Palm Calculus, Reallocatable GSMP and
Insensitivity Structure

Masakiyo Miyazawa

Abstract This chapter discusses Palm calculus and its applications to various pro-
cesses including queues and their networks. We aim to explain basic ideas behind
this calculus. Since it differs from the classical approach using Markov processes,
we scratch from very fundamental facts. The main target of Palm calculus is station-
ary processes, but we are also interested in its applications to Markov processes. For
this, we consider piece-wise deterministic processes and reallocatable generalized
Markov processes, RGSMP for short, and characterize their stationary distributions
using Palm calculus. In particular, the insensitive structure of RGSMP with respect
to the lifetime distributions of its clocks is detailed. Those results are applied to
study the insensitive structure of product form queueing networks with respect to
service requirement distributions.

1 Introduction

In queues and their networks, it is typical that their time evolutions substantially
change only when customers arrive or complete service. That is, essential changes
occur only at embedded instants on the continuous time axis. This is a prominent
feature of stochastic models for those systems. Such time instants are caused typi-
cally by arrivals and departures of customers, and often called discrete events. As
is well known, it motivates to use discrete time stochastic processes embedded at
those time instants. However, sample paths of such embedded processes may lose
key information on the system evolution. Thus, they may be only useful in limited
situations. Of course, those sample paths can retain full information of the system if
we supplement them with all information between the embedded instants. However,
it causes their descriptions to be complicated, and therefore analytical tractability
may be lost.

Masakiyo Miyazawa
Tokyo University of Science, e-mail: miyazawa@is.noda.tus.ac.jp



2 Masakiyo Miyazawa

In this chapter, we introduce a stochastic model to capture those discrete time
nature in the continuous time setting. We aim to avoid to simultaneously use dif-
ferent processes for describing discrete events under the continuous time setting.
Instead of doing so, we introduce different probability measures on the same sam-
ple space. They describe observations at times of interests. That is, they are used to
compute characteristics of system states at continuous time or various embedded in-
stants. When such characteristics are expectations of some random quantities, they
are called time or event averages, respectively. Under certain stationary assump-
tions, it is shown that those probability measures are nicely related. This leads to
useful relationship among time and event averages. It is referred to as Palm cal-
culus since the probability measures concerning embedded epochs are called Palm
distributions.

We apply this Palm calculus to stochastic processes arisen in queues and their
networks. However, the Palm calculus itself may not be convenient since it usually
involves integrations over the time axis. To ease this, we introduce a rate conserva-
tion law, which may be considered as a differential form of the Palm calculus.

Those results by the Palm calculus are very general in the sense that they only
require the stationary assumption. However, we may need more specific models to
compute characteristics in closed form. For this, we consider a piece-wise deter-
ministic Markov process, PDMP for short. We then specialize it as a reallocatable
generalized semi-Markov process, RGSMP for short. We are interested in when
RGSMP has a certain nice form of the stationary distribution. It turns out that con-
ditions for this form are closely related to those for a queueing network to have a
product form stationary distribution. Under the same conditions, we also consider
the conditional mean sojourn time of a customer in a queue or in a network given
total amount of his/her work.

In this chapter, we consider analytical tools for studying queueing models rather
than just to collect results for applications. However, we divide this chapter into
small sections to highlight each topic. We expect the reader has some background
in introductory levels of the probability and measure theories. Some descriptions
particularly in the first few sections may look too formal since they are different
from those in the standard queueing literature. However, arguments are essentially
elementary. A problem is probably in the language that we use. So, we provide its
details.

2 Shift operator group

When we consider a stochastic process for queueing models, we usually do not
explain the probability space, i.e., the triplet of a sample space, a o-field and a
probability measure on it under which the process is defined. This is because the
probability space is obviously identified. However, we here start from this very ba-
sic description since we will consider different probability measures on the same
sample space and o-field. We also play with different stochastic processes which
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have a common time axis. For this, it is convenient to implement a time axis in the
sample space. Thus, we introduce a time-shift operator on it.

Let (2, .%#) be a measurable space, and let 6; be an operator on €2, i.e., a mapping
from Q to Q for each real number ¢ € R. Since we consider a function of time ¢ and
analytic operations on it, we need conditions to well define them. Thus, we formally
define the operator 6; in the following way.

Definition 1. For the operator 6, on 2 for each ¢, define function ¢ from R x Q to
Q by ¢(t,0) = 6,(®), and let Z(R) be the Borel o-field on R. If the condition:

(2a) @ is # x 7 |.F -measurable, i.e., 1 (A) € B x .F forall A € .7,
is satisfied, then {6,;¢ € R} is said to be measurable. In addition to this, if

(2b) For any s,t € R, 650 6, = 0,,, namely,
6,(6/(0) = 6:i(0), ©EQ
is satisfied, then {6;} is said to be a shift operator group. O

Example 1. A natural candidate for the sample space €2 for 6; to be defined is the set
of functions on R, which represents the time axis. For example, let S be a complete,
separable metric space, which is called Polish space, and let Z(S) be the Borel
o-field on S. Thus, we have measurable space (S,%(S)). Let Q be the set of S-
valued functions on R whose discontinuous points are countable at most and are
right continuous. Since @ € € is a function of time, it can be written as {@(¢) }. The
o-field % can be generated from all the following subsets of Q for all n > 1,¢; €
R,B; € B(S) fori=1,2,...,n.

{we Q;0() €Bii=1,2,...,n}.
Then, we can define the shift operator group 6, through
6,(0)(s) = o(s+1), s,t €R.
We refer to this 6; as a natural shift operator. |

We next define stationarity with respect to the shift operator.

Definition 2. Let {6,} be an operator group on a measurable space (Q,.%). If a
probability measure on (Q2,.%) satisfies

P(67'(A))=P(4), tERAEZF,
then P is said to be 6;-stationary, or stationary with respect to {6, }. O

Up to now, we have only considered the time to be real valued, i.e., continuous.
We are also interested in discrete time. In this case, the shift operator on €2 is denoted
by n, for n € Z, where Z is the set of all integers. Obviously, conditions (2a) and
(2b) are replaced by
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(2c) Foranyn€Z,n, ' (A) € Z forA € 7,
(2d) For any m,n € Z, Ny © My = Nintn-

Similarly to 6;, {n,;n € Z} is said to be measurable if (2c) is satisfied, and said to
be an discrete time shift operator group if (2¢) and (2d) are satisfied. Furthermore,
P is said to be 1,-stationary if P(n; '(A)) = P(A) for all A € .Z.

We next apply the shift operators to functions on €, that is, random variables
and sample paths. Throughout this chapter, we assume that random variables and
states of stochastic processes take values in a Polish space S with the Borel o-
field (S). However, in our applications, it is sufficient to assume that S is a finite
dimensional Euclid space, i.e., real valued vector space. As usual, we also assume
that a stochastic process is right-continuous with left limits.

Definition 3. Let {6,} be an operator group on (Q,.%), and let X be a random
variable on this measurable space. Define random variable X o 6, as

Xo6(w)=X(6(w)), 0eQ.

With this notation, a stochastic process {X(¢)} defined on (2,.%) is said to be
consistent with 6; if the following condition is satisfied.

X(s)o 6 =X(s+1), s,teR

Similarly, we define the consistency of a discrete time process {X, } with respect to
a discrete time shift operator 7,, by

X oMy = Xy, m,n € Z. O

The following definitions of stationary processes are standard.

Definition 4. A stochastic process {X(¢)} is said to be stationary under P if , for
each fixedn > 1,1; e R,B; € A(S) fori=1,2,...,n,

P(X(ti+u) €B;,i=1,2,...,n)

is unchanged for all u € R. Similarly, the stationarity of a discrete time process {X,, }
under P, is defined, where Py is another probability measure on (Q,.7). a

The next lemma is immediate from the definitions of the shift operators, the
consistency and the stationarity.

Lemma 1. If P is a 6,-stationary probability measure and if {X(¢)} is consistent
with {6,}, then {X(#)} is a continuous time stationary process under P. Similarly, if
Py is ny-stationary and if {X,} is consistent with {7, }, then {X, } is a discrete time
stationary process under F.

It should be noted that we are concerned with different probability measures in
Lemma 1, but the underlying measurable spaces, i.e., the sample space and the set of
all events, are the same. This allows us to directly relate X (¢) to X,, through @ € Q.
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Example 2. How one can create a sample space £2 with operations 6, and 7, for a
queueing model ? Let us consider this problem by a small example. Since an actual
system usually starts at some fixed time, we assume that a queueing system starts
with no customer at time cy = 0. Assume that this system is closed with no customer
just before time c;. We represents the evolution of this system on the time interval
by a function f from [cg,c;) to S, where S is a finite dimensional real vector space.
At time c, the system restarts and repeats the same trajectory until time ¢y = 2c;.
If the system operates in this manner continuously, then we have a trajectory 000+ :

s

of (1) =Y flt—ca1)l(cn1 <t <cy), t>0,

n=1

where ¢, = ncy, and 1(+) is the indicator function of the statement “-”, i.e., it takes 1
(or 0) if the statement is true (or false). We next shift the starting time ¢ to —kc; for
positive integer k, and letting k to infinity, we have the double sided trajectory wy:

o0
wo(t) =Y flt—cp1)l(cam1 <t <cn), t>0.

n—=—oo

Let a)o(“) (t) = ax(t —u) for u € [0, ¢y ), and define the sample space 2 as

Q={o\;uco,e)}.

Since this sample space is the set of functions on R and closed under time shift, we
have a natural shift operator 6,. Furthermore, let
nnoa)(g“)(t)za)o(t—c,,), u€l0,c1),t eRne’.

Then, {7, } is a discrete time shift operator group. Obviously, this operator group is
stationary for any probability measure. Since f is a deterministic function, a prob-
ability measure on (£2,.%#) can be determined by that on [0,c;) x Z([0,c1)). In
particular, if this distribution is uniform on [0, ¢} ), then P is stationary with respect
to the natural shift operator group {6;}. O

This example is trivial in the sense that all sample paths are generated by a single
function {@y(¢)}. Nevertheless, it can be used a prototype of the probability space
for shift operators. For example, if we change ¢, —c,— to be i.i.d. (that is, indepen-
dently and identically distributed) random variables and functions on the intervals
[¢n—1,¢n) to be also i.i.d. random functions, then, using the same uniform distribu-
tion, we can construct the probability measure which is stationary with respect to the
natural shift operator group {6,}. This construction will be systematically studied
in the following two sections.
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3 Point processes

We introduce a process for randomly chosen discrete time instants on the time axis.
This process is called a point process, and will be used to generate a discrete time
process, called embedded process, from a continuous time process. Thus, the point
process will make a bridge between continuous time and discrete time embedded
processes.

Definition 5. N is called a point process on the line if it satisfies the following two
conditions.

(3a) N is an integer-valued and locally finite random measure on (R, Z(R)), that
is, each w € Q, N(-)(w) is an integer-valued measure on (R, %(R)) such that
N(B)(®) < o for any bounded B € #(R) and ® € Q.

(3b) Foralln>1,B; € Z(R) and n; € ZL = {0,1,...} fori=1,2,...,n,

{N(B,) =n;,i= 1,2,...,1’1} e .Z.
Furthermore, if N({t}) <1 for all r € R, then N is said to be simple.

If we remove the assumption that N(B) is integer-valued, we can similarly define
a random measure, but we do not need this generality in this chapter except for
Section 11.

Similar to the case of a stochastic process, we define the operation of 6; to point
process N as

N(B)o6,(w)=N(B)(6/(w)), teR,we Q,Bec B(R).
In what follows, we assume
N(B)o6, =N(t+B), teR,Be B(R),

where ¢t + B = {t + u;u € R}. In this case, N is said to be consistent with ;. This
is meant that N and 6, have a common time axis similar to the case of a stochastic

process.
The stationarity of point process N is defined similar to that of a stationary
process. That is, N is said to be stationary if, for all n > 1, ky,...,k, € Z+ and

By,....B, € @(R)
P(N(t+B)) =k|,N(t+By) =k,...,N(t+B,) = k)

is unchanged for all € R.
The next lemma is a point process version of Lemma 1.

