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In this note, we review two different methods to calcu-
late the band structure of a one dimensional (1D) pho-
tonic crystal (PhC). The emphasis is on the calculations
but the tools required provide some physical insight into
the system. We hope to add to the notes in the future to
provide more physical insight.
Note that both methods below deal only with the sim-

plest case where the electric field polarization is parallel
with the PhC layers. More general calculations for the
planewave method may be found in [1].

FIG. 1. Diagram of the 1D photonic crystal. Note that the
crystal is assumed to extend infinitely in all three directions
(i.e. x and y as well as in z. The angle of the incoming
field Ein is meant to indicate the general case. However, in
the derivations below, we will assume that the electric field is
always parallel with the PhC layer boundaries.

I. METHOD 1: MATRIX TRANSFER METHOD)

A. Note on TM and TE polarizations

The following derivation of the bandstructure for a
1D (PhC) largely follows the outlines given in Refer-
ences [2, 3] with some extra details provided. Inspecting

Fig. 1, it might seem unnecessary to define transverse
magnetic (TM) and transverse electric (TE) polarizations
for this problem since it is one dimensional. However, in
general, we will not be assuming a true one dimensional
problem. Rather, we assume infinite extent of the PhC
layers in the x and y planes, and periodicity in the z
plane. In this case, it is possible for an incident electro-
magnetic (EM) field to ”enter” the crystal at an angle,
or more precisely, since we are assuming that the PhC
is infinite, for the EM field inside the crystal to have a
wavevector with non-zero x and y components. In this
case, the choice of TE or TM polarization is important,
since in the TE (TM) case the magnetic (electric) field
is not in general parallel to the PhC layers, assuming an
arbitrary incident angle. For this reason is is reasonable
to define TE (TM) polarization as the case where the
electric (magnetic) field is polarized along the x axis.

B. Formal statement of the problem

In Method 1, we will not actually find it necessary to
solve for the field explicitly, only to find the conditions for
the existence or not of a solution. For this purpose, it is
sufficient to consider only the z-propagating component
of the incident EM field, although as discussed above, a
transverse component also exists in general.
We begin, as always, with the wave equation:

d2

dz2
E(z)−

ω2

c2
n2(z)E(z) = 0, (1)

where E is the (x-polarized) electric field, ω is the fre-
quency of the electromagnetic wave and c is the speed of
light. n(z) is the index of fraction which varies periodi-
cally along the z axis as shown in Fig. 1. We note from
the outset that Eq. 1 will not be explicitly used to derive
the results of this section. Rather, we write it down to
remind us the equation that any solution we choose must
ultimately satisfy. Indeed, rather than the wave equation
itself, we will now see that the boundary conditions are
all-important in deriving a useful form for the solutions
and thus eventually the band structure of the PhC.
The assumed infinite extent of the periodic structure

allows us to make use of the Bloch theorem for the field
in the PhC, i.e.

E(z) = u(kB, z) exp(ikBz), (2)

where u(z) = u(z +D), and D = d1 + d2 is the spatial
period of the PhC and kB is the Bloch wave number
which is yet to be determined. We note that the Bloch
theorem describes our intuition that in an infinite crystal,
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we should not be able to determine where in the crystal
we are better than modulo D or, rather, the solution
must look the same wherever we are in the crystal since
by translational symmetry, there is no possible cause for
it to vary.

Given the Bloch theorem, it is also necessary to con-
strain the solution in each layer of the PhC as follows:

E(z) =

{

E1(z) 0 ≤ z mod D ≤ d1
E2(z) d1 ≤ z mod D ≤ d2

. (3)

Eq. 3 tells us that we can concentrate on finding a solu-
tion in the region 0 ≤ z ≤ D and use that to construct
the solution anywhere in the PhC.

To flesh out the solution of Eq. 3, let’s make the fol-
lowing assumptions which represent the simplest solu-
tions which agree with Bloch’s theorem. First, we as-
sume a constant amplitude inside each layer which will
definitely give a u function satisfying Eq. 2. Next, we rec-
ognize that forward and backward propagating solutions
can exist. Putting these two ideas together, we get

E1(z) = E+

1 exp(ik1z) + E−

1 exp(−ik1z) (4)

E2(z) = E+

2 exp(ik2(z − d1)) + E−

2 exp(−ik2(z − d1)).(5)

The phase shift of E2 by a complex exponential depen-
dent on d1 is in principle unnecessary, but it does not
conflict with the Bloch boundary conditions and makes
the solution neater. Essentially, introducing this term de-
cides the overall phase of the solution by determinining
that E2 will have zero phase when z = d1.

