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Research Projects

1) Nonlinear structural analysis of gas turbine blade and thermal barrier coating

2) Development of A -controlled environmental coating for a high-temperature
components

3) Maintenance system based upon controlling crack propagation

4) Development of life management system for aged structures

5) Damage mechanics for structural components attacked by natural disaster

6) Improvement of fracture toughness of high-temperature materials based upon bio-
mimetics concept




Nonlinear structural analysis of gas turbine blade and thermal
barrier coating
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Nonlinear structural analysis of gas turbine blade and thermal

barrier coating

Ni-based superalloy IN738LC Bond coat CoNiCrAlY

Damage-coupled inelastic
constitutive equation:

o 8 [1-v?
Sijkt + D Kijki| Ok

Bilinear model:
E =E(T)
0,(g, T) = oy(T) + HDe,

Viscoplastic constitutive equation:

— € p T
SU-—

3 wE

where
1+
g5 = — v i — %akksij ------------------------------ 4 Damage parameter D
» 3. 05Xy Top coat PS-YSZ D =D, (D) om) + D (D)) + Dy
2P -1 - Elastic term
s [Je=% } 1 o\ (gl \™
| o oS
é{ 2" Po qo
‘XU::lf{g—aég-—(XQi—-YU)ﬁ}——y](X)"“J' (:reeF)tern1
Xij 9(Ca) . > dp, 1 (p(p) >n2 <|CI| >mz
£ = —DyB +|—

Fatigue term

_ de 1 _
— Linear =25, Teqeq|eq]

: Xij " ,
Yij=-a <Ystﬁ + Yij) YJ(X) —— Nonlinear

" i

dt
This project is supported by TEPCO, TOCALO and JSPS KAKENHI Grant Number JP 18K03847.




Nonlinear structural analysis of gas turbine blade and thermal

barrier coating

Crack propagation simulation

Nonlocal damage theory
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Crack propagation
by deactivating elements

TMF simulation
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TMF simulation
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Out of Phase
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In out of phase, the
Interfacial crack is
Initiated at number of
cycles shorter than
one of in-phase.

This iIs very important
result from view of TBC
maintenance as follow:
Actual GT  stress-
temperature pattern is
similar to that of out-of-
phase, and it means
that we can’t do visible
check for TBC
cracking! During in-
service of TBC, there Is
possibility of losing the
detection of interfacial
cracking !



Nonlinear structural analysis of gas turbine blade and thermal

barrier coating

Application to GT operation simulation
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GE Turbine blade
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Thermal cycling test (60cycles@1273K)
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Oxygen diffusion-reaction model”:
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c:oxygen concentration
n:Volume fraction

D :Oxygen diffusion coefficient

Growth strain”:
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*)T.S.Hille.et al, ”Oxide growth and damage evolution in thermal barrier coatings”, Engineering Fracture Mechanics, Vol.78(2011), pp.2139-2152

M :Oxygen molarity in alumina

R:Reaction rate in oxidation
process
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Sintering strain:
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High-temperature gradient test by laser irradiation



Damage evaluation for external event in gas turbine
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Single Particle Impact Testing System (SPITS)



Maintenance system based upon controlling crack propagation
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This project is supported by Chugoku electric company and Jaﬁan ultra-high temperature
material research center.



Maintenance system based upon controlling crack propagation

Crack repairing process 610[W], 2[mm/s]
. ST e 1X10°3

Fatigue crack propagation

1X10* =

Crack Propagation Rate da/dN [mm/cycle]
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Fatigue crack propagation The cracked specimen was recovered by fiber
laser repairing treatment.




Maintenance system based upon controlling crack propagation

Repairing technique by laser irradiation ahead of crack tip
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Maintenance system based upon controlling crack propagation

Continuous Distribution Dislocation Method Crack propagation simulation

dn: Increment of crack
Ky ()= 0 d¢: Increment of angle

Traction due to the dislocation distribution

Probing method  Kjg(ag)=0
v Crack propagation direction
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Maintenance system based upon controlling crack propagation

Continuous Distribution Dislocation Method

|
I Influence of Young’s modulus
Influence of ¢ I 15
15 ! ! L !
; ! ' : : a i Initial crack tip :
Initial crack tip i Oyy i Euvy / : p\
= ' ' ' i £ 10 i B o sl
E 10 e ——— e 41 % E ;
) , | T '
"g I : : -% : : : :
T ¢ Casele=0.015[mm] |} 4 & 5 it * Cased € =0.015[mm] H
§ 5 * Case2 £ =0.020[mm] | ! 9 i | - cases s =0.015[mm]
> * Case3 £=0.025[mm] || | « Case6 £ =0.015[mm]
i 0 | i i I
0 155 2i0 ~ ! 5 0 5 10 15 20 \ 25
' —coordinat
x-coordinate [mm] i x-coordinate [mm] 4 )
.\ Casel E; =E,
It was confirmed that ¢ and Young’'s modulus of Case2 E; <k
Inclusion have an influence on the crack deflection. Case3 E; > E,

J