Lemma 2. If P is 6;-stationary and if N is consistent with 6;, then N is stationary
under P.
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Note that N((0,¢]) with # > 0 can be considered to be a counter for random events
that occur in the time interval (0,¢]. Because of this, a point process is also called a
counting process. From this viewpoint, it may be convenient to define the time when
the discrete events occur. Let

[ inf{t > 0;N((0,1])

>n}, n>1,
"7 sup{r < 0;N((z,0]) > 1

—n}, n%O.

This 7, is said to be the n-th counting time of N. Since 7, = T, may occur for
n # 0, T, may not be strictly increasing in n. We thus have

L <THy<0<Ti <... (1)

From the definition of 7, we have

N(B) = f (T, €B), Be%B(R),

n—=—oo

and the right-hand side of this equation can be written as

/ " (w e BYN(du).

—o0

TR

Remind that 1(-) is the indicator function of the statement
Example 2).

In the remaining part of this section, we assume that N is a simple point process.
In this case, T}, is strictly increasing in n. For convenience, let

(see its definition in

[ N((0,1]), t>0,
N(t)_{—N((t,O]), <0,

Since N is simple, N(7,,) = n for n > 1. Note that N is assumed to be consistent with
the shift operator 6;. This yields, forn > 1 and s > 0,
T, 00, = inf{t > 0;N 0 6,((0,t]) = n}
= inf{t > O;N((s,s +1]) = n}
= TN(A‘)+}’L —S. (2)

For s <0 and n < 0, we can get the same formula (2). In particular, letting s = T},
in (2), N(s) = m yields
T,0 6T = Tm+n — T

m

Thus, 07, shifts the counting number. From this observation, we define 7, forn > 1
as

() =07, (@), ©EQ. 3)
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Lemma 3. For simple point process N, {n,;n € Z} is a discrete time shift operator
group on (Q,.%).

Proof. From (3), we have

Mno nm = GTnonm © nm
= 67;n+n*Tm ° eTm

= 6Tm-%—n = nm+n-

Hence, 7, satisfies (2d), which corresponds with (ii) of Definition 1. To see condi-
tion (2¢), let ®(w) = (T, (w), ®) for @ € Q, which is a function from 2 to R x Q.
This function is .% /(#(R) x % )-measurable. We next let ¢((¢,®)) = 6,(®), which
isa (Z(R) x &) /% measurable function from R x Q to Q. Hence, N, = o P is
Z | F-measurable, which completes the proof. O

Thus, we get the discrete time shift operator 7),, from the continuous time shift
operator 6;. The 7, describes the time shift concerning the point process N. The
following observation is intuitively clear, but we give a proof since it is a key of our
arguments.

Lemma 4. Suppose that stochastic process {X(¢);# € R} and simple point process
N are consistent with 6;. Define discrete time process {Y,;n € Z} by ¥, = X(T,,) for
the counting times {7, } of N. Then, {¥,} is consistent with 1,,.

Proof. From (3) and the fact that X (¢) is consistent with 6, we have

Yoonm = Xon,(T,0nm)
= X 007, (Tnn—Tnn)
= X(Tnl+11 - Tm + Tm) = Ym+n-

Thus, ¥, is indeed consistent with 7,,. |

We next add information to the counting times 7;, of N. This information is called
mark, and the resulted process is called a marked point process. This process is
formally defined in the following way. Let N be a simple point process which is
consistent with 6;, and let {7,,} be its counting times. Further, let {¥,} be a discrete
time process with state space by %, where % is assumed to be a Polish space.
Then, ¥ = {(7,,Y,)} is called a marked point process, and ¥, is said to be a mark
at the n-th point 7,,.

Define a random measure My on (R x 2", B(R) x B(.%')) as

o0
My(B,C)= Y 1(I,€BY,€C), BeHBR)CcAB(X)

n=—oo

where Z(.%") is the Borel o-field on J¢ . If we have, for all 1 € R,

My(B,C) o6, = My(B+1,C), B B(R),CcB(X)
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then ¥ is said to be consistent with 6;. In particular, if {¥,} is consistent with 1, =
0r,, then My is consistent with 6;. In fact, from (2), we have

{T, 06, € B} = {Ty(1)4n € B+1}.
On the other hand, ¥,, = Yy o n,, yields

Y, o 9,((1)) = Yo(@Tnogt(w)(et((D))
= YO(GTN(,)(w)+n(w)(w)) = YN(Y)((D)+n(w)‘

Hence, the claim is proved by

+oo
My (B,C)o 6, = Y. 1(Ty()tn € B+1,Yy()1n € C) = My(B+1,C).

n=—oo

We also define the stationarity of ¥ similar to N. Namely, if, for all n and B; €
BR),Cie B(X) (i=1,2,...,n)

P(Mly(B] +t,C1),Mq1(Bz+t,C2),...,Mlp(Bn+t,Cn))

is unchanged for all + € R, then ¥ is said to be stationary under P. Similarly to
Lemma 2, we have the following fact, whose proof is left to the reader.

Lemma 5. If P is 6,-stationary and if marked point process ¥ is consistent with 6;,
then ¥ is stationary under P.

4 Palm distribution

One may wonder whether P can be 6;-stationary and 7,-stationary simultaneously.
This may look possible, but it is not true. To see this, we consider time shift opera-
tions under P assuming that it is 6;-stationary.

We first note that the distribution of {7, 4 #;n € Z} is unchanged under P for any
t € R by the 6;-stationarity. Hence, shifting the time axis does not change the prob-
ability measure. We now shift the time axis subject to the uniform distribution on
the unit interval [0, 4] independently of everything else for a large but fixed number
u > 0. The choice of this u is not essential in the subsequent arguments, but think-
ing of the large u may be more appearing. The renumbered {7, } still has the same
distribution because P is unchanged. Under such time shifting, 7, is changed to T;
if the time interval (T;,_;, T,] contains the origin. Because the longer time interval
has more chance to include the origin, 771 — Ty would be differently distributed from
T,+1 — T, for n # 0, where the numbers n of T,, are redefined after the time shifting.
On the other hand, if P is 1,-stationary, then we have

(Tl 7TO)Onn = Ip+1 — Ty,
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which implies that 71 — Ty and 7,41 — T, are identically distributed. Hence, it is
impossible that P is 6;-stationary and 1,,-stationary simultaneously.

This observation motivates us to introduce a convenient probability measure for
Mn-

Definition 6. Suppose that P is 6;-stationary, point process N is consistent with 6;
and has a finite intensity A = N((0, 1). Define nonnegative valued set function Py on
F as

o
PO(A):;HE(/O L N@),  AeZ, )

where 14 is the indicator function of set A, i.e., l4(®) = 1(® € A). Note that

19J1<A)(w) = 14(0,(®)) = (14 0 6,)(®). Then, it is easy to see that P is a prob-

ability measure on (Q,.%), which is referred to as a Palm distribution concerning
N. Note that N is not necessarily simple in this definition. O

Remark 1. (4) is equivalent to that, for any function f from £ to R which is
7 | B(R)-measurable and either bounded or nonnegative, the following equation
holds.

Bo(r) =2 E( [ roaan). ®)

where E( represents the expectation concerning Fy. O

Let A = {Tp = 0} in (2), then, for any u € R,

6, '(A) = {wc Q:;0,(w) €A}
= {Tyo 0, =0} = {Tn(, = u}.

Furthermore, since N({u}) > 1 implies Ty(uy = u, we have, from (4),
Py(Ty=0)=A""E(N((0,1])) = 1.

Hence, N has a mass at the origin under Py. This means that Py is a conditional
probability measure given N({0}) > 1.

The following result is a key to relate Py to P when P is 0;-stationary, where P
is the Palm distribution concerning N. The formula (6) below is referred to as either
Campbell’s or Mecke’s formula in the literature.

Lemma 6. Let {X(7)} be a nonnegative valued stochastic process, then we have
oo oo
E( X(u)o euN(du)) = JLEO(

—o0 —oo

X(u)du) . (6)

Proof. Define a nonnegative random variable f as

f= ./::oX(S)ds = /+WX(s+u)ds.

—oo
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Substituting this into (5), we obtain (6) through the following computations.

ao( [ xas) =£( [ ([ x(+woous)via)

—o0 —oo

+ME(/ 1(0<u<1 )X(s—&—u)OGL,N(du))ds

t

“E / 10 <=5 < 1)X(u) 0 O,N (du) ) ds

o

-/
/+°° (/ 10<u<1)X (s—&—u)OGHSN(du—Fs))ds
-/
E

( /j / _ dsX(u)o euN(du))
+oo
—&( [ x@ooN@w),

where the third equation is obtained using the fact that P is 6;-stationary. |

It is notable that {X(r)} in Lemma 6 is not necessarily consistent with 6;, and
therefore it is not necessary stationary under P. The essence of (6) lies in the shift
invariance of P and Lebesgue measure on R.

Example 3 (Little’s formula). We derive a famous formula due to Little [20] us-
ing Lemma 6. Consider a service system, where arriving customers get service and
leave. Let T;, be the n-th arrival time, where 7, is also defined for n < 0. Let N be a
point process generated by these 7;,, and let 6, be a shift operator on . We assume
that N is consistent with 6;. Let U, be the sojourn time of n-th customer in system.
We also assume that {U,;n € Z} is consistent with 1, defined by (3).

Then, the number of customers L(¢) in system at time # is obtained as

o0
= Z l(Tn§t<Tn+Un)-
n=-—oo

Assume that L(¢) is finite for all # € Z. Let N(s) = N((0,s]), then T, 0 65 = Ty ()1 —
s, U, =Uyon, and 1,06, = 6TN(.§)+n' Hence,

—+oo
= Y 1(Tygyun <s+1<Ty(en+Un) =L(s+1),
n—=—oco
so {L(t)} is consistent with 6;. Assume that P is 6;-stationary and A = E(N((0,1]))

is finite. Thus, {L(¢)} is a stationary process under P.
Let X (u) = 1(Th < —u < Ty + Up), then we have
o0
X (u)du = Uy,

/jmx( 0 O,N(du) = 210< ~T, < Uy,) = L(0).

n=-—oo
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Hence, Lemma 6 yields

E(L(0)) = AEy(Up). @)
This is called Little’s formula. |

Let ¥ = {(T,,Y,)} be a marked point process which is consistent with 6;, and
let N be a point process generated by {7, } with a finite intensity A = E(N(0,1]). In
Lemma 6, for each fixed B € #(R),C € B(%), let

X(u)=1(ueB,YyeC), t>0.

Since

/+°° (u) 0 BN (du) = Z (T, € B,Y, €C),

—oo = —oo

(6) yields
E(My(B,C)) = A|B|Eo(Y) € C), t>0, ®)

where |B| = [pdu, thatis, if Bis an interval, then |B| is the length of B. From this, we
have known that measure E (My (B,C)) on (R x 22", Z(R) x %(£")) is the product
of Lebesgue measure and the distribution of ¥ under F.

Another interesting conclusion of Lemma 6 is the orderliness of a simple point
process.

Corollary 1. Assume N is a simple point process that is consistent with 6, and has
a finite intensity A, then

1
Him—-E(N(Ty,t);Th <t) =0, )
110 1
and therefore
1
11%1;P(6T—11(A),T1 <t)=AR(A), Ac.Z. (10)
t

Proof. Since N(Ty,t] = [ 1(u> T;)N(du) fort > Ty and Ty 0 0_, = T N1 tu
for u > 0, Lemma 6 yields

E(N(T i)t > T)) = E (/'(1(14 > Tl)oe_,,)oeuN(du))

—E(/l 041 <0)oeuN(du)>

—/IEO(/l u0+1<0)d)
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Since Py(Tp = 0) = 1, the indicator function 1(7_y(_,0)+1 < 0) vanishes as u | 0
(see also (1)). Hence, dividing both sides of the above equation by ¢ and letting 7 | 0,
we have (9) by the mean value theorem of an elementary calculus. To get (10), we
apply Lemma 6 for X (1) = 1(0 <u <t)l4 fort > 0and A € .Z#, then

AtRy(A) = ( /0 Lo GMN(du))
= P(6;,'(A), Ty <t)+E </Tj+ lAOGMN(du)) .

