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I describe a method for reconstructing a set of measurements on a finer grid than that on which
the measurements were taken using Tikhonov regularization. This method is useful when a smooth
curve through a set of data points is required, but no analytical model exists.

I. INTRODUCTION

Often when processing data, we wish to draw a smooth
curve through our measured points, either to illustrate
the trend, or to allow easier interpolation between data
points for someone viewing the data. If one has a the-
oretical model for the data which can be fitted to the
measurements, this is the best way to provide such a
smooth curve. However, in the case where no theory ex-
ists or when numerical solutions are too time intensive to
allow fitting, other options must be pursued. Fitting of
high order polynomials or spline curves can provide a fair
match to the data in some cases. However, all too often
such fitting produces curves with features not found in
the data itself. Using such curves for interpolation be-
tween data points is thus fraught and open to accusations
of being unscientific.
The purpose of this note is to make the reader aware

of another option which lies conceptually between simple
interpolation on one hand and a fitted curve on the other.
In particular, I will describe how to “fill in” the points
between the data on a mesh arbitrarily finer than the
grid on which the data was taken. The method of filling
in the points is to essentially perform an (inverse) linear
transformation on the data which maps it onto the denser
grid along with a regularization procedure which enforces
smoothness of the solution by minimizing the value of
arbitrary order derivatives of the solution.
The procedure is very close, but not identical, to a least

squares fit with regularization. The difference is that the
linear transform in question is not one mapping the data
onto a straight line or curve, but rather a decimation
transform which thins out the data on some hypothetical
denser grid to give the measurements actually obtained
(this will be made formal below; also see Fig. 1). This
method was first described to me by Prof. Sze Tan of the
Physics Department at Auckland University, and left to
me as an excercise to implement. Although it is a fairly
natural extension of regularized least squares fitting, I
have not seen it described in any textbooks or papers.
For this reason I describe the technique in detail below.
Readers well versed in the linear algebra formulation of
least squares can probably reproduce the technique from
my simple description above. Additionally, the algorithm
may have something in common with so called gridding
or re-gridding procedures, which take data sampled on
a non-uniform grid and reconstruct it on a uniform one.
For the reader not familiar with either of these methods,
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FIG. 1. Simple illustration of the fine-grid on which the re-
construction is to be performed.

this note may serve as an introduction to regularization
techniques via a simple example. Beware, however, that
it assumes familiarity with the linear algebra formulation
of inverse problems. In principle, the first three chapters
of the textbook for the University of Auckland “Inverse
problems” course [1] should be referred to. The com-
plete treatment of this very interesting area of applied
mathematics is in no way reproduced here.

II. STATEMENT OF THE PROBLEM

We have a collection of data {d0, d1, . . . , dm} ≡
d which was measured at regularly spaced points
{t0, t1, . . . , tm} ≡ t on some grid, be it spatial, tempo-
ral or in the frequency domain, etc. Note that we will
assume all lists such as d and t to be column vectors in
what follows. Additionally, note that the requirement of
equally spaced points can be relaxed in principle, but we
assume equal spacing in this note so that the treatment
is simple. We would like to reconstruct the data on a
denser grid s ≡ {s0, s1, . . . , sn}, where tj = sNj for some
integer N . Then we have n = Nm and N may be seen to
be the increase in density of the grid s in comparison to
t. The above concepts are depicted in Fig. 1, and in par-
ticular, the relationship between grids t and s are shown
for n = 6 in Fig. 1(b).
Let us now define the reconstructed data r ≡

{r0, r1, . . . , rn} which is sampled N times more densely
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than d. Although we do not know the contents of r, we
know that it is related to d by the equation

rNj = dj , ∀ 0 ≤ j ≤ m. (1)

Our problem is the following

Statement of problem 1 Given Eq. 1 and some mini-
mal assumptions about the nature of r, how can we solve
for r?

Before we proceed, we will define our assumptions re-
garding r. Because we wish to use the method under
discussion to produce a smooth curve through our data,
we will require the following of r:

Assumption 1 We require that r is smooth, that is, its
first, second, . . .nth derivatives (n = 2 is sufficient for
most practical purposes) are as small as possible while
still being in good agreement with the data d.