1. E1(z) and E2(z) - evaluation at layer boundaries

We now focus on the values of the solution at the
layer boundaries to further pin down the solution. First,
however, we expand the complex exponential terms and
rewrite as follows:

E1(z) = A1 cos(k1z) + iB1 sin(k1z), (6)

where A1 = E+

1 + E−

1 and B1 = E+

1 − E−

1 . Similarly,

E2(z) = A2 cos(k2(z − d1)) + iB2 sin(k2(z − d1)), (7)

where A2 = E+

2 + E−

2 and B2 = E+

2 − E−

2 .
The equation for E1 simplifies for z = 0 and that for

E2 when z = d1. Specifically, substiution of these values
gives, respectively

E(z = 0) ≡ E1(0) = A1 (8)

E′(z = 0) ≡ E′

1(0) = k1B1 (9)

and

E(z = d1) ≡ E2(d1) = A2 (10)

E′(z = d1) ≡ E′

2(d1) = k2B2 (11)

2. Application of continuity at layer boundaries

Gauss’ law requires that the component of the electric
field parallel to the dielectric layers is continuous at the
boundary between the two layers. This allows us to fur-
ther pin down the form of the solution. In particular, we
can write

E1(d1) = E2(d1) = E(d1) (12)

E′

1(d1) = E′

2(d1) = E′(d1) (13)

Now let’s put together Eqs. 10 and 12, then Eqs. 11
and 13 to write

E(0) cos(k1d1) +
E′(0)

k1
sin(k1d1) = E2(d1) = E(d1), (14)

−E(0)k1 sin(k1d1) + E′(0) cos(k1d1) = E2(d1) = E′(d1). (15)

These expressions can be written in matrix form as

(

cos(k1d1) sin(k1d1)/k1
−k1 sin(k1d1) cos(k1d1)

)(

E(0)
E′(0)

)

=

(

E(d1)
E′(d1)

)

(16)
or, in compact form,

M̂1E(0) = E(d1). (17)

At this point we can pause and consider the goal of
our analysis. As mentioned above, we do not need to
produce a complete solution for E, only find a condition
for its existence or not. It may be tempting to note that

we can already do this as in general Eq. 16 can hold
if and only if the matrix M̂1 has non-zero determinant.
Therefore finding a condition for the non-existence of the
determinant will allow us to identify the “band gaps”
where no solutions exist. It is, however, still too early to
apply this method since the equation we have so far only
encodes information about half of the PhC, as is plainly
seen by the lack of dependence on k2 and d2. To find an
equation which fully defines the PhC over one unit cell,
we apply the Bloch theorem.
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3. Application of the Bloch theorem

By the assumption of the periodicity of u, the Bloch
theorem guarantees that

E2(d) = exp(ikBd)E(0) (18)

E′

2(d) = exp(ikBd)E
′(0). (19)

Using Eqs. 10, 11 and Eq. 7 into the above equations,
and substituting d = d1 + d2, we find

E(d1) cos(k2d2) +
E′(d1)

k2
sin(k2d2) = exp(ikBd)E(0), (20)

−E(d1)k2 sin(k2d2) + E′(d1) cos(k2d2) = exp(ikBd)E
′(0). (21)

As before, we write these equations in matrix form as
follows:

(

cos(k2d2) sin(k2d2)/k2
−k2 sin(k2d2) cos(k2d2)

)(

E(d1)
E′(d1)

)

= exp(ikBd)

(

E(0)
E′(0)

)

(22)

or, in compact form,

M̂2E(d1) = exp(ikBd)E(0). (23)

By substituting Eq. 17 in Eq. 23 we arrive at the eigen-
value equation

M̂E(0) = exp(ikBd)E(0), (24)

where

M̂ = M̂2M̂1

=

(

cos(k1d1) cos(k2d2)− sin(k1d1) sin(k2d2) cos(k1d1) sin(k2d2)/k2 − sin(k1d1)cos(k2d2)/k1
−k1 sin(k1d1) cos(k2d2)− k2 cos(k1d1) sin(k2d2) − sin(k1d1) sin(k2d2)/k1k2 + cos(k1d1) cos(k2d2)

)

. (25)

4. Determining the existence of solutions from the

eigenvalue equation

Linear algebra guarantees that the eigenvalue equation
Eq. 24 has a solution if and only if

det(M̂ − exp(ikBd)Î) = 0, (26)

where det indicates the determinant. (This is the so
called characteristic equation associated with the eigen-
value equation). We will use the identity

det(Â− λÎ) = det(A)− Tr(A)λ + λ2 (27)

to evaluate separately the real and imaginary parts of
Eq. 26. We start with the imaginary part as it turns out
to be simpler. If Eq. 26 is to hold, then by identity 27,

we must have

Im[−Tr(M̂) exp(ikBd) + exp(2ikBd)] = 0. (28)

Some rudimentary algebra establishes that this requires

cos(kBd) =
1

2
Tr(M̂)

= cos(k1d1) cos(k2d2)−
1

2

k21 + k22
k1k2

sin(k1d1) sin(k2d2).

