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In [J. Opt. Soc. Am. 68, 1206 (1978)] K. Knop applied rigourous diffraction theory to square

gratings of arbitrary depth and period to derive the scattered field of a grating in both near and

far-field regimes. The present note gives a detailed reworking of Knop’s derivation which clarifies

some amibiguities and also uses symbols and a setting in line with [Optics Letters, 38, 2542 (2013)].

The aim is to clarify Knop’s formulation to allow the calculation of the near-field optical trapping

potential.

INTRODUCTION

The term “rigorous diffraction theory” (RDT) implies

the calculation of the diffracted field from some object in

which no or very few assumptions are made. Typically it

is difficult to find an analytical solution to Maxwell’s equa-

tions in such cases, which is why solutions with limited

ranges of validity, such as Kirchoff’s diffraction law, are

commonly used.

Here, our motivation is to assess the potential created

by the near field diffraction pattern due to a dielectric

square grating. The diffraction pattern is further modified

by a nanofiber mounted on the grating (the presence of the

nanofiber is not considered in the present note) and in prin-

ciple, atoms may be trapped only hundreds of nanometers

from the surface of the nanofiber and / or the grating. Thus,

methods such us Kirchoff’s which rely on the field being

calculated at a distanceL from the grating much larger than

the incident light wavelength λ cannot be used.

Instead, the aforementioned rigorous diffraction theory

approach must be used. The RDT solution in the case of a

square grating was already calculated by Knop in Ref. [1]

in 1978. Note that Knop’s derivation itself is a relatively

straightforward extension of Burckhardt’s rigorous diffrac-

tion theory for a sinusoidal grating [2]. The motivations for

reviewing Knop’s derivation, confined to the simplest case

of TE polarization, are the following:

• Knop’s paper [1] is essentially a letter, and the im-

portant derivations take up only a page. Thus they do

not provide a good introduction to rigorous diffrac-

tion theory.

• One of the most important equations in Knop’s paper,

Eq.(17), is rendered ambiguous by a typesetting er-

ror. Although it is possible to guess the correct form

of Knop’s equation, this is somewhat unsatisfactory

as the basis of further research.

• Knop’s result was formulated before the personal

computer era and well before the advent of sophis-

ticated, matrix-based numerical programming lan-

guages such as Matlab. Thus, although his derivation

is naturally expressed in matrix form, he gives his fi-

nal expressions, such as the aforementioned Eq.(17),

FIG. 1. Depiction of the difraction grating and incident plane

wave.

in matrix-element form, no doubt to aid calculation

using the 8kB memory HP calculator that was used

to produce his results! In the rederivation, we keep

the results in matrix form, which allows more rapid

application of the results in Matlab or similar matrix

enabled analysis software.

REVIEW OF KNOP’S DERIVATION FOR THE TE

POLARIZATION

The system considered in the derivation is shown in

Fig. 1. Compared with [1], we have swapped the x and

z axes so they correspond to the typical notation used at

the Center for Photonic Innovations. Additionally, we use

notation for the grating parameters taken from [3], where

Λg is the grating period, α is the grating duty cycle, and

d is the grating depth. We will analyse the problem for

TE polarized light (following Knop, this indicates that the

electric field is parallel to the grating slats) incident from

above the grating (i.e. on the air side). In practice, we

will wish to solve the problem for light incident from the

grating dielectric side. However, it is trivial to switch to

this incidence condition once the problem has been solved,

so for simplicity, we use the same incidence condition as

Knop.
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Definition of grating refractive index

Assuming that there is a slat centered at the origin, a

single period of the grating defined for this central slat is

given by:

n(z) =

{

1, αΛg < 2|z| ≤ Λg

n0, 0 ≤ 2|z| ≤ αΛg
(1)

The grating is assumed to be infinite in extent with n(z) =
n(z + Λg) defining its periodicity in the z direction.

