Quandles from the viewpoint of symmetric spaces

田丸 博士 (Hiroshi TAMARU)

Osaka Metropolitan University / OCAMI

部分多様体幾何とリー群作用2023 2023/11/21

Abstract

Framework

- "quandle" is an algebraic system motivated by knot theory;
- A symmetric space is a quandle;
- We study quandles from the viewpoint of "discrete symmetric spaces" (symmetric spaces without using manifold/topology).

Def. (Joyce (1982), Matveev (1982))

Let Q be a set, and $s : Q \to Map(Q, Q)$. Then (Q, s) is a **quandle** if

$$\begin{array}{ll} :\Leftrightarrow & (S1) \ \forall x \in Q, \ s_{X}(x) = x. \\ & (S2) \ \forall x \in Q, \ s_{X} \ \text{is bijective.} \\ & (S3) \ \forall x, y \in Q, \ s_{X} \circ s_{y} = s_{s_{X}(y)} \circ s_{X} \end{array}$$

Introduction - (1/3)

Example

The following are quandles:

- Symmetric spaces, k-symmetric spaces;
- The set of *n*-equal dividing points on S¹ with the usual symmetry (dihedral quandle);
- regular tetrahedron with "left $2\pi/3$ -rotation".

Note

Originated in knot theory:

- quandle coloring is a map $\{arcs\} \rightarrow Q$ compatible with crossing.
- #{quandle coloring} is a knot-invariant.

Introduction - (2/3)

Note

It is interesting to have nice finite quandles (or nice finite symmetric spaces).

Thm. (analogy of symmetric pairs)

(G, K, σ) : quandle triplet

(*G* group, *K* subgroup, $\sigma \in \operatorname{Aut}(G)$, $K \subset \operatorname{Fix}(\sigma, G)$) $\Rightarrow G/K$ is a quandle by $s_{[g]}([h]) := [g\sigma(g^{-1}h)]$.

- \forall homogeneous quandle is obtained in this way;
- homogeneous : $\Leftrightarrow \operatorname{Aut}(Q, s) \frown Q$ transitive;

•
$$f: (X, s^X) \to (Y, s^Y)$$
: homomorphism
: $\Leftrightarrow f \circ s_x^X = s_{f(x)}^Y \circ f \ (\forall x \in X).$

Introduction - (3/3)

Example

 $G \text{ group}, \sigma \in \operatorname{Aut}(G)$ $\Rightarrow (G, \{e\}, \sigma) \text{ is always a quandle triplet}$ (it gives a generalized Alexander quandle)

Note

The classification of finite quandles is hopeless (even if we pose "simple" in some sense...)

Our Fundamental Question

 What are the most basic classes of (finite) quandles?

Two-point homogeneity - (1/3)

Note

In Riemannian symmetric spaces, **two-point homogeneous spaces** would be most fundamental.

Recall

- A Riemannian manifold is two-point homogeneous if any pairs of equidistant points can be mapped by an isometry;
- iff rank-one symmetric spaces or \mathbb{R}^n ;
- iff the isotropy representation acts transitively on the unit sphere.

Def.

Inn $(Q, s) := \langle \{s_x \mid x \in Q\} \rangle$ is called the inner automorphism group.

Def.

(Q, s) is two-point homogeneous if Inn(Q, s) acts doubly transitively on Q(i.e., $Inn(Q, s) \curvearrowright ((Q \times Q) - \operatorname{diag} Q)$ is transitive)

Two-point homogeneity - (2/3)

Thm. (T., Wada, Vendramin ('13–'17))

For finite quandle (Q, s) with #Q > 2, TFAE:

- (Q, s) is two-point homogeneous;
- $(Q, s) \cong Q(\mathbb{F}_q, \{0\}, L_a)$, where \mathbb{F}_q is a finite field, and a is a primitive element.

Cor.

• $\forall q \ (> 2, \text{ prime power}), \\ \exists (Q, s) : \text{two-point homogeneous}, \#Q = q.$

Idea of Proof

- $a \ (\in \mathbb{F}_q)$ is called a primitive element if $\{a, a^2, \dots, a^{q-1}\} = \mathbb{F}_q \{0\};$
- Thus the "isotropy rep" $Inn(Q, s)_0 \curvearrowright \mathbb{F}_q - \{0\}$ is very big;
- This derives the two-point homogeneity.

Two-point homogeneity - (3/3)

Example

- $(\mathbb{F}_3 = \mathbb{Z}_3, L_2)$ gives dihedral;
- $(\mathbb{F}_4 = \mathbb{Z}_2[t]/(t^2 + t + 1), L_t)$ gives tetrahedron.

Open Problems

- All Two-point homogeneous quandles are obtained from finite fields, by classification. Any theoretical reasons?
- Classify two-point homogeneous quandles with respect to the automorphism group Aut(Q, s).

Flatness - (1/3)

Note

In Riemannian symmetric spaces, flat ones would be more fundamental (\mathbb{R}^n or torus).

Recall

- A Riemannian symmetric space (Q, s) satisfies $R \equiv 0$ iff $G^0(Q, s)$ is abelian.
- $G^0(Q,s) := \langle \{s_x \circ s_y \mid x, y \in Q\} \rangle.$

Def. (Ishihara-T. 2016)

A quandle (Q, s) is flat

 $:\Leftrightarrow G^0(Q,s):=\langle \{s_x\circ s_y\mid x,y\in Q\}\rangle \text{ is abelian.}$

Flatness -

(つ	/	२	١
	2	/	J	J

Def.