Although the definition above may seem vague, in
practice it is good enough to produce a regularized re-
sult for r. We will discuss the “as small as possible . . . ”
caveat below.

III. A SOLUTION OF THE PROBLEM:
TIKHONOV REGULARIZED INVERSE

MAPPING

A. Linear algebra representation of the problem

We now formally define the problem using the language
of linear algebra. First we note the Eq. 1 can be repre-
sented as a matrix equation as follows: Let M̂ be anm×n
matrix which contains a single 1 in each row, and zeros
everywhere else. More specifically, if the components of
M̂ , Mi,j , are defined as follows

Mi,j = δNi,j , (2)

then it may be seen that Eq. 1 may be written in matrix
form as

M̂r = d. (3)

The abstract description above may be made clearer
by looking at a specfic example: the case where m = 3
and n = 6 (i.e. N = 3) as illustrated in Fig. 1. In this
case, the explicit form of matrix equation 3 is given by





1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1


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=
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

 . (4)
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FIG. 2. The solution from the standard Moore-Penrose ma-
trix inverse. Note that the solution is extremely spikey, but
nonetheless good in a least squares sense.

B. Näıve solution: Moore-Penrose inverse (i.e.
least squares solution)

Now that we have defined the problem explicitly as a
matrix equation, it is tempting to see what happens if we
simply solve Eq. 3 using the least squares method. This
may be done by applying the Moore-Penrose pseudoin-
verse [2] M̂+ of M̂ which is given by

M̂+ = (M̂ tM̂)−1M̂ t, (5)

where M̂ t denotes the transpose of the matrix M̂ . We
will use a slightly more complicated example than that
given so far. Unlike in real life, in the example we actu-
ally start with knowledge of the “true data” r. For our
example, this true data r is a Gaussian curve sampled on
a grid of 200 points, as shown in Fig. 2 . We take N = 8,
so the data d is sampled on a grid t 8 times as coarse as
that of r (shown by crosses in Fig. 2).
Applying the Moore-Penrose pseudoinverse to Eq. 3

gives a solution rMP

rMP = (M̂ tM̂)−1M̂ td. (6)

For the example, the solution rMP is shown as a magenta
line in Fig. 2. It may be seen that this solution is not
very useful, since values outside those defined by d are
zero. Nonetheless, given no extra information about the
solution r, this is indeed the most reasonable solution in
a least-squares sense. However, we have assumed that
the solution is smooth. How can we use this information
to make a better solution?

C. Regularized solution

We now show how to apply a Tikhonov regularized
solution which penalizes non smooth r. First we need
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to decide how to characterize the smoothness of r. Be-
cause r is discrete, we need a numerical approximation to
derivation. This is provided by matrices of the following
form. First, the first derivative of r is approximated by
applying the (n− 1)× n matrix

L̂1 =
1

∆s











1 −1 0 0 0 0 . . .
0 1 −1 0 0 0 . . .
0 0 1 −1 0 0 . . .

. . .











, (7)

where ∆s is the spacing between points on the grid s.
As we will discuss below, we will concern ourselves only
with the norm of the matrix L̂ after it has been applied
to r. For this reason, although the matrix is (n− 1)×n,
it is possible to add an nth row filled with zeros to make
the matirx n× n without changing its characteristics in
terms of our solution.
The second derivative can be discretely approximated

by applying the (n− 2)× n matrix

L̂1 =
1

(∆s)2











1 −2 1 0 0 0 . . .
0 1 −2 1 0 0 . . .
0 0 1 −2 1 0 . . .

. . .