General solution (regions I and III)

Since we are solving for the TE polarization, as defined

above, only the Ex component of the electric field vector

is non-zero. We can therefore identify three non-zero elec-

tromagnetic field components:

Ey ≡ E(x, z) (2)

Hx =
i

k0

∂E

∂z
(3)

Hz = −
i

k0

∂E

∂x
, (4)

where a time dependence exp(iωt) is assumed for all

fields, but left out of the notation, and k0 = 2π/λ is the

wave number of the incident light. In addition, the wave

equation must hold:

∂2E

∂2x
+

∂2E

∂2z
+ n(x, z)2k2

0E = 0. (5)

Solutions to the wave equation 5 in region I (in the air

above the grating) and region III (in the substrate material

of the grating) are straightforward plane waves. In particu-

lar, we have the general solution in these regions:

E(x, z) = exp[i(pz + qx)]. (6)

Substitution of (6) into (5) reveals that

p2 + q2 = n2k2
0. (7)

To proceed, we constrain the solution family given by

Eqs. (6) and (7) by imposing a reasonable physical assump-

tion. The assumption is the following:

Assumption 1: The solution should be periodic with a

base (fundmental) period of Λg.

I do not attempt to justify this assumption, but note that

it is reasonable given the assumption of a perfectly periodic

grating of infinite extent, and that the assumption should be

equivalent to imposing Bloch boundary conditions on the

solution for the field.

The simplest way to guarantee Assumption 1 is to re-

quire that p, the wavenumber of the solution along the di-

rection perpendicular to the grating slats, is an integer mul-

tiple of the grating spatial frequency 1/Λg . In the general

case of a non-zero incident angle θ, we also add a constant

term to the wavenumber giving

p → pℓ = 2πℓ/Λg + k0 sin θ. (8)

Then, Eq.(7) gives

q → qℓ =
√

n2k2
0 − p2l . (9)

SOLUTIONS IN REGIONS I AND III

We now consider more specific solutions for the fields in

regions I and III.

Firstly, the field in region I may be considered to be a

combination of the incident field exp[i(p0z − q0x)] and

the reflected field from the grating. In particular, the field

will have the form

EI(x, z) = exp[i(p0z−r0x)]+
∑

ℓ

Rℓ exp[i(pℓz+rℓx)],

(10)

where the Rℓ terms are the reflection coefficients for the

ℓth partial wave in the solution, and the rℓ terms are the

wavenumbers in the y direction in air. From Eq. (9), we

find that

rℓ =

{
√

k2
0 − p2ℓ k0 ≥ |pℓ|

i
√

p2ℓ − k2
0 k0 ≤ |pℓ|

(11)

Similarly, in region III we have

EIII(x, z) =
∑

ℓ

Tℓ exp[i(pℓz − tℓx)], (12)

where the Tℓ terms are the transmission coefficients for

the ℓth partial wave in the solution, and the tℓ terms are

the wavenumbers in the y direction in the substrate mate-

rial.From Eq. (9), we find that

tℓ =

{
√

n2
0k

2
0 − p2ℓ n0k0 ≥ |pℓ|

i
√

p2ℓ − n2
0k

2
0 n0k0 ≤ |pℓ|

(13)

Notes on the formulation of the problem

Although the above working is essentially the formula-

tion of the problem rather than its full solution, we can

already see some important facts about the solution from

Eqs.(10) through (13).

Firstly, we note that we are interested in the transmitted

field given by Eq. (12) for our purposes. In this case we

note that for diffracted orders (i.e. partial waves in the so-

lution with ℓ > 0) to be transmitted, and thus for there to

be a diffraction pattern created, we must have n0k0 ≥ |pℓ|
by Eq (13). For normally incident light, this implies that

λ ≤ n0Λg (14)

must be satisfied for first order diffraction to occur. This

is important for the research at at the Center for Photonic
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Innovations because the grating patterns we typically work

with have sub-wavelength periods in order to implement

Bragg mirrors. In particular, it may be difficult to manu-

facture on-fiber gratings using the femto-second ablation

technique [4] for periods of order Λg ∼ λ. On the other

hand, it should not be difficult to manufacture an external

grating which satisfies this creterion.