(29)

This result is, in fact, the equation that defines the bands
of the PhC. However, it’s not obvious that the real part
of the characteristic equation will allow Eq. 29 to hold
so it’s necessary to check the real part as well. Using
identity 27 again, the real part of Eq. 26 is given by

Re[det(M̂)−Tr(M̂) exp(ikBd) + exp(2ikBd)] = 0. (30)
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Simple manipulations show that this requires

det(M̂)− Tr(M̂) cos(kBd) + 2 cos2(kBd)− 1 = 0, (31)

but since Eq. 29 shows that cos(kBd) = 1

2
Tr(M̂) if the

characteristic equation is to hold, the real part becomes
simply

det(M̂)− 1 = 0. (32)

A little algebra shows that this equation is always true
given the definition of M̂ in Eq. 25 and thus Eq 29 be-
comes the sole equation which determines the existence
or not of solutions in the PhC and thus the existence
or not of band gaps. It seems a little remarkable that
the characteristic equation should hold for both real and
imaginary parts even though its real and imaginary forms
are different. However, it should be noted that this re-
sult can be arrived at without breaking the characteristic
equation into real and imaginary parts as is done in the
solutions to Ref. [3].

II. METHOD 2: PLANE WAVE EXPANSION

In this section, we again perform an analysis of the 1D
photonic crystal considered above. This time we will use
the method of planewave expansion, which can also be
applied to periodic media outside of the context of pho-
tonic crystals (e.g., when analysing the near field diffrac-
tion pattern due to a plane wave incident on a grating
structure). The treatment used here follows that of Dan-
ner [4]. Assuming that the time dependence of solutions

is exp(−iωt), we write Maxwell’s wave equation for the
electric field as

1

n2(z)
∇×∇×E =

ω2

c2
E. (33)

As in Method 1, We will assume that only the x com-
ponent of the field is non-zero, which is equivalent to
restricting ourselves to the TE component. Then Eq. 33
becomes

1

n2(z)

(

∂2

∂x2
Ex −

∂2

∂z2
Ex

)

. (34)

We proceed by making an ansatz for the solution in the
form of a Fourier decomposition of Ex:

Ex =

∞
∑

n=−∞

Ex,n exp(i(2πn/d+ kz)z), (35)

where Ex,n is the amplitude of the nth Fourier compo-
nent and kz is the wavenumber along the photonic crystal
axis. Similarly, we expand the inverse, squared index to
give

1

n(z)2
=

∞
∑

m=−∞

nm exp(−i2πm/d). (36)

Some algebra shows that the Fourier coefficients are given
by nm = (d1/d)sinc(md1/d)[1/n

2
2 − 1/n2

1].

Substituting Eqs.35 and 36 into Eq. 34, and omitting
the sum limits for brevity, we get

∑

m

∑

n

(

2πn

d
+ kz

)

nmEx,n exp[−i(2πm/)z] exp[−i(2πn/)z] =
ω2

c2

∑

n

Ex,n exp[−i(2πn/)z], (37)

where we have removed the common factor of exp(−ikzz)
from both sides.

To proceed, we define the inner product <

g(z), f(z) >= (1/d)
∫ d/2

−d/2 g(z)f(z)dz. Taking the inner

product of the LHS of Eq. 37, with exp[−i(2pip/d)z] for
integer p we find:

< LHS, exp[−i(2pip/d)z] >=
∑

n

(

2π

d
n+ kz

)

np−nEx,n,

(38)
where orthgonality imposes the condition m + n = p ⇒

m = p−n. For the inner product with the RHS, we find
simply

< RHS, exp[−i(2pip/d)z] >=
ω2

c2
Ex,p. (39)

We can now write Eq. 37 as p independent equations:

∑

n

(

2π

d
n+ kz

)

np−nEx,n =
ω2

c2
Ex,p (40)

All that remains is to recognize that Eq. 40 can be
rewritten as a matrix equation

M̂E =
w2

c2
E, (41)

where (M̂)n,p = [(2π/d)m + kz)np−n, and (E)p = Ex,p.
For a given value of kz , the value of ω/c can only take
on discrete values defined by the eigenvalues of Eq. 41.
These discrete values define the bands of the photonic
crystal.
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FIG. 2. Band structure calculated using method 1. The pa-
rameters are d1 = 0.4, d2 = 0.6, n1 =

√

12 and n2 = 1. The
solid black line shows the light line.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

k
z
d

ω
 d

/c

FIG. 3. Band structure calculated using method 1. The pa-
rameters are the same as for Fig. II. The solid black line shows
the light line.