. (8)

As discussed above, we could pad the matrix with two
final rows of zeros to make its dimensions n× n without
changing its behaviour in terms of our solution.
We will only use the first and second derivatives in

our example below, but higher order generalizations are
of course possible. For the following formal analysis, we
will assume that the smoothing operator is a single n ×
n matrix L̂ representing a derivative of arbitrary order.
The assumption of an n × n matrix is for simpicity of
notation and is justified by the discussion of zero-padding
above.
To proceed, we note that the norm of the vector L̂r

tells us something about the smoothness of the solution r.
Specifically, if we can minimize the squared norm ||L̂r||2,

we have found the smoothest solution for a certain L̂.
(Note that the notation ||v|| for some vector v indicates

the usual Cartesian norm of v i.e. ||v|| =
√

(
∑

j v
2
j )). In

general, we will consider a linear combination of ||L̂1r||
2

and ||L̂2r||
2. However, we also wish the solution to agree

well with the data. From these requirements, it is rea-
sonable that we wish to find a solution r which satisfies
the following equation:

rλ = arg.min.{λ2||L̂r||2 + ||d− M̂r||2}, (9)

where λ is a constant which parameterizes the amount
of smoothing of the solution, and arg. min. denotes that
the solution is the argument r which gives a minimal
solution for the given value of λ.
Assuming that the RHS of Eq. 9 has a minimum, ele-

mentary calculus tells us that it occurs when the deriva-
tives with respect to each component rj of r are zero.

That is, to solve Eq. 9, we want to find r which satisfies
the equation

∂

∂rj
{λ2||L̂r||2 + ||r− M̂d||2} = 0, ∀0 < k < n. (10)

Inspecting the first term on the LHS of Eq. 10, we find
that

∂

∂rj
λ2||L̂r||2 = λ2 ∂

∂rj

n
∑

k=0

(

n
∑

ℓ=0

Lk,ℓrℓ

)2

= λ2

n
∑

k=0

n
∑

ℓ,ℓ′

∂

∂rj
Lk,ℓLk,ℓ′rℓrℓ′

= 2λ2

n
∑

k=0

Lk,j

(

n
∑

ℓ=0

Lk,ℓrℓ

)

. (11)

Note that the lower range for both ℓ and ℓ′, omitted from
the double sum for clarity, is 0. After some consideration,
it may be seen that the final expression is the jth com-
ponent of the vector 2λ2L̂tL̂r.
We now consider the second term on the RHS of Eq. 9.

Using the fact that ||v||2 = vtv, we may write

||d− M̂r||2 = (d− M̂r)t(d− M̂r)

= dtd− (M̂r)td

−dt(M̂r) + (M̂r)t(M̂r). (12)

Then, considering the partial derivative (∂/∂rk)||d −

M̂r||2, the first term on the RHS of Eq. 12 has no rk
dependence and so goes to zero. The partial deriva-
tive of the final term on the last line of Eq. 12 has the
form (∂/∂rk)||M̂r||2 and so by analogy with the result for

||L̂r||2 above, we find that it is 2M̂ tM̂r in vector form.
The remaining 2 middle terms in the RHS of Eq. 12 will
now be considered. Specifically, we find for the second
term:

∂

∂rj
(M̂r)td =

∂

∂rj

{

n
∑

k=0

(

n
∑

ℓ=0

Mk,ℓrl

)

dk

}

=

{

n
∑

k=0

(

n
∑

ℓ=0

∂

∂rj
Mk,ℓrℓ

)

dk

}

=
∑

k

Mk,jdk. (13)

The final term of Eq 13 may be seen to be the jth com-
ponent of the vector M̂ td. The partial derivative of the
third term on the RHS of Eq. 12 is simply the transpose
of the second term and must give the same result. Thus,
putting all of the partial derivatives together in vector
form, we can write Eq. 10 as

2λ2L̂tL̂r− 2M̂ td+ 2M̂ tM̂r = 0. (14)

Finally, rearranging gives

rλ = (λ2L̂tL̂+ M̂ tM̂)−1M̂ td. (15)
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Note that if the regularization parameter is zero, we re-
gain the Moore-Penrose inverse as expected.
The choice of regularization parameter λ is not com-

pletely trivial. For non-rigorous purposes, trial and error
quickly produces reasonable fitting. To more carefully
justify the choice of a particular value for lambda, the so-
called “L-curve” which plots the smoothing norm ||L̂r||2

against the data misfit ||d − M̂r|| can be used (See [1],
Chapter 3, Fig 3.2). I will not deal with such questions
here, and only show the results of the regularization pro-
cedure in a few cases.