SOLUTION INSIDE THE GRATING (REGION II)

We now turn to the solution in region II which is non-

trivial. Here the general solution (6) is still valid, as is As-

sumption 1, but because the index of refraction is a function

of z, the simple relation given by Eq. (7) cannot be used to

find the wavenumber in the x direction.

We first introduce a preliminary solution as follows:

eII(x, z) =
∑

ℓ

Eℓ exp[i(pℓz + gx)], (15)

where Eℓ is the coefficient of the ℓth partial wave, and g is

the wavenumber in the y direction whose form is still to be

determined.

To proceed, we Fourier expand the refractive index pro-

file. Specifically, because the refractive index enters the

wave equation raised to the second power, we expand n2:

n2(z) =
∑

s

αs exp(i2πsz/Λg), (16)

where αs is the Fourier coefficient given by

αs =
1

Λg

∫ Λg/2

−Λg/2

n2(z) exp(−i2πsz/Λg)dz. (17)

Derivation of the eigenvalue equation

We will now substitute Eqs. (15) and (16) into the wave

equation (5) and simplify to give the eigenvalue equation

which is Eq. (13) in Knop [1].

The substitution described above gives

∑

ℓ

−Eℓp
2
l exp[i(pℓz + gx)] +

∑

ℓ

−Eℓg
2 exp[i(pℓz + gx)]

+k2
0

∑

s

αs exp(i2πsz/Λg)
∑

ℓ

−Eℓ exp[i(pℓz + gx)]

= 0

(18)

For enhanced clarity, we rewrite the term on the second line

of Eq. (18) as follows:

k2
0

∑

s

αs exp(i2πsz/Λg)
∑

ℓ

−Eℓ exp[i(pℓz + gx)]

= k2
0

∑

s

∑

ℓ

αsEℓ exp[i({2π[s + ℓ]/Λg) + k0 sin θ}z + gx)]

= k2
0

∑

s

∑

ℓ

αsEℓ exp[i(ps+ℓz + gx)],

(19)

where we have used the definition of pℓ given in Eq. (8).

For additional clarity, we label the terms in Eq. (18) as fol-

lows:

χ1 =
∑

ℓ

−Eℓp
2
l exp[i(pℓz + gx)], (20)

χ2 =
∑

ℓ

−Eℓg
2 exp[i(pℓz + gx)], (21)

χ3 = k2
0

∑

s

∑

ℓ

αsEℓ exp[i(ps+ℓz + gx)], (22)

allowing us to write Eq. (18) as follows:

χ1 + χ2 + χ3 = 0. (23)

To proceed, we note that Eq. (18) involves a sum of

plane waves or partial waves in z, which are harmon-

ics of the fundamental period solution with wavenumber

p1 = 2π/Λg (note that a non-zero incident angle θ merely

adds the constant k sin θ to all the pℓ).
These plane waves are orthogonal, so if we take the inner

product 〈f, g〉 =
∫ Λg/2

Λg/2
fgdz between Eq. (18) and a plane

wave state with ℓ = η,exp[ipηz] , for any integer η, we

obtain the orthogonality condition

〈exp[i(pℓz + gx)], exp[i(pηz + gx)]〉 = δℓ,η exp(i2gx),
(24)

where δ is the Kroenecker delta symbol. Taking inner

products with each of the χi, i = 1, 2, 3 in Eq. (20) and

exp[i(pηz + gy) we find

〈χ1, exp[i(pηz + gx)〉 = −Eηp
2
η exp[i2gx], (25)

〈χ2, exp[i(pηz + gx)〉 = −Eηg
2 exp[i2gx], (26)