III. DISCUSSION

We have now reviewed two methods for finding the
dispersion relation ω vs. kz for a 1D photonic crystal.
Calculated band diagrams using methods 1 and 2 are
shown in Figs. II and II respectively. The code which
generates the band diagrams is given in the Appendix.
Of the two methods outlined above, the planewave ex-
pansion method seems to be superior. Apart from giving
a shorter route to the band diagram, it also constructs a
solution for the field distribution, which is not the case
for Method 1. However, it is important to note that suf-
ficient terms in the Fourier expansion must be taken in
order for the correct band diagram to be obtained. Small
differences seen in the band diagrams in Figs. II and II
are due to the truncation of the Fourier series. Addition-
ally, Method 1 allows us to use several different tools to
arrive at the solution including Bloch’s theorem. Finally,
having two independent calculation methods allows us to
check that the results are correct.

Appendix A: Code for plotting band diagrams

Code for plotting the band diagram using each of the
methods covered above is given below. There is a notable
difference between the two sets of code apart from their
method. In the code for Method 1, scaled units are used
from the start. In the code for Method 2, we use SI units
and scale later. As noted in the code, the scale invariance
of Maxwell’s equations guarantees that the behaviour is
universal, so that, for example, with the appropriate scal-
ing, we could plot a photonic crystal band diagram for
microwaves and one for visible light on the same axes.

1. Code for Method 1

% Clean up workspace

close all
clear all

% EM constants

c = 1; % In this example we will use normalized units
% Due to the scale invariance of Maxwell’s equations,

% so long as we are consistent, the units we use don’t matter.

% PhC constants
d1 = 4/10;

d2 = 6/10;
d = d1 + d2;

n1 = sqrt(12);
n2 = 1;
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% Light constants

w = linspace(0,2*pi, 200);
D1 = w*n1 * d1;

D2 = w*n2 * d2;

% Right hand side of the characteristic equation is independent of k_z
RHS = cos(D1).*cos(D2) - 0.5*(n1^2+n2^2)/(n1*n2) * sin(D1) .* sin(D2);

% Define the wave number space

kz = linspace(0,2*pi,100);

% Calculate the bands, one point of kz at a time
for ll = 1:length(kz)

LHS = cos(kz(ll)*d);

[indw,zero] = crossing(LHS-RHS,w); % Zero finding algorithm

if (length(indw)>=1)
imin = sort(indw);

Omegas = w(imin);

if (ll == 1)

figure(1)
clf

plot(kz(ll)*d,Omegas*d/c,’.’,’MarkerSize’,10)
else

figure(1)
hold on

plot(kz(ll)*d,Omegas*d/c,’.’,’MarkerSize’,10)
hold off

end

end

end

% Add light line
figure(1)

hold on
plot(kz,abs(kz),’k-’,’LineWidth’,2)

hold off
axis([min(kz*d),max(kz*d),min(w*d/c) max(w*d/c)])

set(gca,’FontSize’,14)

xlabel(’k_zd’,’FontSize’,14)
ylabel(’\omega d/c’,’FontSize’,14)

ylim([0,2*pi])

2. Code for Method 2
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% Band diagram from the plane wave decomposition method as
% per A. J. Danner’s notes

% http://www.ece.nus.edu.sg/stfpage/eleadj/planewave.htm

% Clean up workspace
clear all

%close all

% PhC parameters
d1 = 400e-9;

d2 = 600e-9;
d = d1 + d2;

n1 = sqrt(12);
n2 = 1;

% Input light parameters

kz = linspace(0,2*pi/d,100);
c = 3e8;

% Decomposition constants
N = 12; % This chooses the number of bands

% NB: choosing this number too small will lead to
% an innacurate band diagram due to truncation of

% the Fourier series.

% Create matrix and solve eigenvalue equation
w2 = zeros(2*N+1,length(kz)); % Set up storage array

for kk = 1:length(kz)

% Make matrix using for loop
M =zeros(2*N+1,2*N+1)

for nn = (-N):N
for pp = (-N):N

Fn = (d1/d) * (1/n1^2-1/n2^2) * sinc((pp-nn)*d1/d);
if ((pp-nn)==0)

Fn = Fn + 1/n2^2;
end

M(nn+N+1,pp+N+1) = (2*pi/d*nn + kz(kk))^2 * Fn ;

end
end
w2(:,kk) = sort(eig(M)); % Find and sort the eigenvalues

end

% Plot band diagram

figure(2)
clf

plot(kz*d,sqrt(w2)*d)
hold on

plot(kz*d,abs(kz)*d,’k-’,’LineWidth’,2)
hold off

axis tight
set(gca,’FontSize’,14)

xlabel(’k_zd’,’FontSize’,14)
ylabel(’\omega d/c’,’FontSize’,14)

ylim([0,2*pi])
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