IV. EXAMPLE IMPLEMENTATION IN
OCTAVE OR MATLAB

Since the solution given by Eq 15 requires inverting
a matrix that scales as the square of the data set size,
brief consideration suggests that the solution may be-
come intractable for large data sets. However, all of the
matrices used in the formulation are sparse, banded ma-
trices. That is, most of the matrix entries are zero, ex-
cept for a band around the leading diagonal. In this case,
sparse matrix representations can be used by most mod-
ern linear algebra packages saving memory, and making
it possible to perform the reconstruction discussed here
even for data sets with thousands of points. We give
an example program below which can run on either the
free software package Octave or the commercial package
Matlab and which uses sparse matrix representations to
make the memory impact as small as possible.

% Show a simple example of Tikhonov regularization

% using sparse matrices

clear all

close all

s = linspace(0,10,200)’;

% We use a simple Gaussian curve

% for demonstration purposes

% NB: We actually know the "true" data in this case

% but in the experiment there is no "true" data,

% only a reconstruction for given regularization

% parameter

r = exp(-(s-5).^2/2);

% Normalizing means the regularization parameter

% won’t need to be too large

r = r/max(r);

% Plot the true data

figure(1)

clf

plot(s,r,’b--’)

% Now sample the points on a coarser grid.

% This represents the data that we would

% actually have measured in an experiment

nn=8 % 8 times coarser than t

t = s(1:nn:end);

d = r(1:nn:end);

hold on

plot(t,d,’rx’)

hold off

% First let’s check what standard least squares

% gives by applying the Moore-Penrose inverse

% First, make the transfer matrix as a sparse matrix to save space/

% calculation time

m = length(d);

n = length(r);

M = sparse(1:m,1:nn:n,ones(length(m)),m,n);

% Now calculate the reconstruction,

% which should in principle be close to

% r. In practice, because we don’t have enough

% information, we get zeros everywhere

% but at the spikes where t=s
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FIG. 3. Same as for Fig. 2, but with the regularized solution
(with λ1 = 0.02, λ2 = 0.005) shown by green crosses. The
solution matches the true data so well that it is difficult to
see the true data, which is a blue line below the green crosses.

recon = M\d; % Least squares solution with least possible

% non-zero entries

% Plotting the naive reconstruction

hold on

plot(s,recon,’m--’)

hold off

xlabel(’s_i’)

ylabel(’r(s_i)’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Now let’s apply Tikhonov regularization.

% First, we’ll define the matrix to realize the

%Sobolev norm of order 1

% Note the use of sparse matrices here as for M above

L1 = (1/(s(2)-s(1)))*(-1*sparse(1:(n-1),1:(n-1),...

ones(1,n-1),n-1,n) + sparse(1:(n-1),2:(n),...

ones(1,n-1),n-1,n))

L2 = (1/(s(2)-s(1))^2)*(sparse(1:(n-2),1:(n-2),...

ones(1,n-2),n-2,n) - 2* sparse(1:(n-2),...

2:(n-1),ones(1,n-2),n-2,n)...

+ sparse(1:(n-2),3:(n),ones(1,n-2),n-2,n))

% Regularization constant

% We split the regularization constant into two parts,

% to separately deal with first and second order smoothing

lambda1 = 0.02

lambda2=0.005

% Finally, we perform the Tikhonov regularized reconstruction

recon_lambda = (lambda1^2*L1’*L1 + lambda2^2*L2’*L2 + M’*M)\(M’*d);

% And plot

hold on

plot(s,recon_lambda,’g+:’)

hold off

legend(’True data r’,’Data d’