〈χ3, exp[i(pηz + gx)〉 = k2
0

∑

ℓ

αη−ℓEℓ exp[i2gx],(27)

where the result in the case of χ3 is obtained by noting that

the orthogonality condition kills all terms except the term

where s+ ℓ = η ⇒ s = η − ℓ.
Finally, by cancelling the factor exp[i2gx] which is

common to all the inner products, and with reference to

Eq. (23), we can rewrite the infinite sum of Eq. (18) as an

infinite number of equations

−Eηp
2
η − Eηg

2 + k2
0

∑

ℓ

αη−ℓEℓ = 0. (28)
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If we further rearrange the terms as follows:

∑

ℓ

[k2
0αη−ℓEℓ − δℓ,ηp

2
ℓEℓ] = Eηg

2, (29)

we can recognize the result as an eigenvalue equation of

the form

ÂE = g2E, (30)

where Âη,ℓ = k2
0αη−ℓ − δℓ,ηp

2
ℓ and E =

[. . . , E
−N , . . . , El, . . . , EN , . . .]

T is a vector com-

posed of the Eℓ values. Note that although there are an

inifinite number of components in principle, for numerical

calculations we will choose some finite N such that there

are 2N + 1 entries in E.

In general, linear algebra tells us that there will be as

many eigenvalues g as there are entries in E. Where there-

fore rewrite the eigenvalue equation as follows:

ÂE = g2nE, (31)

where the integer n labels the eigenvalues. From here

on, we will assume that the eigenvalue equation can be

solved and that the set of eigenvalues gn is known. Fur-

thermore, for each distinct eigenvalue gn, there will be an

associated eigenvector En. We will label the components

of these eigenvectors Eℓ,n. Finally we note that each gn
corresponds to a physically allowable wavenumber in the

y-direction, with both incoming (negative) and outgoing

(positive) waves possible for each wavenumber. With this

in mind, we may write the field in Region II as follows:

EII(x, z) =
∑

ℓ,n

Eℓ,n exp(ipℓz)×

[An exp(ignx) +Bn exp(−ignx)],

(32)

where An and Bn are respectively the amplitudes of the

incoming and outgoing partial wave with wave number gn.

APPLICATION OF BOUNDARY CONDITIONS

Having defined the field in all three areas defined in

Fig. 1, we now apply continuity conditions at the bound-

aries of each region. We explicitly require the following

conditions in order for the Electro-magnetic field to be con-

tinuous everywhere:

Boundary conditions

• E(x, z) itself must obviously be continuous at the

boundaries,

• ∂E(x, z)/∂x must be continuous and

• the above two conditions must hold for any and all

values of z.

With these conditions required, the contiunity require-

ments may be written as the following four equations

EI(x = d, z) = EII(x = d, z) (33a)

∂EI

∂x
(x = d, z) =

∂EII

∂x
(x = d, z) (33b)

EII(x = 0, z) = EIII(x = 0, z) (33c)

∂EII

∂x
(x = 0, z) =

∂EIII

∂x
(x = 0, z). (33d)

Using Eqs. (12), (32) and (12), we can write Eqs. (33) as

exp[i(p0z − r0d)] +
∑

ℓ

Rℓ exp[i(pℓz + rℓd)] =
∑

ℓ,n

Eℓ,n exp(ipℓz)[An exp(ignx) +Bn exp(−ignx)] (34a)

−ir0 exp[i(p0z − r0d)] + i
∑

ℓ

rℓRℓ exp[i(pℓz + rℓd)] = i
∑

ℓ,n

Eℓ,n exp(ipℓz)[Angn exp(ignx)−Bngn exp(−ignx)]

(34b)
∑

ℓ,n

Eℓ,n exp(ipℓz)[An +Bn] =
∑

ℓ

Tℓ exp[ipℓz] (34c)

i
∑

ℓ,n

Eℓ,n exp(ipℓz)[Angn −Bngn] = −i
∑

ℓ

Tℓtℓ exp[ipℓz]. (34d)

Next, we apply the inner product with the function exp[ipηz] to each equation. Then Eqs. (34) become
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δη,0 exp[irηd] +Rη exp[irηd] =
∑

n

Eη,n[An exp(ignx) +Bn exp(−ignx)] (35a)

−δη,0rη exp[irηd] + rηRη exp[irηd] =
∑

n

Eη,n[Angn exp(ignx)−Bngn exp(−ignx)] (35b)

∑

n

Eη,n[An +Bn] = Tη (35c)

∑

n

Eη,n[Angn −Bngn] = −Tηtη. (35d)

We would now like to express Eqs. (35) in matrix form.