Dividing both sides by ¢ and letting 7 | 0, (9) yields (10), where the plus sign at T}
in the integral indicates that the lower point 77 is not included in the integral region.
a

Note that (10) gives another way to define the Palm distribution Fy. This may be
more intuitive, but the limiting operation may not be convenient in addition to the
restriction to a simple point process.

5 Inversion formula

We next present basic properties of Palm distribution Py and to give a formula to get
back P from Fy directly.

Theorem 1. Suppose that N is a simple point process which is consistent with 6;
and has a finite and non-zero intensity A = E(N((0, 1]). If P is 6;-stationary, then Py
is 1,-stationary. Hence, {¥,,} of Lemma 4 is a discrete time stationary process under
Py. Furthermore, P is obtained from Fy by

.Tl

P(A):AEO(/O lytdu),  AEZ. (1)

Proof. The first half is obtained if Py(1; '(4)) = Py(A) holds. We prove this using
the definition of the Palm distribution (4). Because 1y = 07, and (2) implies

9T1 © eu(w) = GTN(M)H((L))w(eu(w)) = GTN(MH] ((D),

we have

6,'(n, ' (A) ={mo6, €A} ={6r,, €A}

Applying this to (4), we have
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o @) =753, 105, <)

N()
( (Z (6, €A) >+P(6TN(])+I €A)—P(6r, GA)>.

Since 07, o 0, and P is 6;-stationary, we have

= 9TN(1)+1

P(BTN(I)H c A) = P(BTI S A)
Thus, we get Py(1; ' (A)) = Py(A). We next prove (11). For this, let

X(w)=1(N((—u,0)) =0,u > 0)19,71(A)’

then
X()o6, =1(N((0,u)) =0,u>0)14=1(0<u<Ti)lx.

Substituting this in the left-hand side of (6), we have

E(/+°°x(u) 0 BN (du)) = E(1) = P(4),

—o0

since N(du) has a unit mass at u = 7;. On the other hand, the right-hand side of (6)

becomes
B [ xtau) = B[ 1g;00a0)
o -

0
=& /nlom 1 geny)- 104y

since Py is 1),-stationary. Note that 7_j o1y = To — 71 and 6, 01y = 6,,7,. Hence,
changing the integration variable from u to # + 77 in the last term and using the fact
that Py(Tp = 0) = 1, we have (11). g

An excellent feature of the definition (4) of Palm distribution Py is that it com-
putes the conditional distribution given the event with probability zero, using neither
limiting operations nor conditional expectation as a Radon-Nikodym derivative of
the measure theory.

From (11), P is obtained from Py. In this sense, it is called an inversion formula.
Another interpretation of (11) is that it represents the time average of the indicator
function of A from Ty = 0 to Tj. Since {7, — T,,—1 } is stationary under Py, (11) is
also called a cycle formula.

The next result shows that the inverse of Theorem 1 holds.

Theorem 2. Suppose that a simple point process N is consistent with 6, a measure
Pyon (Q,.7) satisfies that 0 < Eo(T1) < oo for T} = sup{u > 0;N(0,u) =0}. Let A =
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1/Eo(T). If Py is m,-stationary, then P defined by (11) is a 6;-stationary probability
measure. Furthermore, E(N((0,1]) = A and (4) holds for these Py and P.

Proof. Tt is easy to see that P is a probability measure. Let us show P(6, 1(A)) =
P(A) for A € .% and for all r € R. From the definition (11) of P, we have

. 1
P(et l(A)) EO(Tl / 1 H»u

1 t+T;
= Eo(Th) (/ 19J1<A>d“)
1 T t+1; !
= 50 Eo( [ 1t |, 191;1(A)du—/0 g, 1yl

Since Py is M,-stationary, we have Ey(X) = Eo(X o 1) for a nonnegative random
variable X. Hence, we have

ot t
Eo( [ 1r1e) = Bo( [ Vgomy )
= E / 1,- du
u+T1

:Eo(/Tj+Tl o' (A )du)

Thus, we get P(6, ' (A)) = P(A), so P is 6,-stationary. It remains to prove (4), where
P is defined by (11). Using this P, define Pg as

1 1
Pi(A) = mE(/O Lo N(dw),  A€F.

Thus, the proof is completed if we show Py = Pg . This equality is equivalent to that,
for nonnegative and bounded random variable f,

Eo(f) = ME(/O]foeuN(du)).

From (11),

E(/OlfoeuN(du)> :)LEO(/OT1 (/OlfoeuN(du)) 00,ds). (12)

Hence, we need to verify that

Eo(f) = E(N(?O,l]))EO(,/OT] (/Olfoe,,N(du)) oGsds). (13)

Let us prove (13). We first compute the inside of the expectation in the right-hand
side of (13). Since Lebesgue integration is unchanged by shifting the integration
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variable, we have

/OTI ( /01 f o 0uN(du)) o 6ds = /0T1 ( /01 £ 0 BurN(du+5) )ds
:/OT1 (/SSHfoGMN(du))ds

oo rTy
:/ I(s<u<s+1)ds(fo6,)N(du)

+o0

Z 1s<Tn<s+l)ds(f06T)

n=—oo

Since F is stationary with respect to 1, = 07, the expectation concerning F in the
left-hand side of (13) becomes

+°o E() / I(s<T, <s+1)ds(f09r))

n—=-—oo

= i EO((/OTIl(s<Tn<S+1)dsfonn)OT]7n)

Nn=—o0
400

A
-y EO(/ 1(s<To—T,n<s+l)dsf>
0

Nn=—oo

Tin
= ko / (s < Ty < s+ 1)dsf)
n*—oo n

:E0</+MI(T0—1 <s< To)dsf) — Eo(f).

—oo

Thus, (13) is obtained if A = E(N((0,1])). The latter is obtained from (12) with
f =1 and the above computations. This completes the proof. O

In applications, particularly in queueing networks, we frequently meet the situa-
tion that point process N is the superposition of m point processes N, ..., N, all of
which are consistent with 6; for some m > 2. Namely,

N(B)=Ni(B)+...+Nu(B), Be BR).

Assume that P is 6;-stationary, and A = E(N((0,1]) < e with A # 0. For i =
1,2,...,m, let A; = E(N;((0,1])), and denote Palm distribution concerning N; by
P.. Then, from the definition of Palm distribution, it is easy to see that

(ngE

APy(A) =Y LP(A), AcZ. (14)

1

This decomposition of the Palm measure is shown to be useful in applications (see
Section 10).
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6 Detailed Palm distribution

We have mainly considered Palm distribution when point process N is simple. The
definition of Palm distribution itself does not need for N to be simple. However, if
N is not simple, 7, defined by 7, = 67, can not properly handle events that simulta-
neously occur in time. We need to differently define Palm distribution for this case.
To this end, we consider a pair of 7,, and 7,,, where 1, is a discrete time operator
group. In what follows, point process N is assumed to be generated by {7, }, and N
is not necessarily simple.

Definition 7. Let {7,;n € Z} be a nondecreasing sequence of random variables,
which generate point process N, and let {1, } be the discrete time shift operator
group. If

{(Tmnn)}oet:{(Tn*tann)}, I’ZGZ,ZGR

holds, then {(7,,1,)} is said to be a 6;-consistent marked point process with shift
operator 1);,.

Definition 8. Suppose that P be 6;-stationary and {(7,,7m,)} is a 6;-consistent
marked point process with 1n,, where ... < T <Th <0<T1 <Th < ..., and
A =E(N((0,1])) < oo. Then, we define Py as

B N
Po(A) = A~ E( y 1,,;1(/‘)), Ac Z. (15)
n=1

This Py is a probability measure on (£2,.% ), and called a detailed Palm distribution
concerning {7, }.

Detailed Palm distribution Py is different from Palm distribution Py concerning
N if N is not simple. Nevertheless, we can extend the results in the previous two
sections to detailed Palm distribution. Since their proofs are similar to the previous
ones, we present their versions for Theorems 1 and 2 without proof.

Theorem 3. Suppose that P is 6;-stationary, {(7,,,n,)} is a 6; consistent marked
point process, and A = E(N((0,1])) < . Then, detailed Palm distribution Py is
7,-stationary. Furthermore, P is recovered from Py by

Py =2Eo( [ 1. AcT 16)
() 0 A eul(A>M, c 7. (

where E| represents the expectation concerning Py. Conversely, suppose that prob-
ability measure Py on (2,.7) satisfies 0 < Eo(T;) < oo and Py is 1,-stationary for
a given discrete time shift operator group {1, }. Let AL = 1/E((T;) and define P by
(16), Then, P is a probability measure on (2,.%) which is 6,-stationary, and we
have E(N((0,1]) = 1/Ey(T;) = A. For these Py and P, we have (15).
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We next consider another way to define the detailed Palm distribution. For this,
we use a simple point process which have masses at the same time instant as N.
Denote this point process by N*. Namely, N* is defined as

1
):/71\/(@), Be A(R). a7
5 N({u})
This point process is said to be a simple version of N. Let 7, be the n-th counting
point of N*.

Lemma 7. Under the same assumptions of Definition 8, let A* = E(N*((0,1])) and
denote the Palm distribution concerning N* by P, then we have

B 2" N((0.T7])
PO(A):TEO< ;1 111,7'(A))’ AeZ, (18)
where Ej represents the expectation concerning Fy.

Proof. Let 1,; = Or:. Then, from the definition of Palm distribution P, we have, for
random variable f,

N ((O.1)
Ej(f) = ( Z fom)-

(0,77])

In this equation, letting f = Zé 11751 (4)° the expectation in the right-hand side

becomes

Logpye0 @)

:E<>§”11 )

Since the last term equals APy(A) by (15), we have (18). |

Example 4. Let us consider batch arrival queueing system. Let 7,° be the n-th batch
arrival time. We then number all customers sequentially including those who are in
the same batch. Let 7,, be the n-th arrival time of a customer in this sense. Let B,
the size of the batch arriving at time 7", and let J,, be the number of the n arriving
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customer counted in his batch. That is, J, = max{¢ > 1;T, = T,,_s,1 }. In particular,
Jo=DBp.Letn, = GT,,» then

Joon, = max{€ >1,0="T,_py1 — Tn} =Jn.
Hence, if {7, } is 1,-stationary under Py, then we have, for any n € Z,

Py(J, = k) = Po(Jo =k)

2 .
TEO(Zl Jooy =) = g (B > 0,

because J, = k for some positive n < B if and only if B; > k. This means that a
randomly chosen customer is counted in its batch subject to the so called stationary
excess distribution of By under Fj. a

7 Time and event averages

In this section, we give interpretations of stationary P and Py through sample av-
erages. It will be shown that these sample averages are unchanged under both of
them. This means that both probability measures can be used for computing sta-
tionary characteristics when either one of them is taken for a probability model.
Furthermore, sample averages may be only a way to identify system parameters.
Thus, the unchanged sample averages are particularly important in applications of
Palm calculus. This is something like to use two machines for production which is
originally designed for one machine. Throughout this section, we assume

(7a) Measurable space (2,.%) is equipped with a shift operator group {6;;r € R}.

(7b) There exists a simple point process N which is consistent with 6;, and the
discrete time shift operator group {1,;n € R} is defined by (3).

(7c) There exists a probability measure P on (£,.%) which is 6;-stationary and
satisfies A = E(N(0,1]) <

By these assumptions, Palm distribution Py is well defined for N. Let

J ={Ac.7;6,(A) = Aholds for all r € R},

then .# is o-field on Q. Since 6, ! (.#) = .7, this .# is called an invariant o-field
concerning 6;. Similarly, an invariant o-field concerning 7, is defined.

Lemma 8. For the shift operator group {n,;n € Z}, define .9, as
So=1{Ac F;n; (A) =A}.

