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e Spaces of non-resultant systems determined by a toric variety and their

related topics

by O #F (BRBEKXF)

Let X be a non-singular simply connected m dimensional toric variety (over
C), and let ¥ denote the fan in R™ associated to X, such that the set of all one
dimensional polyhedral cones in ¥ is %(1) = {px : 1 < k < r}. In this situation,
we write X = Xy, and we denote by ny € Z™ the primitive generator of pj for
each 1 <k <r.

Let D = (dy, -+ ,d,) € N" be an r-tuple of positive integers. Then, if the set
{ni};_, spans Z™ over Z (i.e. Y ,_, Z-ny = Z™) and the equality >, _, dynj, =
0 € Z™ holds, one can define the space Hol},(5?, Xx) of all based rational curves
f:8% = Xs of degree D ([3], [4], [7], [9])-

Moreover, for each n € N and a field F, one can also define the space Poly”>(FF) C
F[z]" of non-resultant systems of bounded multiplicity n determined by the toric
variety X as a generalization of the space Hol}, (52, X), such that Poly”>(F) =
Hol}, (5%, X)) if (n,F) = (1,C).

In our earlier work [8] (c.f. [2], [6], [11], [12]) we determined explicitly the
homotopy type of this space for the case (X5, F) = (CP™ !, C) when m > 2.

In this talk we shall consider the space Polyf;) *(F) for the general non-singular
toric variety simply connected Xy when F = C, and study about the homotopy
stability for this space.
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On the graded quotients of the algebra of SL(2)-characters of free
groups

by NNk 3 (GRRIEMKZ)
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On the Félix—Tanré rational model for a polyhedral product and its

application to partial quotients

by etk BZ (1EMKF)



In [F-T], Félix and Tanré has introduced a rational model for the polyhedral
product of a tuple of spaces corresponding to arbitrary simplicial complex. By
applying the model, it is proved that for a partial quotient N associated with
a toric manifold M, the following conditions are equivalent: (i) N = M. (ii)
The odd-degree rational cohomology of N is trivial. (iii) The torus bundle map
from N to the Davis—Januszkiewicz space is formalizable. This work is based on
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Stable rational homology of the IA-automorphism groups of free groups

by FH # (AWMXZF)

The rational homology of the TA-automorphism group IA,, of the free group
F,, of rank n admits a GL(n, Z)-representation structure. We study the quotient
representation of the rational homology of TA,, that is obtained as the image of the

map induced by the abelianization map of IA,,. We call it the Albanese homology



of TA,,. In this talk, we determine the third Albanese homology of IA,, in a stable
range. Moreover, in higher degrees, we obtain a subquotient representation of
the Albanese homology of IA,, in a stable range, which is conjecturally equal to
the entire Albanese homology of TA,. We also consider the Albanese homology

of the Torelli groups of surfaces.

e Vector fields on non-compact manifolds

by A& Kth (FUMKE)

Let M be a connected oriented manifold. If M is compact, then it is well
known that there is a non-vanishing vector field on M if and only if the Euler
class of M vanishes, and a more precise information of a vector field is described
by the Poincaré-Hopf theorem. On the other hand, if M is non-compact and of
bounded geometry, then Weinberger proved that there is a vector field with unit
length and bounded derivative if and only if the Euler class of M in bounded co-
homology vanishes. So one can ask whether there is a Poincaré-Hopf theorem for
a non-compact manifold of bounded geometry. I will talk about a Poincaré-Hopf
theorem for a non-compact manifold equipped with a cocompact and properly
discontinuous action of a discrete group, which is a typical example of a non-

compact manifold of bounded geometry.

This is a joint work with Tsuyoshi Kato (Kyoto) and Mitsunobu Tsutaya
(Kyushu).
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Van Kampen-Flores theorem and Stiefel-Whitney classes

by #2TF #5h (EMAKE)

The van Kampen-Flores theorem states that the d-skeleton of a (2d+2)-simplex
does not embed into R??. We prove the van Kampen-Flores theorem for triangu-
lations of manifolds satisfying a certain condition on their Stiefel-Whitney classes.
In particular, we show that the d-skeleton of a triangulation of a (2d+1)-manifold

with non-trivial total Stiefel-Whitney class does not embed into R?9,

This is a joint work with Daisuke Kishimoto.

Non-trivalent graph cocycles and Vassiliev invariants

by 37 £— (BMKXHF)

The Vassiliev invariants of (long) knots can be described in terms of configura-
tion space integrals associated with trivalent graph cocycles (R. Bott—C. Taubes,
T. Kohno, 1994). In this talk we review this description, and we also see that
some Vassiliev invariants can be obtained from non-trivalent graph cocycles. Part

of this talk is based on joint work with Saki Kanou.

2a—NRIb - AILF15SRALEREER
by BEH Bl (BEKTF)

Sa—rUL bk s L F 2T RS 2 —L N ERROR X ORI E R R H
e TEMETHTHD, a—UL MZHEAD XS ZHEEmNET VTS



¥ a—rOL MEOBRNR TP EER B 2R LT3, A BEZERIADS
&, ¥ a—Ub M ZIEATHN 2 HIERII R 72 (B0 Kogan i & W5 Gelfand-
Tsetlin ZHAARDFFHIZZHEH I )ET 5. Kiritchenko-Smirnov-Timorin (& A # D
HEZRAD a ke Y —ERE Gelfand-Tsetlin ZHAD Z HIAREDFEITH %
CEEHWT, ABDY 2 —~)L MEZE L W) Kogan HOM & L Taoiah
U7z, AFE TR O00) Kogan [H %2 RIS BT 2 A E OB G & B
BT 2. IGHE LTy 22—~ hZIHTHE T 50 < 020l &Eamivaizic
fheRERE Wz 52 5.

e An invariant for homology cylinders via skein algebras
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e Generic torus orbit closures in Schubert varieties

by #H 8t (KRAILKF)

Eunjeong Lee [KEGHEH X A ML EFAB DR 2 BERNICEEX, ZZTHLT
B2 LELA. ZRREET 22 LW EEWET.

12A3H

o AUNI M) —BOERETRHRVERBE LA ~—5 XEH
by BH # (KRAIKXTF)

BEXTTa > %27 b Y —BRIIEEAN LR ERMESFET % Z & 571950 4K
IZ Wang, Samelson 512 &Ko THIIW/RINLTWS. —J5T, 2007 4FIZ Loeb,
Manjarin, Nicolau 512 & o T, A[#ITRWEKZOTa > o7 M) —BRCIXERE
TRWERBEMEDFEET 2 2 RSN, REETIE, M= AEHICET 3
E—X Y MNEREEBMEEZHVT, BRI SUB) DEAETRWERMED



THEEA

JEDHERRL T X % Z & bR\ 35, KREEHNEITRIRKF DA AKRK E OHFEHFE
WCHED <.

On the dimensions of fixed point sets of representation spaces by sub-
groups

by £ & (LK)

Let G be a finite group. We consider the dimension of V' for a representation
G-space and a subgroup H of G. Wasserman called G a Borsuk-Ulam group
(BUG) if dim V —dim V¢ < dim W — dim W¢ for any isovariant G-map f: V —
W between representation G-spaces, where a G-map f is isovariant if G, = G ()
for any point v € V, and showed that every solvable group is a Borsuk-Ulam
group, However it is unknown whether G is a BUG or not for many families of
nonsolvable groups. In this talk, we would like to discuss dim V# for irreducible
representation G-spaces V' and subgroups H of G, and how to apply the inequality

as above.
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