To do so, we note the following: Expressions of the sort
∑

n Eη,n[An exp(ignx) +Bn exp(−ignx)] may be inter-

preted as a component of a matrix multiplication where the

ηth row of the matrix Êη,n is multiplying the column vec-

tor (Y)n = An exp(ignx) + Bn exp(−ignx). Further-

more, a vector of the form (V)n = An exp(ignd) may

be written as a matrix multiplication V = êgA, where

(êg)η,n = δη,n exp(ignd).
In order to write Eqs. (35) in matrix form, we therefore

define the following matrices:

(M̂eg)η,n = δη,n exp(ignd) (36a)

(M̂er)η,n = δη,n exp(irηd) (36b)

(M̂g)η,n = δη,ngη (36c)

(M̂t)η,n = δη,ntn (36d)

(M̂r)η,n = δη,nrn. (36e)

These matrices are all diagonal and thus trivially invert-

ible. We also note that the matrix Ê, as defined above, is

the matrix whose nth column is the eigenvector associated

with gn.

In addition, we define the vectors

(Ver)η = δη,0 exp(irηd) (37a)

(Vrer)η = δη,0rη exp(irηd) (37b)

(T)η = Tη (37c)

(R)η = Rη (37d)

(A)n = An (37e)

(B)n = Bn. (37f)

We now move all terms in Eqs. (35) which depend on

the coefficient vectors T,R,A and B to the left hand side

of the equation and express Eqs. (35) in matrix form as

follows:

ÊM̂egA+ ÊM̂∗

egB− M̂erR = Ver (38a)

ÊM̂egM̂gA+ ÊM̂∗

egM̂gB− M̂rM̂erR = Vrer (38b)

ÊA+ ÊB−T = 0 (38c)

ÊM̂gA− ÊM̂gB+ M̂tT = 0. (38d)

Our goal is to find the coefficients T of the transmitted

partial waves. Inspection of Eqs. (38a) reveals that we have

four equations and four unknowns (i.e. T,R,A and B).

Assuming the equations are consistent, we can therefore

solve for any one of the aforementioned four unknowns us-

ing elimination of variables. We will now eliminate vari-

ables in order to find T.

SOLUTION OF THE CONTINUITY EQUATIONS FOR

THE TRANSMISSION COEFFICIENTS

We deal with the simplest of Eqs. (38a). Rearranging

Eqs. (38c) and (38d) by applying Ê−1 and M̂−1
g Ê−1 re-

spectively, we find

A+B = Ê−1
T (39)

A−B = −M̂−1
g Ê−1M̂tT (40)

Next, we form the sum and difference of Eqs.(39) and

(40) giving, respectively,

A =
1

2
[Ê−1 − M̂−1

g Ê−1M̂t]T (41)

B =
1

2
[Ê−1 + M̂−1

g Ê−1M̂t]T (42)

We proceed by multiplying Eq. (38a) by M̂r and sub-

tracting Eq. (38b) to give
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[M̂rÊM̂eg − ÊM̂egM̂g]A+ [M̂rÊM̂∗

eg − ÊM̂∗

egM̂g]B = M̂rVer +Vrer. (43)

Finally, we substitute Eqs. (41) and (42) into Eq. (43) to give the following equation involving T T:

1

2
{[M̂rÊM̂eg− ÊM̂egM̂g][Ê

−1− M̂−1
g Ê−1M̂t]+ [M̂rÊM̂∗

eg− ÊM̂∗

egM̂g][Ê
−1+ M̂−1

g Ê−1M̂t]}T = M̂rVer+Vrer.