Then, %) = #, and %, is the invariant o-field concerning 1;,.
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Proof. From the definition, .# is clearly 1,-invariant, i.e., 1, 1 (H) = A, Hence,
we only need to prove % = .#. Choose A € .. Since 6, ' (A) = A, we have

n ' (A) = {0 € Q; 6, () (0) € A}
= Ute]R{Tl :t}ﬁetil(A)
== U[ER{TI :t} ﬂA :A

Thus, we have A € .%. Conversely, let A € .. Since 1, 0 1] = Ny+1, We have
N, '(A)=Aforanyn € Z.If T,_| <t < T, then

N1 0 6:(®) = 07,6, (0 (®)) = O, () (6: (@) = Or, () = M (@).
Hence, for any r € R,

67'(A) = U= (T <1 <T,}N67'(A)

n=—

= U AT <t <T,}N6 ' (7' (A)

n——

=U AT <t <T,}N(mo6) ' (A)

n=—

=Ule AT, 1 <t<T,}nn, Y(A)

n=—

= U= AT <t <T,}NA=A.

=

Thus, we have A € ., which completes the proof. O
ForA € .7, P(A) # Py(A) in general, but we have the following result.

Lemma 9. For A € ., Py(A) = 1 if and only if P(A) = 1.

Proof. Since 6, 1(A) = A for A € .7, from (4) and (11), it follows that

1

R = A ELNO.A), P4 = g

Eo(1aTh).
Hence, if Py(A) = 1, then E(14N((0,1])) = E(N((0,1]), which implies Py(A) = 1.
Conversely, if P(A) = 1, then Eo(14T1) = Eo(T1), which implies P(A) = 1. O

Clearly, the equivalence in this lemma is not true for A = {7 = 0}. Thus, it may
not be true for A ¢ .7

Definition 9. Suppose that probability measure P on (Q2,.%) is 6;-stationary, and
let .# be the invariant o-field concerning 6;. If either P(A) =0 or P(A) = 1 for each
A € Z, then P is said to be ergodic concerning 6;. As for Py and {n,;n € Z}, we
similarly define P to be ergodic concerning 1;,.

From Lemma 9, the following result is immediate.

Lemma 10. Assume that probability measure P on (Q2,.%) is 6,-stationary. Then,
Py is ergodic concerning 1, if and only if P is ergodic concerning 6;.
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The next result is a version of law of large numbers, and called ergodic theorem.
We omit its proof, which can be found in text books on probability theory (see, e.g.,

[5D.

Theorem 4. Let {n,;n € R} be the shift operator group on (2,.%#), and let {¥,}
be a discrete time stochastic process which is consistent with 1,. Let Py be a 1,-
stationary probability measure on (2,.%#), and denote the expectation concerning
Py by Ey. If Ey(|Yp|) < oo, then we have, under P,

lim — ZYZ Ey(Yo| %) (19)

n—oo n

with probability one, where .% is the invariant 6-field concerning 7n,,, and Eo(Yy|-#%)
is the conditional expectation of ¥j given .%.

This theorem leads to the following results.

Corollary 2. Suppose (7a), (7b), (7c). Then, {Y, } is consistent with 1,,. If Eo(|Yp]) <
oo, then we have, under both of Py and P,

lim — ZYg Eo(Yo|.#) (20)

n—oo n

with probability one. Furthermore, {X (#)} is consistent with 6y, and if E(|Xp]|) < oo,
then we have, under both of P, and P,

lim tX(u)du:E(X(O)Lﬂ) Q1)

t—oo t Jo
with probability one.

Remark 2. Sample averages in (20) and (21) are referred to as event and time aver-
ages, respectively. If P or Py is ergodic, then .# consists of events which have either
probability zero or probability one. Hence, the conditional expectations in (20) and
(21) reduce to the unconditional ones. If ¥, (or X(¢)) is nonnegative, we do not
need the condition that Eo(¥y) < e (or E(X(0)) < o). To see this, we first apply
min(a, X (¢)) to (20) for fixed constant a > 0, then let a T oo. m|

Proof. Since Py is 1n,-stationary, (20) holds under Py with probability one by Theo-
rem 4. Let A be the set of all w € £ such that (20) holds. Since Py(A) = 1, Lemma 9
yields P(A) = 1. Hence, (20) holds under P with probability one. As for (21), if it
holds under P with probability one, we similarly get it under Py. To get (21) under

P, we let
n
Nn = Oy, Y, = / X (u)du
n—1

Then, it can be shown that Theorem 4 yields (21) under P since P is also stationary
concerning this 1;,. O
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Similarly to this corollary, we can prove the next result.

Corollary 3. Under the same assumptions of Corollary 2, we have, under both of
Py and P,

tim YO _ N((_tt’o]) — E(N((0,1])].#) 22)

t—o0 t t—o0

holds with probability one.

Corollary 2 and Corollary 3 are convenient to compute sample averages since we
can choose either P or Py to verify them for both of P and F.

Example 5 (Little’s formula in sample averages). We consider the same model dis-
cussed in Example 3. Consider a service system, where arriving customers get ser-
vice and leave. For simplicity, we here assume that all 7;, are distinct, i.e., not more
than one customers arrive at once. If either P or P is ergodic, then, by Corollary 2,
we can rewrite Little’s formula (7) in terms of time and event averages as

1/ 1
lim — | L(u)du=Alim — Y U,,
=1

t—oo 0 n—oo N

which holds with probability one under both of P and Fy.
The simplicity condition on N is not essential in the above arguments. We only
need to replace Ey by the expectation E of the detailed Palm distribution. O

8 Rate conservation law

In the previous sections, we have considered two kinds of expectations by a sta-
tionary probability measure and its Palm distributions. Computations using those
distributions is called Palm calculus. This calculus gives relationship among charac-
teristics observed at arbitrary points in time and those in embedded epochs. Typical
formulas are (4), (6) and (11). They can be applied to a stochastic process. How-
ever, they are generally not so convenient for studying a complex systems such as
queueing networks. Dynamics of those systems is typically driven by differential
operators such as generators and transition rate matrices of Markov processes or
chains while formulas in Palm calculus concern integrations over time in general.

In this section, we consider a convenient form of Palm calculus for stochastic
processes. As we shall see, this form can be used to characterize the stationary
distribution when they are Markov processes. However, in this section, we do not
assume any Markovian assumption, but use the same framework as Palm calculus.
So, our assumptions is basically of the stationary of processes. Extra assumptions
that we need is the smoothness of a sample path except jump instants, which is not
so restrictive in queueing applications.

Throughout this section, we assume (7a), (7b), (7c) of Section 7. Since these
assumptions are important in our arguments, we restate it as follows.
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(8a) There is a probability space (22,.%, P) such that shift operator group {6;;z €
R} is defined on Q and P is 6,-stationary. There is a simple point process N
which is consistent with 6, and satisfies A = E(N(0,1]) < oo.

We further assume the following three conditions on a stochastic process of interest.

(8b) {X(#)} is a real valued continuous time stochastic process such that it is
consistent with 6; and right-continuous with left-limits for each r € R, that is,
limg o X (r + €)(w) = X(¢)(w), and X (—)(®) = limg o X (r — €) () exists for
eacht € R and each w € Q.

(8¢c) Atallz, X(¢) has the right-hand derivative X’(¢). That is,

exists and finite.
(8d) N includes all the times when X (¢) is discontinuous in . That is, for each
Be #(R),N(B) =0implies Y ;.5 1(X(r) #X(t—)) = 0.

All these conditions are sufficient to hold with probability one for our arguments.
However, we rather prefer that they hold for all ® € Q for simplicity.

Lemma 11. Under assumptions (8a), (8b), (8c) and (8d), {X(¢)} and {X'(¢)} are
stationary processes, and N is a stationary simple point process. If E(X'(0)) and
Ep(X(0—))—X(0)) are finite, then

E(X'(0)) = AEo(X (0—) — X(0)). (23)

Proof. From (8a) and (8b), X (¢) and N are clearly stationary. From the consistency
on X (¢) and the differentiability (8c), it follows that

X'(1)06, = lim (X(t-+¢) ~X(1) 0,
= lgiﬂ)lé(X(tJrque)fX(tJru)) =X'(t+u).

Hence, X'(¢) is also consistent with 6;, so {X'(¢)} is a stationary process. From (8a),
A < oo, 30 N(0, 1] is finite with probability one. Hence, from (8d), we have

X()=X(0)+ /OIX/(M)du—&— /OI(X(O) —X(0-))o6,N(du), t>0. (24)
We tentatively suppose that E(X (¢)) is finite, which implies that E(X (1)) = E(X(0))

due to the stationarity of X (z). Since E(X’(0)) is finite and X'(¢) is stationary, we
have

E(/OIX’(u)du) _ /01 E(X(u))du = E(X'(0)).

Hence, taking the expectations of (24) for t = 1, we have
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1

E(X’(O))+E</

0 (X(O)—X(O—))oQMN(du)> =0.

This yields (23) by applying the Palm calculus in Definition 6.
We next remove the assumption that E (X (¢)) is finite. To this end, for each integer
n > 1, define function f, as

X, | <n,
falx) = —%(max(O,n—&—l—x))z—i—%—i-n, x>n,
I (max(0,n+1+x))> — % —n, x< —n.

This function is bounded since | f,(x)| < § +n for all x € R. Furthermore, it has the
right-hand derivative:

1, —n<x<n,
jon ) nt+1—x, n<x<n+l,
flx) = n+1+x, —n—1<x< —n,
0, otherwise.

From this, it is easy to see that f’(x) is continuous in x, and | f; (x)| < 1. Furthermore,
X
0= £0 < [ 172z < [l
y

Let Y, (1) = f,(Y (), then Y, (¢) is bounded and

so E(Y,(0)) and Ey(Y,(0—) — Y, (0)) are finite by the assumptions. Hence, from the
first part of this proof, (23) is obtained for ¥,,(¢). Namely, we have

E(Y,:(O)) = A'EO<Yn(O_) - Yn(()))'

Let n — oo in this equation noting that f,(x) — x and f,(x) T 1 as n — . Then,
the bounded convergence theorem yields (23) since |Y,,(¢)| and |Y,(1—) — Y,,(¢)| are
uniformly bounded in n. |

Remark 3. From the proof of Lemma 11, we can see that, if E(X(0)) is finite, then
the finiteness of either E(X’(0)) or Eo(X (0—) — X (0)) is sufficient to get (23). Here,
we note that the finiteness of E(X) for a random variable X is equivalent to the
finiteness of E(]X|) due to the definition of the expectation.

Formula (23) is referred to as a rate conservation law, RCL for short. In fact, it can
be interpreted that the total rate due to continuous and discontinuous changes of X (¢)
are kept zero. In application of the RCL, X () is a real or complex valued function
of a multidimensional process. Let X(7) = (X;(¢),...,X4(¢)) be such a process for
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a positive integer d, and let f be a partially differentiable function from R? to R. In
this case, we put X (¢) = f(X(#)). Then, Lemma 11 yields

Corollary 4. Let d be a positive integer, and let f be a continuously partially dif-
ferentiable function from R? to R. If each X,(¢) instead of X () satisfies con-
ditions (8a), (8b), (8c) and (8d) for all £ = 1,2,...,d and if E(f(X(0))) and
E(f(X(0)) — f(X(0—))) are finite, then we have

E (X'(0)Vf(X(0))) = AEo(f(X(0-)) — £(X(0)))- (25)

where X'(0) = (X{(0),...,X;(0)) and V/(x) = (32 f(X),... 5= f(x))" for x =
(xlv"'axd)'

This is the most convenient form for queueing applications even for d = 1 be-
cause we can choose any f as far as it is differentiable and satisfies the finiteness
conditions on the expectations. We refer this type of f as a test function.

Example 6 (Workload process). We consider the workload process with a state de-
pendent processing rate r and an input generated by a point process N and a se-
quence of input works {S, }. The workload V (¢) at time # > 0 is defined as

N(r) t
V() =V(0)+ Y S, 7/ V() 1(V () > 0)du,
n=1 0

where r(x) is a nonnegative valued right-continuous function on [0,e0). If r(x) = 1,
then V(¢) is the workload process of a single server queue.

