmetric pair of compact type is
given as follows (J. A. Wolf,1964):

G: cpt.conn. simple Lie gp. with Lie alg. ¢

h: maximal abelian subalgebra of ¢

N(G) = {a1,--- ,a}: the fund. root syst. (Dynkin diagram) of ¢
{A1,--+ ,\s}: its corresponding fund. weight system

& = myaq + --- + myey: the highest root of root syst. A™T(G).

For each vertex aj, with mj, = 1, set K = Cg(Hn,))
Then the Dynkin diagram of t is

N(K) := {a; € N(G) | j # o}

and (G, K) is an irreducible Hermitian symmetric pair of
compact type:
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g=*ft+p, hct
t=b+ Y (R(Xe = X-a) + RY=1(Xa + X_a)),

a/GAJr

p= D (R(Xe = Xog) + RY=1(Xe + Xoa)-

aeA:
Note that @ € A:. We can choose a maximal system
{71 = &’72,'” ,7r}

of strongly orthogonal roots in A;r. Here r = rank(G, K).
Then

a _-EEIRVP_ i+ X))

is @ maximal abelian subspace of p.
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Forany E € an $2"1(1) c p = C"*', set an R-space
Mg = (Ad,K)E c S"'(1) c p
and its projection
Mg := n((AdyK)E) = K/Kyg) C CP".
Here

KxE) = {a € K | Ad(a)n(E) = n(E)}.

Theorem (Hyunjung Song, 2001)

Mg is a complex submanifold of CP" if and only if

E € RY-1(X,, + X_,,) after a suitable change of E on Mg
under the action of K.

In this case Mg always has parallel second fundamental form.

Since y1 = @, we have

E € RV=1(X; + X_3).
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Then (K, Kx(g)) is a compact Hermitian symmetric pair,
Ky = Ck(Hz)
and its Dynkin diagram is
N(KxkE)) = {aj € N(K) | (e, &) = 0}.

Hence by root system computations of each type we can
explicitly determine parallel Kéhler submanifolds

Me = K/Kqg) = K/Ck(&)

as follows:
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