(44)

We can then express T as

T = Û−1[M̂rVer +Vrer], (45)

where after expanding and rearranging the LHS of Eq. (44),

we find that Û is given by

Û = M̂rÊĈgÊ
−1 − iM̂rÊŜgM̂

−1
g Ê−1M̂t

−iÊŜgM̂gÊ
−1 + ÊĈgÊ

−1M̂t, (46)

where (Ĉg)η,n = δη,n cos(gηd) and (Ŝg)η,n =

δη,n sin(gηd). Although the expression for Û looks com-

plicated, Eq. 45 is arguably the most useful form of the

solution for computation with modern matrix based numer-

ical software such as Matlab. Nonetheless, we now go on

to calculate the component-wise values of Û and the RHS

of Eq. 45 in order to compare our result with that given by

Knop.

COMPARISON WITH KNOP’S RESULT

Components of RHS of Eq. (45)

We first perform the relatively simple task of comparing

the RHS of Eq. (45) with Knop’s result. We want to find

the components of the vector M̂rVer + Vrer. Expanding

into components based on the definitions in Eqs. (36a) and

(37a), we find

(M̂rVer +Vrer)n =
∑

η

δη,nrnδη, 0 exp(−irηd)

+δη,0rη exp(−irηd)

= δ0,n2rn exp(−irnd). (47)

That is, the RHS is a vector containing a single element

2r0 exp(−ir0d) at the zeroth position in the vector, in

agreement with Knop’s Eq. (16) [1].

Components of Û

We first divide Û into a sum of four matrices:

Û = Û1 − iÛ2 − iÛ3 + Û4, (48)

where

Û1 = M̂rÊĈgÊ
−1 (49)

Û2 = M̂rÊŜgM̂
−1
g Ê−1M̂t (50)

Û3 = ÊŜgM̂gÊ
−1 (51)

Û4 = ÊĈgÊ
−1M̂t. (52)

We will find the components of each matrix by noting

the following facts about matrix multiplication:

1. Multiplication of two aribtrary matrices in terms of

their components is given by

(ÂB̂)l,m =
∑

n

(Â)l,n(B̂)n,m. (53)

2. When a diagonal matrix D̂ premultiplies an arbitrary

matrix Â, the components have the form

(D̂Â)l,m = (D̂)l,l(Â)l,m. (54)

For diagonal matrix postmultplication, we have, of

course,

(ÂD̂)l,m = (Â)l,m(D̂)m,m. (55)

Because all of our matrices other than Ê are diago-

nal, the evaluation of the components is straighfor-

ward.

Components of Û1

We proceed from right to left: Apply Eq. (54) to

show

(ĈgÊ
−1)l,m = (Ĉg)l,l(Ê

−1)l,m = cos(gld)(E
−1)l,m.

Next, apply Eq. (53) to show

(ÊĈgÊ
−1)l,m =

∑

n

(Ê)l,n cos(gnd)(E
−1)n,m.

Finally, we apply Eq. (54) again to give

(Û1)l,m = (M̂rÊĈgÊ
−1)l,m

= rl
∑

n

(Ê)l,n cos(gnd)(E
−1)n,m. (56)

We will proceed in the same manner below for the

other matrices Ûs but with less working shown.



7

Components of Û2

(Ê−1M̂t)l,m = (Ê−1)l,m(M̂t)m,m = (Ê−1)l,mtm.

ŜgM̂
−1
g Ê−1M̂t = sin(gl)gl(Ê

−1)l,mtm.

Û2 = M̂rÊŜgM̂
−1
g Ê−1M̂t

= rl
∑

n

El,n sin(gn)(1/gn)(Ê
−1)n,mtm. (57)

Components of Û3

Û3 = ÊŜgM̂gÊ
−1 =

∑

n

(Ê)l,n sin(gnd)gn(E
−1)n,m.

(58)

Components of Û4

Û4 = ÊĈgÊ
−1M̂t =

∑

n

(Ê)l,n cos(gnd)(E
−1)n,mtm.