The output of this program is shown in Fig 3. In the
example, we use two regularization terms corresponding
to the first and second derivative of r respectively. The
values of the regularization constants were λ1 = 0.02,
λ2 = 0.005.
Finally, in Fig. 4, I show data from an actual exper-

iment with a regularized curve going through the data.
This real world example shows the true value of regu-
larized reconstruction methods. The relatively low fre-
quency resolution of the optical multichannel analyser
used to take the reflection data (red circles in Fig. 4)
gives only a few points near the center of the peak. Com-
pared with the transmission spectrum (measured on the
Fourier transform spectrum analyser) shown in blue, the
data resolution is not good. Without regularization, sim-
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ply joining the circles would make a jagged peak. Using a
regularized solution allows us to fit a smooth curve even
without a physical model for the reflection peak. As can
be seen, the regularization does not pass exactly through
the points near the center of the peak - a feature which
is due to the smoothing applied. This is the advantage
of regularization over simple interpolation.
The Matlab code for reconstructing the OMA data is

given in Appendix A

Appendix A: Matlab code for reconstruction of
OMA data

% OMA data

dataBG = importdata(’../TransmissionData20130227/ReflBackground_xm05_WorstPol_20130227.txt’);

RBG = dataBG(:,2);

lambdar = dataBG(:,1);

DLr = (lambdar(2)-lambdar(1))

lb = find((lambdar)>700);

ub = find((lambdar)<900);

startind = lb(1)

endind = ub(end)

dataR = importdata(’../TransmissionData20130227/ReflData_xm05_WorstPol_20130227.txt’);

Rdata = dataR(:,2);

RNorm = Rdata(startind:endind) - RBG(startind:endind);

RNorm = (RNorm/max(RNorm)) * R765_mean

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The OMA data has a frequency resolution approx. 4 times worse than the

% FT. Here I will reconstruct the OMA data on a finer grid using a Tikhonov

% reconstruction

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

lplot = lambdar(startind:endind)

lplot = lplot(:); % Need to have column vectors for standard linear algebra constructions

% Define resolution increase. Here we will choose 4 times the data resolution

nn = 4;

ldense = [];

for kk = 1:(length(lplot)-1)

toadd = linspace(lplot(kk),lplot(kk+1),nn+1);

ldense = [ldense toadd(1:nn)];

end

ldense = [ldense, lplot(end)];

ldense = ldense(:);

% Define the transfer matrix

m = length(lplot);

n = length(ldense);

whos

A = sparse(1:m,1:nn:n,ones(length(m)),m,n); % Sparse matrices save memory and time

% Define 1st and 2nd derivative matrices for the Sobolev norm

L1 = (1/(ldense(2)-ldense(1)))*(-1*sparse(1:(n-1),1:(n-1),ones(1,n-1),n-1,n) + ...

sparse(1:(n-1),2:(n),ones(1,n-1),n-1,n))

L2 = (1/(ldense(2)-ldense(1))^2)*(sparse(1:(n-2),1:(n-2),ones(1,n-2),n-2,n) - ...

2* sparse(1:(n-2),2:(n-1),ones(1,n-2),n-2,n)...

+ sparse(1:(n-2),3:(n),ones(1,n-2),n-2,n))

% Regularization constants: we define one for first derivative and one for

% second derivative

lambda1 = 0.01

lambda2=0.1

% Now the reconstruction. Note that the preferred solution is set to zero

% i.e. there is no preferred solution

Rrecon = inv(lambda1^2*L1’*L1 + lambda2^2*L2’*L2 + A’*A)*(A’*RNorm);

∗ mark@cpi.uec.ac.jp
[1] S.M. Tan, C. Fox, and G.K. Nicholls “Inverse problems”.

May be downloaded from
http://home.comcast.net/~szemengtan/

. Also see the website of Collin Fox’s Electronics 404 course

at Otago University:
http://elec.otago.ac.nz/w/index.php/ELEC_404

[2] See, for example,
http://mathworld.wolfram.com/Moore-PenroseMatrixInverse.htm
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FIG. 4. Data from an experiment at the Center for Photonic Innovations. The red solid line is a regularized solution for the
data shown by the red circles.