Let T,, be the n-th point of N. We assume that N has a finite intensity A, {(7,,,S,)}
is consistent with 6, (see Definition 7), and {V (¢)} is a stationary process under P.
Let f be a bounded and continuously differentiable function on R. Since X () =V (¢)
satisfies all the conditions of Corollary 4 and X'(¢) = r(r), we have

E(r(V(0))f'(V(0))1(V(0) > 0)) = AEy(f(V(0-)) = f(V(0-) +50)). (26)

Using Corollary 4, we can generalize this formula for a multidimensional workload
process with a multidimensional input. The virtual waiting time vector of a many
server queue is such an example. O

Another useful form is obtained from decomposing the point process N.

Corollary 5. Under the assumptions of Lemma 11, suppose that the point process
N is decomposed into m point processes Ni,Na,...,N,, all of which are consistent
with 6, for some m > 2. Namely,

N(B) =Ni(B) +No(B) + ...+ Nu(B),  Be A(R).

Further suppose that A; = E(N;((0,1])) is finite for all i = 1,2,...,m, and de-
note the expectation concerning Palm distribution with respect to N; by E;. If
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E;(X(0)),E;(X(0)) are finite for i = 1,2,...,m and if E(X’(0)) is finite, then we
have

E(X/(0)) = ¥ AE(X(0-) — X (0)). @

Proof. From the assumption on the finiteness of A;, N has the finite intensity A =
Y | A;. Denote the expectation concerning Palm distribution with resect to N by Ey,
then

AEX(0-) = X(0) = & | 0u-) - X(w)¥(a) )

I
(ngE

E </01(X(u—) —X(u))N,-(du))

Il
1=
ond
M
=
=)
L

|

e
=

Il
-

Hence, Lemma 11 concludes (27). O

We have been only concerned with the simple point process N for the rate con-
servation law (23). If N is not simple, we can use its simple version N* defined by
(17). However, we must be careful about the changes of X (z) at atoms of N*. That
is, we need to use the detailed Palm distribution Py instead of Py in (23) when we
consider embedded events at T,,.

9 PASTA: a proof by the rate conservation low

In queueing problems, we frequently require to compute system characteristics ob-
served at different points in time. In this section, we demonstrate how we can use
the rate conservation law to the observation of a customer arriving subject to a Pois-
son process, where point process N is called a Poisson process if {f,+1 —t,;n € Z}
is the sequence of independently, identically and exponential random variables for
the n-th increasing instants instant #, of N. The following result is called PASTA,
which is the abbreviation of “Poisson Arrivals See Time Averages”, which is coined
by Wolff [35].

Theorem 5 (PASTA). Under the assumptions (8a), (8b), (8c) and (8d), let Ny be the
Poisson process which is consistent with 6, and finite intensity Ao, and denote the
expectation of Palm distribution with respect to Ny by Eo. If {X (u);u < ¢} is inde-
pendent of {Ny([t,# +s]);s > 0} for all 7, then we have, for all measurable function
f such that E(f(X(0))) and Eo(f(X(0—))) are finite,

E(f(X(0))) = Eo(f(X(0-))). (28)
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Proof. Similarly to Lemma 11 and the standard arguments for approximation of
functions in expectation, it is sufficient to prove (28) for the f such that f is dif-
ferentiable and its derivative is bounded. Let Ro(z) = sup{u > 0;Ny(¢,t + u] = 0}.
That is, Ro(¢) is the remaining time to count the next point of Ny at time 7. For
nonnegative number s, let

Y(t) = f(X(t))eP®  reR.

Then, clearly Y () is bounded and consistent with 6; . Since R{,(t) = —1, the right-
hand derivative of Y (¢) is computed as

Y/(t) = (X/(t)f/(X(l)) +Sf(X(0)))€7SRO(l).
We next define a point process N as
Ni(B) = N(B) — max(N(B),No(B)),  Be€ A(R),

where it is noted that N is the point process given in the assumption (8d). Obviously,
Ny and N are simple, and do not have a common point. Furthermore, N; is consis-
tent with 6, and has the intensity A; = E(N;(0,1]) < A < e. Thus, we can apply
Corollary 5 (see (a) in Remark 3). Let ¢(s) = E(e~*®0(0), then

E (X'(0)'(X(0)) +5f(X(0)))) o(s)
=Ao (Eo(f(X(0-))) — Eo(f(X(0)))9(s))
FME (f(X(0-)) - £(X(0))) @(s)- (29)

By the memoryless property of the exponential distribution, we have @(s) = A9 /(s +
Ao). Hence, letting s — oo in (29) and using the fact that s¢(s) — Ag and ¢(s) — 0,
we obtain (28). O

Remark 4. 1f the reader is familiar with a martingale and the fact that the Poisson
process N of Theorem 5 can be expressed as

N((0,2]) = At +M(z), t>0,

where M(t) is an integrable martingale with respect to the filtration o(X (u);u <1).
See Section 11 for the definition of the martingale. Then, (28) is almost immediate
from the definition of the Palm distribution since

[ et am

is also a martingale, and therefore its expectation vanishes. This proof is less ele-
mentary than the above proof.

Let us apply Theorem 5 together with the rate conservation law to the M/G/1
queue, which is a single server queue with the Poisson arrivals and independently
and identically distributed requirements.
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Example 7 (Pollaczek-Khinchine formula). We consider the special case of the
workload process in Example 6. We here further assume that the processing rate
r(x) =1, N is the Poisson process with rate A > 0 and {S,} is a sequence of i.i.d.
(independent and identically distributed) random variables which are independent
of everything else.

Thus, we consider the workload process V () of the M/G/1 queue. The service
discipline of this queue can be arbitrary as long as the total service rate is always
unit and the server can not be idle when there is a customer in the system. This
process is known to be stable, that is, its stationary distribution exists if and only if

p=AE(S)) < 1.

We assume this stability condition. Then, {V (¢)} is a stationary process under the
stationary distribution. For nonnegative number 6, let f(x) = e~ % for x > 0, then
(26) yields

OE(e " O1(V(0) > 0)) = AEy(e V' (07) — =0V (07)+50))
= AE(e O (1-E(e %)), (30)

where we have used the i.i.d. assumption of §,, and Theorem 5 to get the second
equality. We can rewrite the left-hand side as

OE (¢ %) —0P(V(0)=0).
Let 9(0) = E(e %)) and g(8) = E (e~ 1), then we have, from (30),
0¢(6) —6P(V(0)=0) =2A9(6)(1—g(6)).

Since @(6) — 1 and £ — _¢/(0) = E(S;) as 6 | 0. we have P(V(0) = 0) =
1 — p, dividing the above formula by 8 and letting 6 | 0. Thus, we have the Laplace-
transform of V' (0) under the stationary assumption.

6(1-p)

(p(e)zm, 6> 0. 31)

This formula is independently obtained by Pollaczek and Khinchine, and called
Pollaczek-Khinchine formula. |

In this example, if the processing rate r(x) is not a constant, then it is generally
hard to get the stationary distribution of the workload in any form. We show that
there is an exceptional case in the following example.

Example 8 (State dependent service). We again consider the workload process V (¢)
in Example 6 under the assumptions of Example 7 except for the processing rate
r(x), which may be arbitrary. Thus, we consider the M/G/1 workload process with
state dependent processing rate. In this case, the stability condition for V (¢) is com-
plicated, so we here just assume that the stationary distribution exists. Similar to
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(30), we have

OE(r(V(0)e vV O1(v(0) > 0)) = AE( O ) (1 —E(e %)), (32
From this equation, it is generally hard to get @(8) = E(e=?V(0-)) for a given
2(0) = E(e7951) except for the case that r(x) is a constant.

We thus consider the special case that r(x) = a + bx for nonnegative constant a
and positive constant b. In this case, the left-hand side of (32) can be written as

0E((a+bV(0))e V01V (0) > 0)) = 6(ap(6) —be'(8)) —abP(V(0) =0).

Hence, we have the following differential equation from (32).

- <a—11§“”) 0(6)+9'(6) = - “P(V(0) =0) (33)

For 6 > 0, let

h(6) = —%/06 (a—xl_ug(“)> du.

Then, the solution of (33) with the boundary condition ¢(0) = 1 is obtained as

0(6) = MO (1 ~2P(V(0)=0) /09 eh<“)du> .

To determine P(V(0) = 0), Note that h(eo) = limg_.h(0) = —co if a > 0 while
h(eo) = +oo if @ = 0. Hence, if a = 0, then

9(6) = M.
If a > 0, then we must have 1 = %P(V(O) = O)/ ¢""du, which concludes
0

P(V(0)=0)=— (/ eh<”)du> . Hence, we finally have, for a > 0,
0

o o -1
0(0) = eih(e)/ ¢"Wdu (/ eh(“)du> .
0 0

It may be interesting to see the mean workload E(V (0)) = —¢’(0), which is

%p, a=0,
E(V(0)) = { %(p—a)+ (fomeh(u)du>7l, a>0.

Note that these computations are not valid for b = 0. |
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10 Relationship among the queueing length processes observed
at different points in time

The rate conservation is powerful for complicated systems. This is exemplified for
the system queue length process, i.e., the total number of customer in system, un-
der a very general setting. Here, the queueing system is meant a service system
with arrivals and departures. Let N, and N; be point processes composed of arrival
and departure instants, respectively. We here allow those point processes to be not
simple. Then, the the system queue length L(r) at time ¢ is defined as

L(t) = L(0) + No((0,1]) = Na((0,1]), £ >0.

Note that customers who leave the system immediately after their arrivals without
any service are counted as departure.

Theorem 6. For a queue system with arrival point process N,, departure point
process Ny and the system queue length L(r), assume that P is 6;-stationary and
N4, Ny,L(t) are consistent with 6;, that is, (N,,Ny,{L(¢)}) is jointly stationary.
Let N and N be the simple versions of N, and Ny. If A; = E(N;((0,1]) and
A; = E(N;((0,1])) are finite, then, forn € Z,

AiPy(n+1—AL(0) < L(0—) < n) = A4P4(n+ 1+ AL(0) < L(0) <n), (34)

where AL(0) = L(0) — L(0—), and P, and P;; are Palm distributions of N; and the
following point process, respectively.

Ny(B) = Ny (B) —min(N, (B),Ng(B)), ~ Be A(R),
and A} is its intensity.
Proof. We can apply Corollary 5 for X(t) = 1(L(t) > n+ 1) and N = N + N, be-
cause X (1) is bounded and X’(r) = 0. Hence, (27) yields
A (P (L(0—) >n+1)— P, (L(0—)+ AL(0) > n+1)

a a

+A4(P3(L(0) = AL(0) = n+ 1) = P4(L(0) = n+1)) =0,
which concludes (34). O
In Theorem 6, N’ count instants when departures only occur.

Example 9 (Queueing model with no customer loss). In the model of Theorem 6,
assume that there is no lost customer, and customers singly arrive and singly depart.
Furthermore assume that arrivals and departures do not simultaneously occur. That
is, P,(AL(0) = 1) = P;(AL(0) = —1) = 1, where P, is the Palm distribution of N.
From (34), it follows that

APy (L(0—) =n) = A4P;(L(0) = n), n=0,1,....
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Summing both sides of the above equation over all n, we have A, = A;. Hence, we
have

PL(0=)=n)=Py(L(0)=n), neZ,. (35)

Thus, the system queue length observed by arriving customers is identical with the
one observed by departing customers. This is intuitively clear, but it is also formally
obtained, which is important to consider more complex situations. O

Example 10 (Loss system). For the queueing system of Example 9, assume that the
system queue length is limited to M, and arriving customers who find M customers
in system are lost. In this case, (35) does not hold generally. For example, its right-
hand side vanishes for n = M, but its left-hand side may not be zero. Since both
sides of (34) vanishes for n > M, we have

AaPa(L(0=) = n) = APy (L(0) =n), n=0,1,....M—1. (36)

Since the departure reduces one customer, P;(L(0) <M — 1) = 1. Hence, summing
(36) over forn=0,1,...,M — 1, we have

This is the probability that customers are lost, and is again intuitively clear. We here
correctly present it using Palm distributions. O

Theorem 6 does not have information on the system queue length at an arbitrary
point in time. Let us include this information using supplementary variables.