(59)

Finally, we can find the components of Û itself:

Ûl,m = (Û1)l,m − i(Û2)l,m − i(Û3)l,m + (Û4)l,m

= (rl + tm)
∑

n

(Ê)l,n(Ê
−1
n,m cos(gnd)

−i
∑

n

(

gn +
rltm
gn

)

(Ê)l,n(Ê
−1
n,m sin(gnd).(60)

Knop’s Eq. 17 in [1] contains a typo which makes the

result ambiguous. However, the only sane interpretation

of Knop’s result is exactly the equation we have derived

above.

KNOP’S SOLUTION IN THE CASE OF INCIDENCE

FROM THE SUBSTRATE SIDE

The situation analysed by Knop and which was analysed

above involves a plane wave incident from the air side of

the grating. However, in the situation we are interested in

analysing, a nanofiber lies on top of the grating and a laser

is illuminated from “below” the grating (i.e. coming from

the grating substrate side). It is essentially trivial to change

the above formalism to accomodate this difference. The

simplest way is just to swap the indices of refraction in

regions I and III. (Region II is not affected). To do this we

alter Eqs. (11) and (13) to read as follows:

rℓ =

{
√

n2
0k

2
0 − p2ℓ n0k0 ≥ |pℓ|

i
√

p2ℓ − n2
0k

2
0 n0k0 ≤ |pℓ|

(61)

tℓ =

{
√

k2
0 − p2ℓ k0 ≥ |pℓ|

i
√

p2ℓ − k2
0 k0 ≤ |pℓ|

(62)

With the above redefinitions, the derivation continues

completely unchanged, and the results (45) and (46) are

unchanged.

Matlab code for solving Knop’s equations in the case of a

photonic crystal nanofiber

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Solve the Maxwell equations for a grating using "rigorous

% diffraction theory" after Knop, J. Opt. Soc. Am 68, 1206 (1978)

% "Rigorous diffraction theory" just means solve Maxwell’s equations

% without approximations no matter how tedious it gets!

%

%

% NB: I am *only* solving fo the "EP" polarization here.

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

close all

% Parameters of the experiment

% We take 1um as our length standard. All

% lengths should be taken to be in um

lambda = 0.85 %e-6; % Input wavelength

k0 = 2*pi/lambda;

theta0 = 0; % Input angle

ng = 1.45; % Silica grating’s refractive index

d=0.9 % Grating period

a = 2 %e-6; % Grating depth - this is just the crater depth

b=0.08; % Grating duty cycle

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Proceed with Knop’s method

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Set up our l space. This defines the number of diffraction orders

N=2; % There will be N/2+1 diffraction orders included in the calculation

%(including the 0th order)

% At this point it’s important to note the following: Knop’s analysis
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% is watertight formally, but in terms of numerical calculations it

% starts to fail for deep gratings when evanescent orders are

% included. If you are only interested in the travelling wave

% transmitted field, as we will be for trapping concerns, just check

% for what value of l the transmitted wave-numbers t become

% imaginary, and choose N so that only the travelling wave diffraction

% orders are included. For example, for the kind of gratings we’re

% interested in where the grating period is only a few 10s of percent

% bigger than the incident wavelength, the first order diffraction is

% sufficient, and we can set N=2.

l=(-N/2):(N/2);

ll = (-N):N;

% Define wave numbers

p = 2*pi*l/d + k0*sin(theta0) % x wave number

r = sqrt(ngˆ2*k0ˆ2-p.ˆ2) % reflected y wave number (in region 1)

t = sqrt(k0ˆ2-p.ˆ2) % Transmitted y wave number (in region 3)

% Fourier coefficients

alphas = (ngˆ2-1)*sin(ll*pi*b)./(ll*pi);

alphas(find(ll==0)) = 1 - b + b*ngˆ2;

% Solve the eigenvalue equation.

