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Abstract

Framework

e ‘“quandle” is an algebraic system motivated by
knot theory;
e A symmetric space is a quandle;

e We study quandles from the viewpoint of
“discrete symmetric spaces” (symmetric spaces

without using manifold /topology).

Def. (Joyce (1982), Matveev (1982))

Let @ be a set, and s: @ — Map(Q, Q). Then (Q,s)
is a quandle if
<= (S1) Vx € Q, sx(x) = x.
(S2) Vx € Q, s is bijective.
(S3) Vx,y € Q, sx o5y =5 () © 5x.
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Example

The following are quandles:
e Symmetric spaces, k-symmetric spaces;
o The set of n-equal dividing points on St with
the usual symmetry (dihedral quandle);
e regular tetrahedron with “left 277 /3-rotation”.

Note

Originated in knot theory:

e quandle coloring is a map {arcs} — @
compatible with crossing.

e #{quandle coloring} is a knot-invariant.
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Note

It is interesting to have nice finite quandles (or nice
finite symmetric spaces).

Thm. (analogy of symmetric pairs)

(G, K, o) : quandle triplet
(G group, K subgroup, 0 € Aut(G), K C Fix(o, G))
= G/K is a quandle by sp,1([h]) := [go(g~th)].

Note

e V homogeneous quandle is obtained in this way;
e homogeneous < Aut(Q,s) ~ Q transitive;
o f:(X,sX)—=(Y,s"): homomorphism

& fos))f:sgzx)of (Vx € X).
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Example

G group, 0 € Aut(G)
= (G, {e}, o) is always a quandle triplet
(it gives a generalized Alexander quandle)

Note

The classification of finite quandles is hopeless
(even if we pose “simple” in some sense...)

Our Fundamental Question

e What are the most basic classes of (finite)
quandles?
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Note

In Riemannian symmetric spaces, two-point
homogeneous spaces would be most fundamental.

Recall

e A Riemannian manifold is two-point
homogeneous if any pairs of equidistant
points can be mapped by an isometry;

e iff rank-one symmetric spaces or R”:

e ff the isotropy representation acts transitively
on the unit sphere.

Def.
Inn(Q,s) = ({sx | x € Q}) is called the inner
automorphism group.

Def.

(Q, s) is two-point homogeneous if Inn(@, s) acts
doubly transitively on @

(i.e., Inn(Q,s) ~ ((Q x Q) — diagQ) is transitive)
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Thm. (T., Wada, Vendramin ('13-'17))

For finite quandle (Q, s) with #Q > 2, TFAE:
® (Q,s) is two-point homogeneous;
e (Q,s)= Q(Fy,{0}, L;), where Fy is a finite

field, and a is a primitive element.

Cor.

o Vg (> 2, prime power),
(@, s) : two-point homogeneous, #Q = gq.

|dea of Proof

e a(€F,)is called a primitive element if
{a,a°,...,a97 1} = F, —{0};

e Thus the “isotropy rep”
Inn(Q, s)g ~ Fg — {0} is very big;

e This derives the two-point homogeneity.
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Example

o (F3=Z3,Ly) gives dihedral;
o (Fy = Zy[t]/(t?+t+1), L) gives tetrahedron.

Open Problems

e All Two-point homogeneous quandles are
obtained from finite fields, by classification.
Any theoretical reasons?

e (lassify two-point homogeneous quandles with
respect to the automorphism group Aut(Q, s).
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Note

In Riemannian symmetric spaces, flat ones would be
more fundamental (R" or torus).

Recall

e A Riemannian symmetric space (Q, s) satisfies

R = 0iff G%(Q, s) is abelian.
o 6%Q,5) = ({scos, | xy € Q)

Def. (Ishihara-T. 2016)

A quandle (Q, s) is flat
= GYQ,s) = ({sxosy | x,y € Q}) is abelian.



Flatness
(o] le}

Flatness - (2/3)

Def.

(Q, s) is connected
< Inn(Q,s) ~ Q is transitive.

Thm. (Ishihara-T. 2016)

For a finite connected quandle, TFAE:

o (Q,s) is flat;
* (Q,s) = Rn X -+ x Ry with n; all odd
(Rp : the dihedral quandle of cardinality n).
Note
® Rp X --- X Rp isa “discrete torus”;

e A discrete torus is connected iff n; all odd;

e This is a discrete version of “a cpt connected
flat Riemannian symmetric space is a torus' .
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Note

e “flat + connected” is very restrictive.
e connected = homogeneous.

Open Problem (ongoing)

e (lassify homogeneous flat finite quandles.
(There must be many.)

Thm. (Furuki-T.)

e For every vertex-transitive graph G = (V, E),
one can construct a homogeneous disconnected

flat quandle (Q = V X Zj,s).
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Note

In Riemannian symmetric spaces, the rank (dimension
of a maximal flat) is important.

Def.

A subset A in a quandle (Q,s) is
e antipodal if sy(y) =y (Vx,y € A);
e s-commutative if sy 05, = 5, 0 5

(Vx,y € A)

e antipodal = s-commutative;
e The maximal possible cardinalities of these
subsets are invariants of (@, s);

e The maximal possible cardinality of antipodal
subsets in a Riemannian symmetric space is

called the 2-number (Chen-Nagano 1988).
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Def.

The real oriented Grassmannian G, (R")
e consisting of (V, o) with V € G,(R"), and &
orientation of V:

[

o for (i,j) := span{ej, ¢j} with orientation =,
sa.2)(1,3) = (1, -3) = —(1,3);
s12)(3,4) = (=3, —4) = (3,4);

o Gi(R")™ = S"1 (sphere).

Thm. (Kubo-Nagashiki-Okuda-T.)

Except for the case “n = 2k and k even”, TFAE:
e A is maximal s-commutative in G, (R")™;
e Ais congruent to {£(i1,...,i)}

Note

e |n this case, a maximal s-commutative subset
IS unique up to congruence.

e But this is not true in general...
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Note

o {+(i,...,I)} is a subquandle in G (R")™;
® it is homogeneous, disconnected, and flat.

Open Problems

e C(lassify maximal antipodal (or s-commutative)
subsets in Riemannian symmetric spaces.

® One can show that maximal s-commutative
subsets are subquandles. In a Riemannian
symmetric space, is it always homogeneous?

e For two-point homogeneous quandles (Q, s),
we know #(max. s-comm. subset) = 1. This
number measures some complexity?



Ongoing Studies

Ongoing Studies - (1/2)

Note

In compact homogeneous spaces M = G /K, the Euler
number x (M) can be calculated as

o Y(M)=#Fix(T; M), with T max. torus in G;

e In other word,
X(M) = #Fix(g; M), with g € G generic.

Def. (Kai-T.)

The Euler number x(Q, s) of a quandle (Q, s) is

* X(Q,s) = min#{Fix(g, Q) | & € Dis(Q,s)},
e where Dis(Q,s) := ({sx o sy_1 | x,y € Q}).
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Note

Recall that
o D(S"):={%eq,...,tepi1}
Is a max. s-commutative subset in S = Gl(R”H)N.

Thm. (Kai-T.)

0 (n odd),

2 (n even).

(D(S™) = (5") = {

Ongoing Studies

e General properties? Other examples?

e By calculations, most of connected quandles
satisfy y = 0...
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