Theorem 7. Under the assumptions of Theorem 6, let R,(¢) be the time to the next
arrival instant measure from time ¢, i.e., remaining arrival time, and let 77 be the first
arrival time after time 0. For a nonnegative measurable function f on R such that it
is differentiable, E,(f(T1)) < o and |E(f’(R4(0)))| < oo, where E, represents the
expectation concerning the detailed Palm distribution of N,, we have

—E(f'(Ra(0)):L(0) > n+1)
= Aa (Ea(f(0);L(0—) > n+1) = Eo(f(T1);L(0) > n+1))
+A4Eq(f(Ra(0));n+1+AL(0) <L(0) <n),  n€Zy, (37)

where E represents the expectation of the detailed Palm distribution of N, and A,
and A, are the intensities of N, and N, respectively.

Proof. Let X(t) = f(R,(¢))1(L(¢) > n+1). Since R, () = —1, we have X'(t) =
—f(Ry(0))1(L(¢) > n+1). Since P,(R,(0) =T;) = 1, Corollary 5 and the remark
on the detailed version of the rate conservation law at the end of Section 8 concludes
37). O
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Example 11 (NBUE distribution). In Example 9, assume that the interarrival times
of customers are independent and identically distributed and that arrivals and depar-
tures do not simultaneously occur. Furthermore, assume that the interarrival time 7}
satisfies

Ea(Tl—x|T1 >y) SEa(Tl), x> 0. (38)

The distribution of 77 under P, satisfying this condition is said to be NBUE type,
where NBUE is the abbreviation of New Better than Used in Expectation. In fact,
(38) represents that the conditional expectation of the remaining arrival time is not
greater than the mean interarrival time. If the inequality in (38) is reversed, then the
distribution of 7 is said to be NWUE, which is the abbreviation of New Worse than
Used in Expectation. Form the NBUE assumption, we have

E(Ry(0);L(0) > n+1) < E,(T1)P(L(0) > n+1).

We apply Theorem 7 with f(x) = x. Since f(0) =0, f/(x)=1and A, =A,=1; =
1/E,(Th), (37) yields

—P(L(0) > n+1) < —P4(L(0) > n+1)+P4(L(0)=n),  n>0.
Since P, = P, and P; = P, this and (35) lead to
Py(L(0—)>n+1) <P(L(0)>n+1), n>0. (39)

Hence, the distribution of the system queue length at the arrival instants is greater
than the one at an arbitrary point in time in stochastic order, where, for two dis-
tribution functions F' and G, F is said to be greater than G in stochastic order if
1-F(G) >1—G(x) forall x € R. a

Similarly to Theorem 7, we can take the minimum of the remaining service times
of customers being served, and get relationships among the distributions of the sys-
tem queue lengths at different embedded points in time.

11 An extension of the rate conservation law

In this section, we briefly discuss how the rate conservation law (23) can be gen-
eralized for other types of processes. For this, it is notable that this law is obtained
from the integral representation of the time evolution (24) and the definition of Palm
distribution Py. There are two integrators, du of the Lebesgue measure and N(du)
of a point process, both of which are defined on the line. To closely look at this, we
rewrite (24) in a slightly extended form as

X(t)=X(0)+ /Ot X'(u)A(du) + /Ot AX (u)N(du),
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where A(r) — A(0) is consistent with the shift operator 6, and has bounded variations,
and AX (u) = X (u) — X (u—). If X (¢) has either a component of unbounded variations
or a continuous and singular component with respect to the Lebesgue measure, this
expression breaks down. To get back the expression, we subtract this component,
denoting it by M(¢). Thus, we have

X(t) — M(t) = X (0) — M(0) + /O Y (w)A(du) + /0 "AY ()N (du),

where Y (u) = X(u) — M(u). If M(¢) is consistent with 6;, then we have the rate
conservation law for the process {Y(7)}. It may be reasonable to assume that M ()
is continuous. However, this rate conservation law may not be useful to study {X (¢) }
because X (¢) is not directly involved.

To get useful information, we make use of a test function, which is used in Corol-
lary 4, and apply Itd’s integration formula, assuming that M (¢) is a square integrable
martingale. That is,

(11a) M(z) is continuous in ¢ and consistent with {6, }.
(11b) E((M(t) —M(0))?) < oo for all t > 0.
(11c) {M(¢) —M(0);r > 0} is a martingale with respect to {.%, }, that is,

E(M(t) — M(0)|.Z,) = M(s) —M(0), 0<s<rt,

where %, is a sub o-field of .# which is increasing in# € R, and {%;t € R} is
called a filtration.

This martingale assumption is typical for a process with unbounded variations. It is
beyond our scope to fully discuss Itd’s integration formula, but we like to see how it
works. The reader may refer to standard text books such as [16] and [17] for more
details. Assume that X (r) and M(z) are #;-measurable for all 7 € R.

For convenience, let My(t) = M(¢t) —M(0) for t > 0. Under these assumptions,
Mg (t) is submartingale, that is,

EMG()|7) > M(s),  0<s<t,

and there exists a nondecreasing process (Mo (t)) such that MZ(¢) — (Mo (t)) is a mar-
tingale. Then, Itd’s integration formula reads: for twice continuously differentiable
function f,

FxX() = +/f )M (u +/f Y/ (w)A(du)
3 [ 7)Mot + / AS(Y ()N (du),  (40)
where the integration on the interval [0,¢] with respect to dM(u) is defined L*-
limit of the Riemann sum, thatis, Y/_, /(X (1)) (M (L) —M(£1)). See Theorems

17.18 and 26.6 of [16] and Theorem 3.3 of [17]. This integration is a martingale, and
its expectation vanishes. Define the Palm distribution with respect to (My(¢)) as
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1 1
Py (C) = mE (/0 1c09ud<Mo(u)>> , CeZ.

where Ay = E(M(1) — M(0)). The Palm measure Py is similarly defined for the
non-decreasing process A. Thus, taking the expectation of both sides of (40), we
arrive at

E4(f(X(0))Y'(0)) + %1<M>E<M> (f"(X(0))) +AEo(Af(¥(0))) =0, (4D

assuming suitable finiteness conditions for the expectations, where E4 and E
stand for the expectations concerning Py and Py, .

We can proceed one further step using the representation theorem for a contin-
uous martingale by the Brownian motion. This theorem says that, for a continuous
martingale My () with respect filtration {.% }, there exists a progressively measur-
able process Z(t) such that

Molt) = /0 "ZG)dBw),  (Mo(r)) = /O Pydu<eo, 130,

where {Z(t)} is said to be progressively measurable if {(u, @) € [0,f] x 2;Z(u) €
A} € #([0,t]) x # forallt > 0, and {B(¢);t > 0} is called a Brownian motion if
it has independent and stationary increments which are normally distributed with
mean 0 and unit variance (see, e.g., Theorem 18.12 of [16] and Theorem 4.15 of
[17]). Hence, (41) can be written as

E4(f'(X(0))Y'(0)) + %E (/" (X(0))Z*(0)) +AEo(Af(Y(0)) =0,  (42)

where A, = E(f) Z*(u)du).
In queueing applications of (42), Y (¢) and Z(¢) are often identified as functions
of X (¢) from their modeling assumptions through the expression:

X(t)=X(0)+ /0 t Y (u)A(du) + /0 t Z(u)dB(u) + /0 t AY (u)N(du).  (43)
In this case, Y (1) = g(X(¢)) and Z(¢) = h(X (z)) for some functions g and &, and (42)

is really useful to consider the stationary distribution of X (z).

Example 12 (extended Pollaczek-Khinchine formula). Let us consider to add the
Brownian motion to the workload process V(¢) in Example 7. That is, V(¢) is
changed to the following X (¢).

0
X(1) = X(0) + 62B(1) +NZ Sy—t+1(1)

n=1
_ X(0)+ /0 (1(du) — du) + /0 ' 52dB(u) + /0 "AY ()N (du)
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where I(r) is a minimum non-decreasing process for X (¢) to be nonnegative. That
is, I(¢) is a regulator. Thus, if we put A(t) =1(t) —t,Y(t) =t + [§ AY (u)N(du) and
Z(t) = o, then we have (43).

Assume the stability condition that

p=AE(S)) < 1.

Then, {X(¢)} is a stationary process under the stationary distribution. For non-
negative number 6, let f(x) = e~%*. We apply (42) to X () and this f. Since
I(1) is increased only when X(r) = 0, we have, using @(8) = E(e~?X(0)) and
g(8) =E(e ™),

2092
O 9(60) = 9(6)(1~(0))

0(9(6) —Ei(1)) +

Similar to Example 7, we have E;(1) = 1 — p, dividing the above formula by 0
and letting 0 | 0. Thus, we have the Laplace-transform of X (0) under the stationary
assumption.

6(1—p)
0)= , 0 >0. 44
PO = e To02 —a(1—g(0) 9
This is an extension of the Pollaczek-Khinchine formula (31). O

The results of the present section can be obtained under weaker assumptions
and for a multidimensional process. The latter is in a similar line to Corollary 4
with a multidimensional version of the It6 integration formula, while the continu-
ous martingale can be weakened to a local martingale with unbounded variational
discontinuity. Of course, we need to carefully consider the integration under such
discontinuity.

12 Piece-wise deterministic Markov process (PDMP)

As we discussed in Section 1, many queueing models can be described by stochastic
processes whose major changes occur in embedded points in time. In this section,
we introduce a typical Markov process having such structure. The sample path of
this Markov process is assumed to satisfy the integral representation (24) and to
have discontinuous points only on a set, called boundary. It will be shown that this
process is flexible and has a wide range of applications.

We first introduce notation for state spaces. Let 2~ be a countable set. An element
x € 4 is referred to as a macro state. For each x € 27, let K be a closed subset of
R™X) where m(x) be a positive integer determined by x and R” is the n-dimensional
Euclid space, i.e., vector space with the Euclidean metric. Define sets K and J(x) as

K={(x,y):;xe€ 2,y € Ky}, J(x)={1,2,...,m(x)}.
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For (x,y) € K, y is referred to as a continuous component or supplementary variable
under macro state X.

On this K, we introduce a natural topology induced from those on K. For each
z = (x,y) € K, the family of its neighborhoods is generated by all the sets of the
form {x} x (Vy NKy), where V is a neighborhood of y € R"X). Let Z(K) be the
Borel o-field on K, i.e., the o-field generated by all open sets of K. Thus, (K, % (K))
is measurable space and we can define a probability measure on it.

We further need notation on boundary. Let Ky be an open subset of Ky, and let
Kxo = Kx \ Kx, which is called a boundary. For K, we define its inside K and its
boundary Ky as

K+:{(X7Y)§XE%7YEKX+}, I(O:I(\I(Jr

Definition 10 (PDMP). Let Z(z) = (X(¢),Y(¢)) be a stochastic process with state
space K defined above, and assume that Z(¢) is right-continuous with left-limits.
This {Z(¢)} is said to be a piece-wise deterministic Markov process, PDMP for
short, if the following three conditions are satisfied.

(12a) X(¢) is unchanged as long as Y(¢) = (Y1(¢),...,Y,(x)(t)) € Ky, which

changes according to the following differential equation when X(¢) = x.

dY(t)
dt

=ex(Y()),  LeJ(x),

where gy is a bounded measurable function from R”™ to R for each x € 2~ s
and Y(¢) hits boundary Ko in a finite time with probability one. We refer to
X(#) and Y(¢) as macro state and continuous component, respectively.