% This simply means that we construct the matrix from Knop eq. 13

% and then let Matlab do the hard work of finding the eigenvalues and

% vectors

[eta,ell] = meshgrid(l,l);

alphaind = eta-ell+N+1 % This is the index into the alpha values for constructing the matrix

At = k0ˆ2*(alphas(alphaind)); % If you’re not familiar with

% matlab, this looks a bit strange,

% but basically if just reshapes

% the alphaNN matrix of Fourier

% coefficients into a matrix

Chi = At - diag(p.ˆ2); % This provides the matrix for Knop’s Eq. 13.

[Es,g2] = eig(Chi)

g = sqrt(g2)

% After solving the eigenvalue problem, all that remains is to define some

% matrices which arise from the boundary conditions. The matrices are only

% needed in order to make the matrix version of Knop’s Eq. (17)

opG = diag(exp(i*diag(g)*a)) % eig returns a diagonal matrix for the

%eigenvalues

opC = diag(exp(-imag(diag(g))*a).*cos(real(diag(g)*a))) % cos of eigvals

opS = diag(exp(-imag(diag(g))*a).*sin(real(diag(g)*a))) % sin of "

opT = diag(exp(i*t*a))

opr = diag(r)

opt = diag(t)

opg = g % eig returns a diagonal matrix for the eigen values, so fine as is

% We need the following definition for Eq. (16)

V = zeros(length(l),1);

V(find(l==0)) = 2*r(find(l==0))*exp(-i*r(find(l==0))*a)

% Knop’s U in matrix form (as derived by MS - could be wrong, but have

% compared for a few values and it looks correct)

U1 = opr*Es*opC*inv(Es)

U2 = opr*Es*opS*inv(opg)*inv(Es)*opt

U3 = Es*opS*opg*inv(Es)

U4 = Es*opC*inv(Es)*opt

U = U1 - i*U2 -i*U3 + U4;

check2 = inv(U)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% To use the U matrix from Knop’s Eq. 17, uncomment below.

% However, the matrix expression above can be shown to

% be equivalent to the component-wise definition below.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

iEs = inv(Es);

U = zeros(length(l),length(l));

for jj = 1:length(l)

for kk = 1:length(l)

U(jj,kk) = (r(jj)+t(kk)) * Es(jj,:)*(diag(real(opG)).*iEs(:,kk)) -...

i*(Es(jj,:)*(diag(g).*diag(imag(opG)).*iEs(:,kk)) +...

r(jj)*t(kk)*Es(jj,:)*(diag(inv(g)).*diag(imag(opG)).*iEs(:,kk)));

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Finally, calculate the transmission coefficients

T = U\V % Knop Eq. (16)

whos

check = sum(abs(T(:)).ˆ2.*t(:)/r(find(l==0)))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plotting

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plot the transmission coefficients to

% check they look sensible

figure(1)

clf

plot(p,abs(T).ˆ2,’bo-’)

xlabel(’l’)

ylabel(’T_l’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Finally, plot what we really want to see:

% the diffraction pattern!

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x=linspace(-6,6,500);
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y = linspace(-3.0,-0.00005,2000);

[X,Y] = meshgrid(x,y);

E = zeros(size(X));

% Construct the E field (Eq (7))

for ss = 1:length(l)

E = E + T(ss) * exp(i*(p(ss)*X - t(ss)*Y));

end

figure(2)

clf

hold on

% Plot intensity map over x,y

contourf(X,Y,abs(E).ˆ2)

% Finally labels

xlabel(’x (um)’,’FontSize’,18)

ylabel(’y (um)’,’FontSize’,18)

title(’|E|ˆ2’,’FontSize’,18)

colorbar

set(gca,’FontSize’,14)

[1] K. Knop, J. Opt. Soc. Am. 68, 1206 (1978).

[2] C. B. Burckhardt, J. Opt. Soc. Am. 56, 1502 (1966).

[3] M. Sadgrove, R. Yalla, K. P. Nayak, and K. Hakuta, Optics

Letters, 38, 2542 (2013).

[4] K.P. Nayak and K. Hakuta, Opt. Express 21, 2480-2490

(2013).