(Q, s) is **connected**

 $\Rightarrow \operatorname{Inn}(Q, s) \curvearrowright Q$ is transitive.

Thm. (Ishihara-T. 2016)

For a finite connected quandle, TFAE:

- (*Q*, *s*) is flat;
- $(Q, s) \cong R_{n_1} \times \cdots \times R_{n_k}$ with n_i all odd $(R_n :$ the dihedral quandle of cardinality n).

- $R_{n_1} \times \cdots \times R_{n_k}$ is a "discrete torus";
- A discrete torus is connected iff n_i all odd;
- This is a discrete version of "a cpt connected flat Riemannian symmetric space is a torus".

Flatness -

5 -	(3	/3

Note

- "flat + connected" is very restrictive.
- connected \Rightarrow homogeneous.

Open Problem (ongoing)

• Classify homogeneous flat finite quandles. (There must be many.)

Thm. (Furuki-T.)

• For every vertex-transitive graph G = (V, E), one can construct a homogeneous disconnected flat quandle $(Q = V \times \mathbb{Z}_2, s)$.

Particular subsets - (1/3)

Note

In Riemannian symmetric spaces, the **rank** (dimension of a maximal flat) is important.

Def.

A subset A in a quandle (Q, s) is

- antipodal if $s_x(y) = y \; (\forall x, y \in A);$
- s-commutative if $s_x \circ s_y = s_y \circ s_x$ $(\forall x, y \in A)$

- antipodal \Rightarrow *s*-commutative;
- The maximal possible cardinalities of these subsets are invariants of (Q, s);
- The maximal possible cardinality of antipodal subsets in a Riemannian symmetric space is called the 2-number (Chen-Nagano 1988).

Particular subsets - (2/3)

Def.

The real oriented Grassmannian $G_k(\mathbb{R}^n)^{\sim}$:

- consisting of (V, σ) with $V \in G_k(\mathbb{R}^n)$, and σ orientation of V;
- for $(i, j) := \operatorname{span} \{e_i, e_j\}$ with orientation \pm , $s_{(1,2)}(1,3) = (1,-3) = -(1,3);$ $s_{(1,2)}(3,4) = (-3,-4) = (3,4);$

•
$$G_1(\mathbb{R}^n)^{\sim} = S^{n-1}$$
 (sphere).

Thm. (Kubo-Nagashiki-Okuda-T.)

Except for the case "n = 2k and k even", TFAE:

- A is maximal s-commutative in $G_k(\mathbb{R}^n)^{\sim}$;
- A is congruent to $\{\pm(i_1,\ldots,i_k)\}$.

- In this case, a maximal s-commutative subset is unique up to congruence.
- But this is not true in general...

Particular subsets - (3/3)

Note

- $\{\pm(i_1,\ldots,i_k)\}$ is a subquandle in $G_k(\mathbb{R}^n)^{\sim}$;
- it is homogeneous, disconnected, and flat.

Open Problems

- Classify maximal antipodal (or *s*-commutative) subsets in Riemannian symmetric spaces.
- One can show that maximal *s*-commutative subsets are subquandles. In a Riemannian symmetric space, is it always homogeneous?
- For two-point homogeneous quandles (Q, s), we know #(max. s-comm. subset) = 1. This number measures some complexity?

Ongoing Studies - (1/2)

Note

In compact homogeneous spaces M = G/K, the Euler number $\chi(M)$ can be calculated as

- $\chi(M) = \# \operatorname{Fix}(T; M)$, with T max. torus in G;
- In other word, $\chi(M) = \# Fix(g; M)$, with $g \in G$ generic.

Def. (Kai-T.)

The Euler number $\chi(Q, s)$ of a quandle (Q, s) is

- $\chi(\mathcal{Q}, s) := \min \# \{ \operatorname{Fix}(g, \mathcal{Q}) \mid g \in \operatorname{Dis}(\mathcal{Q}, s) \},$
- where $\mathrm{Dis}(Q,s) := \langle \{s_x \circ s_y^{-1} \mid x, y \in Q\} \rangle$.

Ongoing Studies - (2/2)

Note

Recall that

• $D(S^n) := \{\pm e_1, \ldots, \pm e_{n+1}\}$

is a max. s-commutative subset in $S^n = G_1(\mathbb{R}^{n+1})^{\sim}$.

Thm. (Kai-T.)

$$\chi(D(S^n)) = \chi(S^n) = \begin{cases} 0 \ (n \text{ odd}), \\ 2 \ (n \text{ even}). \end{cases}$$

Ongoing Studies

- General properties? Other examples?
- By calculations, most of connected quandles satisfy $\chi = 0...$

References

Survey:

H. Tamaru; *Discrete symmetric spaces and quandles* (in Japanese), Sugaku (数学), to appear

Two-point homogeneity:

- H. Tamaru, *Two-point homogeneous quandles with prime cardinality*, J. Math. Soc. Japan (2013)
- S. Kamada, H. Tamaru, K. Wada, *On classification of quandles of cyclic type*, Tokyo J. Math. (2016)

Flatness:

- Y. Ishihara, H. Tamaru, *Flat connected finite quandles*, Proc. Amer. Math. Soc. (2016)
- K. Furuki, H. Tamaru, *Flat homogeneous quandles and vertex-transitive graphs*, preprint

Subsets:

A. Kubo, M. Nagashiki, T. Okuda, H. Tamaru, A commutativity condition for subsets in quandles — a generalization of antipodal subsets, In: Differential Geometry and Global Analysis: In Honor of Tadashi Nagano. Contemp. Math. (2022)

Thank you very much!