(12b) At the moment when Z(¢) hits the boundary Ky, that is, Z(t—) € Ko, it
instantaneously returns to the inside, that is, Z(r—) € Ko is changed to Z(r) € K
subject to the transition kernel Q from the boundary Kj to the inside K. That
is, for each (x,y) € K,

P(Z(t) € AlZ(1—) = (x,y)) = Q((x,¥),4), A€ Z xHB(K).

Q is referred to as a jump transition kernel.

(12c¢) For each finite time interval, the number of the hitting times at the bound-
ary, i.e., the number of ¢ such that Y (r—) € Kj is finite. We denote the point
process generated by such hitting times by N.

Remark 5. The PDMP was introduced by Davis [10] (see also [11]). However, our
definition of PDMP is slightly different from his definition. They use the attained
lifetimes for the supplementary variables Y (7). Thus, the macro state transitions
randomly occur subject to intensity depending on Y(#), which may hit the boundary.
However, if the time is reversed, then their PDMP becomes ours. A minor advantage
of ours is that the existence of the intensity is not necessary. This means that we do
not need to assume the existence of densities of lifetime distributions for macro state
transitions, which will be discussed below. O
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The PDMP (piece-wise deterministic Markov process) looks complicated, but it
has simple structure when we only observe the embedded epochs due to the state
transition by Q. Let {t,;n € Z} be the set of such epochs numbered in increasing
order. Then, {Z(t,—)} is a discrete time embedded Markov chain. Let us consider
the transition kernel of this embedded Markov chain.

For each state z = (x,y) € K, denote the time to the next transition starting from
this state by {(x,y), which is uniquely determined by (12a). We let {(x,y) = 0 if
(x,¥) € Ko. We also denote the state of the continuous component Y (¢) that attains
just before this time by y/(x,y). Let H be the transition kernel H of the embedded
process {Z(t,—)}. That is,

H(Z’ {X/} XB) = P(Z(tn+l_) € {X/} x B|Z(tn_) = Z)7
z€ Ko, X € X ,Be B(Ky).

Then, it is easy to see that

H(z,{x} x B) = /K 0 X} xdy)1(w(xY) € B). 45)

X’

—

Example 13. As an example of PDMP, let us consider the workload process V (¢) o
Example 8 for the M/G/1 queue with state dependent processing rate r. Let X (¢) =
0. ¥i(1) =1 — Ty and Ya(r) = V/(1), then ¥{(1) = —1 and ¥j(1) = r(V ())1(V (1) >
0). Hence, if we let 2 = {0} and K = {0} x [0,0)? with Ky = {0}? x [0,0), then
(X(t),(Y1(2),Ya(r))) is a PDMP, where the jump transition Q is given by

Qf(oa(oax)):E(f(ov(Tl,X+Sl)))7 X207

for a nonnegative valued function f on Ky = {0} x (0,%0) x [0,0). Note that ¥»()
has no boundary in this formulation. |

We next to consider the stationary distribution of PDMP (piece-wise determinis-
tic Markov process). We are interested to characterize it using the rate conservation
law. We first consider its transition operator of the Markov process {Z(¢)}. Since its
state space K includes continuous components, we consider the transition operator
to work on the space of suitable functions on K.

Let .#,(K) be the set of all bounded functions from .#" to R which are Z(K)/#(R)-
measurable. For each ¢ > 0, define operator 7; on .#,(K) as

Tf(z) = E(f(Z(1)|Z(0) =2),  z€K,f €. 4(K).

Note that 7; is a linear function from .#,(K) to .#(K). Furthermore, it maps a
nonnegative function to a nonnegative function. Thus, 7; is nonnegative and linear
operator on .#(K), which uniquely determines a distribution on (K, %(K)) as is
well known.

Define operator .27, as
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A f(0) = lim (LS f(2), ek,

as long as it exists. We refer to this <7, as a weak generator. Let %, be the set
of all f € .#,(K) such that <7, f exists. Note that <, is a generator only for the
continuous part of Z(r), and does not include the information on state changes due
to the macro state transitions. Hence, 7, is not a generator in the sense that it
determines the operator 7;. This is the reason why we call it weak.

For each macro state x € 2, let % be the set of all solutions {y(¢)} for the
differential equation (12a), i.e.,

dy(t)
dt

=a(y(), 0<r<C(xy).
Let .7 (K) be the set of all functions f € .#,(K) such that £(x,&(t)) has the right-

hand derivative in all ¢ in the domain of & and is continuous from the left at r =
$(x,y) forx € 2 and & € %. Let C(K) be the set of all functions f e #,(K)

such that f(x,y) has bounded and continuous partial derivatives 8 f(x,y) (¢ =

1,2,...,m(x)) foreachx € 2" and y € Kx. Clearly, C}(K) C .4} (K )
For f € ./} (K) and Z(t) € K, it follows from the definition of the PDMP that

7(2(0) - 1(2(0) = [ 4o )+ [ (F(2) - F(2-)N (@),
Hence, for z = (x,y) € K4 and & € .} (K) with £(0) =y, we have

o f(z) = gipa LE(F(2(0)) - £(2(0))|2(0) =)

([ el

where the second equality is obtained since Z(u) must stay in K for a finite time
under the condition that Z(0) = z € K. In particular, for f € C} (K),

o, f(z) Z gxe(y) 5 f(x,y). (46)

Hence, C}(K) C .4} (K) C 9.y, . However, C} (K) # .4} (K) in general. For exam-
ple, § € .4} (K), but { & C}(K) after Definition 11.

Theorem 8. Let {Z(¢)} be the PDMP and let N be the point process N generated by
hitting times at the boundary. If {Z(¢)} has the stationary distribution v and if N has
a finite intensity A, then there exists a probability distribution vy on (Ko, %(Kp))
satisfying
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[ payvian =2 / F@)voldz),  fe.d)(K). @)

Conversely, if there exist probability distributions v on (K;,%(K.)) and vy on
(Ko, B(Kp)) satistying (47) with some positive number A, then

V(B)=Vv(BNK.), BeRB(K)

is the stationary distribution of Z(¢), and the point process N has the finite intensity
A. Furthermore, let P be a probability measure on (£2,.%) such that {Z(¢)} is the
stationary process with the stationary distribution v, then vy is the distribution of
Z(0—) under the Palm distribution Py with respect to N.

Remark 6. Davis [11] computes an extended generator, which characterizes the sta-
tionary distribution, for the PDMP supplemented by the attained lifetimes. We can
rewrite (47) in a similar form. Namely, let A (z) = A VO(([?ZZ)) where VO((jZ)) is the Radon

Nikodym derivative of vy with respect to v. Then, we have

/K(ﬂﬁf(l)ﬂLl(Z)(Qf(Z) —f(2))) v(dz) = 0. (48)

A(z) can be considered as a stochastic intensity, and the integrant corresponds with
the extended generator. (48) is particularly useful when A(z) is available, but this
may not be always the case. In this situation, (47) is more flexible. O

Proof. Assume that {Z(z)} is a stationary process under probability measure P. De-
note the stationary distribution of Z(r) by v. Since the set of the times when Z(t)
is on the boundary is countable, P(Z(0) € Ky) = 0. Hence, v can be viewed as a
probability distribution on (K, % (K. )). Let Py be the Palm distribution of P with
respect to N. Since the distribution Z(0—) under Py is determined by vo, (47) is
immediate from (46) and Corollary 4.

We next prove the converse. Suppose that there exists probability measures v, vy
satisfying (47) and positive constant A. Let f € .#,(K). Since T, f is continuous in
u, we have, from the definition of @7,

A ( /0 "7 fdu) (z) = 12{“1 <T£ ( /’ 7, fdu) (z)— /’ T f(z)du)
- le%ls </ luve/(2) / Lf(@) )

L1 [ e
= lelﬁ)lg < | Tuf(z)du—/o Tuf(z)du>
=T.f(z) - f(2), ze K. (49)

Define h for f € #,(K) as
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Then, (49) implies that 1 € &, . In general, h may not be in ///bl (K), but we can
prove that (47) holds for this 4 in the place of f by approximating & by functions
in ///bl (K). Since this proof is complicated, we omit it, but the reader can find it in
[27]. Since, for Z(0—) € Ko,

OT,f(Z(0-)) = E(T.f(Z(0))|Z(0-))
= E(f(Z(u))|Z(0-)) = T.f(Z(0-)),  u>0,

implies
| Tuf@vlan) = | 0T.s@vo(da).
Ko Ko
Integrating both sides for u € [0,¢], we have
h(z)vo(dz) = | Qh(z)vo(dz).
Ko Ko
Hence substituting % into f of (47), (49) yields
Tf@vdn) = [ f@vid), 10,
K+ Ky

Thus, V is the stationary distribution of Z(z).
We next prove that N has the finite intensity A. To this end, define ¢, for € > 0
as

0 (u) = %min(s,u), u>0.

We remind that {(x,y) is the hitting time at the boundary starting from the state
(x,y) € K, where {(x,y) = 0 for (x,y) € K. For the trajectory & € %, 4{(x,&(1)) =
—1. Hence,

d

2 9e(6(x.8(1))) = —21(0 <E(x,8(1) <e).

Let f(x,y) = @¢({(x,y)). Then, f € .4} (K). We apply this f in (47), and let € | 0.
Then

tim [ ge(C0xy)vo(dxdy) = [ 1(Z(xy) > 0)vo(dx.dy) =0,
10 JK, Ky

hﬂ)l Z Q((X/vy/)7 (x,y))(pg(C(x,y))vo(dx',dy') = VO(KO) =1
e VKo yea

Here, we have used the fact that vy is the distribution of Z(z) just before hitting the
boundary Kj. Since V is the stationary distribution, the above computations yield
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E{Ei 1(0 < {(2) < &) v(dz) = A.

Reminding that N counts the hitting times at the boundary, we have
E(N((0,1]) =A.

That is, A is the intensity of N. Since A is finite, we can define Palm distribution Py
of P with respect to N. Denote the distribution of Z(0) under this Py by ¥, then the
rate conservation law (23) yields

[ stvian =2 [ () —ere)widn,  feK)
This together with (47) concludes

J U@ or@wian = [ (70 -0rmwan), e MK

0

Here, we choose fy for f such that, foreachx € 2 and 6, >0 (¢ = 1,2,...,J(x)),

fo(xy) x) [T e, y)ek..
LeJ(x)

For each subset U of J(x), we let §; — oo for all £ € U. Then, we have vy = ¥ on
the boundary {y € Kx;y, = 0 for all £ € U} since Qfy(z) goes to zero. Changing U
over all subsets of J(x), we obtain ¥y = vy on Kj. This completes the proof. O

For applications, Theorem 8 is not convenient since .#, bl (K) is too large for ver-
ifying (47). We can replace it by a smaller class of functions.

Corollary 6. In Theorem 8, the condition (47) can be replaced by

m(xX)
/Kx Y ng(Y);Wf (x,y)v(dx x dy)
=4 [ (f)-oftwdz),  FECHK). 50
Ko

The necessity of (50) is immediate, but its sufficiency needs approximation ar-
guments for functions in .2} (K) by those in C} (K). This argument can be found in
[26], and omitted here.

13 Exponentially distributed lifetime

For the PDMP, some of its continuous components ¥;(#) may be exponentially dis-
tributed and be decreased with constant rates. For example, this is the case when
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customers arrive subject to a Poisson process, and Y;(¢) is the remaining time to the
next arrival. In such a case, we can remove those continuous components to have
a stochastically equivalent Markov process because the exponential distribution has
memoryless property, that is, if random variable T has the exponential distribution,
then

P(T > s+tT >s)=P(T >1t), s,t > 0.

Since this case is particularly interested in our applications, we make the following
assumption.

(13a) The jump transition kernel Q of the PDMP does not depend on the contin-
uous components which are exponentially distributed and decreased with con-
stant rates.

In this section, we characterize the stationary distribution for this type of piece-wise
deterministic Markov processes (PDMP).

Although we do not need to keep track such continuous components, the stan-
dard description of PDMP must include them. Thus, after removing them from the
PDMP, we have to care about the modified process, which is not exactly PDMP.
In this section, we are particularly interested in the stationary distribution of this
modified process.

Assume that the PDMP satisfies the assumption (13a). For macro state x € 2~
and continuous component y € Ky, let J,(x) be the index set of y’s which have
exponential distributions. We denote the decreasing rate of the i-th component for
i € J,(x) by cx; > 0. We replace the i-th entry of y by O for i € J,(x), and denote this
modified vector by §x. Let K = {(x,§x);x € 27,y € Ky}.

Note that the process (X(¢),Y(¢)) is a continuous time Markov process with state
space K. Its macro state transition kernel O is unchanged for this process. Let .7,
be the restriction of the weak generator <7, on .} (K) for the PDMP (X (1), Y(r)).
That is, for f € .4, (K) and fx(x,y) = f(x,x),

o f(x,5x) = o, fk(x,y),  (x,y)€EK. (51)

The following fact is intuitively clear, but its proof clarifies the role of the stationary
equation (47) of Theorem 8.

Theorem 9. Let the PDMP (X(z),Y(¢)) have weak kernel <7, and jump transition
kernel Q. Assume that this PDMP satisfies the assumption (13a) and the mean life-
time of the i-th continuous component is 1/u;(x) for i € J,(x). Then, ¥ is the sta-
tionary distribution of (X(¢),Y(¢)) that has a finite intensity for the embedded point
process generated by macro state transitions if and only if there exists a finite mea-
sure ¥y on (K, %(Kx)) for each x € 2" such that

AVo({x} x d¥x) = x(d¥x) + Y, cxiti(X)V({x} xd¥x),  x€ 2, (52)
i€Je(x)

| T =2 | (7o -0f@) i), Fesi®), (3
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where <7, is the weak generator of (X(), Y(¢)), that is given by (51).

Proof. For necessity, (52) is immediate from the decomposition formula of Palm
distributions while (53) is obtained from Theorem 8 and (51). To prove sufficiency,
we let f(X,y) = 1(X =x)g(¥x) in (53). Then, with help of (52), we have

T FIV(x) <) = [ a@In(ds)
Ry JoKx

+ ¥ et [ a5v(ix} <dyy)

ieJo(x) X

4 [ 0. {x} x d5)gE)Ro(dz). (54

Multiply both sides of this equation by [];c;, (x which is the joint Laplace

1(x)

uj(x)+6;°
transform of independent and exponentially dlstrlbuted random variables with means
1/u;(x), where 6; is a nonnegative number, and should not be confused with the

shift operator 6;. Then, the second term in the right-hand side can be computed as

Y cut(x) [ &E0V({x) xdiy) T] ﬁh(x)J

ieJe(x) IKx jede(x) Mi(X) + 0
= ¥ an) (1= ) [ v sy [T
i) Hi(X)+6: ) ok, jesaton iy i (X) + 0
- 1j(x)
= sz.ul(x) - g(yx)V({X} X dyx)
ze%‘(’x) x 16111(3\{!} Hj (%) + 0
- X
— Z cxi0; g(yX)v({X} X dyX) ”J( )6
icl,(x) x JEJo(x) i(X)+6;
Thus, we have
.o 3 W (x)
4 g(y)V({x} x d¥x) —
~/Kx - jglj:‘!x) IJ'I (X) + 9/

i (x)
T o[ se(a e [T
ieg(x) JoRy Sviix jerix) Hi(x) +6;

B /a&x &) Vu(dhn) l-el,} ) 1j(x) + 6

1j(x)
+ Cxtﬂz / g YX {X} X dYX) | | —_—
ze; jesn{iy Hi(X) + 6

~r e, ‘Lt(x)
—A /ak O(Z', {x} x d¥x)§(¥x)Vo(dz )jGIJ}X) m

This is identical with (47) with f given by
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FXLy) =1(x'=x)3(Fx) [ ¢

jeje X)

Since 6; can be any positive number, this class of function f is sufficiently large to
determine a distribution on K. Hence,

v({x} xdy) = V({x} xdyx) [] wix)e*™dy;
J€Je(x)

is the stationary distribution of the PDMP (X(¢),Y(t)), so ¥ is that of (X(¢),Y(t)).
O

It is notable that (52) is necessary to get the stationary distribution. Of course,
we can combine (52) and (53) substituting the former into the latter.

Example 14 (State dependent workload, revisited). In Example 13, we formulate
the workload process V (¢) of Example 8 for the M /G/1 queue with state dependent
processing rate r as the PDMP (X (¢), (Y, (¢),Y2(2))). Since T, — T,,—; is exponentially
distributed and independent of everything else, we can drop Y;(¢), and Theorem 9
is applicable. Although this is not so much helpful to find the stationary distribution
since (52) and (53) are equivalent to (32), we can see how Theorem 9 is applied. O

14 GSMP and RGSMP

In many queueing applications of the PDMP, all the continuous components Y;(t)
count the remaining lifetimes, and the macro state transitions due to Q is indepen-
dent of non-zero remaining lifetimes. Assume that the remaining lifetimes decrease
with constant rates. In this case, the weak generator .27, has a simpler form:

A, f(x,y) = Z cx, : (55)

l

where cy; are nonnegative constants for each x and i. Furthermore, Q is also simpler.
We introduce this class of models adding more structure to the macro states.

Definition 11 (GSMP). Let 2" and .¥ be countable or finite sets. Their elements
are called a macro state and a site, respectively. For each x € 2, a finite and non-
empty subset of . is associated, and denoted by A(x), whose element is called an
active site under macro state x. For each s € A(X), a clock is attached, and counts its
remaining life time r;. Let r(x) = {(s,rs);s € A(X) }.

Assume the following dynamics of macro states and clocks.

(14a) Under macro state x, the clock at site s € A(x) advances with speed C;.
(14b) If the remaining lifetime of clocks at sites in U C A(x) simultaneously
expire under macro state X, then the macro state changes to x’ with probability

pu (x,x').
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(14c) Under the above transition, the remaining lifetimes of clocks at sites A(x) \
U are retained, and new clocks are activates on sites A(x') \ A(x) with lifetimes
independently sampled from the distribution determined by their sites and new
macro state x'.

Thus, A(x) \ U must be a subset of A(x'). Let X(r) be a macro state at time 7,
and let Ry(r) be remaining lifetime of the clock at site s € A(x) at time ¢. Then,
(X(#),{Rs(t);s € A(x)}) is a Markov process. We refer to this Markov process as a
generalized semi-Markov process, GSMP for short, with macro state space 2" and
site space .7 |

This GSMP is not exactly the PDMP (piece-wise deterministic Markov process),
but can be reduced to it. To see this, let m(x) be the number of elements of A(x), and
let J(x) ={1,2,...,m(x)}, where m(x) is a finite positive integer by the assumption
on A(x). For each x € 2, define one to one mapping & from A(x) to J(x). For each
LeJ(x),lety, = Ve (- Thus, site s € A(x) is mapped to £ € J(x) with the remaining
lifetime of the clock attached to s. Let Ky = [0,00)"®) and K = Uyc 2 {x} x Ky. Let
R (1) be the remaining lifetime of the clock at site s, and with ¥,(¢) = Réi(lt)( 0 (1) let

Y(t) = Y(t),Y2(t), -, Vix o)) (1))

We also define the jump transition kernel Q as, forx,x’ € 27,y € Kx and B, € & (R),

Q((X7Y),{X/} X By XX Bm(x’))
= PU(va/) H 1(yg S Bg) H Fx’§7l(£) (Bg),
LeE(A(x)\U) eEAXNARK) ¥

where U is the set of all expiring sites under x and the remaining lifetimes y &) of

the clock at site s € A(X), and F; is the new lifetime distribution of the clock at site
s under macro state x. Note that F'(B) is defined for distribution F' as

F(B):/BF(du), Be B(R).

Then, we have PDMP {(X(#),Y(¢))} with state space K and jump transition kernel
0. We refer to {(X(¢),Y())} as a canonical form of GSMP.
From the assumption on the speed of clocks, we have

dY,(t
O e rEIXW),

where cx = Cyz-1(y). Hence, lety = (y1,...,V(x)), then
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g<x,y>:mm{yl,... yw}

)
Cx1 Cxm(x)

W(va) = (yl_ (XaY)vvym(x:_C(Xay)> :

Cx1 Cxm(x

Many queueing models and their networks can be described by GSMP. For those
models, sites correspond with arrivals and services, and the remaining lifetimes are
the remaining arrival times and the remaining workloads. Particularly, GSMP is
useful for those queues with the first-come and first-served discipline since sites for
service are unchanged for them.

However, GSMP is not so convenient when services are interrupted. In this case,
we have to keep track of the remaining workloads of all customers who once started
service. Then, the macro state has to accommodate all the sites as they are since
clocks are fixed at sites in GSMP. This often unnecessarily complicates analysis,
particularly when the number of active sites is unbounded.

To reduce this complication, one may think of reallocating clocks on sites at each
transition instants. This is basically equivalent to only work on the canonical form
with the reallocation. Let us define this model.

Definition 12 (RGSMP). Let 2 be a finite or countable set for a macro state space,
and let J(x) = {1,2,...,m(x)} of the set of all active sites under macro state x. Let
D be the index set of lifetime distributions for clocks at their activation, where the
same distribution may have different indexes. An active clock is allocated to each
element of J(x) and has the remaining lifetime, but this allocation may change at
the macro state transitions in the following way.

(14d) Under macro state x, the remaining lifetime of the clock at site £ € J(x)
decreases with rate ¢y, where there is at least one positive rate.

(14e) Each clock at site £ € J(x) has an index in D. Denote this index by ¥%(¥).
This % is a mapping from J(x) to D, which is not necessarily one-to-one.

(14f) When all clocks of sites in set U simultaneously expire, macro state x
changes to X’ activating clocks on sites in set U’ with probability p((x,U), (x',U’)).
(14g) At this macro state transition, clocks on J(x) \ U are reallocated on J(x') \
U’ by one-to-one mapping I3y 7 onto J(x) \ U’, whose domain FXE}X,U, (J(x')\
U') is a subset of J(x) \ U. The clocks at sites in the set:

E\U)\ Ly (TE)\U)

are said to be interrupted. Under this reallocation, the remaining lifetimes of
the reallocated clocks and their indexes are unchanged while newly activated
clocks with indexes d € D have the lifetimes independently sampled subject to
distribution Fy’s.

Let X(7) and Y(7) be the macro state and the remaining lifetime vector at time 7.
Then, {(X(¢),Y(¢))} is the PDMC, and we refer to it as a reallocatable generalized
semi-Markov process, RGSMP for short. O
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Note that the transition kernel Q at macro state transitions is given by

Q((XaY)a(leBl Xoeee XBm(X’)))
=p(xU),(x,U")) 1 10;€B) [ Fy)(B))-

J€T UE\U) jeu'

We assume that Iy is deterministic for simplicity, but it could be random with-
out any difficulty. In applications, U is usually a singleton, that is, U = {¢} for some
£.In this case, p((x,U),(x’,U’)) and Iy y are simply written as p((x, /), (x',U"))
and Iy, respectively.

Although the canonical form of the remaining lifetimes is sufficient for RGSMP,
it may not be always convenient. For example, if there are different groups of sites
and reallocations are only taken within each group, then a finite set of multidimen-
sional vectors is more convenient than one multidimensional vector y. In this case,
J(x) is divided into subsets J, (x),...,J (x) for the number k of such groups and
their indexes s1, ..., s¢. Similarly, % (¢) is divided into ¥;,x(41), ..., Ysx (%k)-

In our definition of RGSMP, some of active clocks may expire at the transition. In
queueing applications, this may be the case that a customer being serviced is forced
to leave. For example, so called a negative customer causes such an event.

We now specialize Corollary 6 to RGSMP (reallocatable generalized semi-
Markov process) of Definition 12. In this case, Laplace transform is convenient.

Corollary 7. Assume RGSMP satisfies the assumptions in Theorem 8. For each x €
', let Ox = (01,...,6,x)), 00 >0, (6x,y) = Z;”:(’i) 6yyy, then (50) can be replaced
by

m(x)
Y cxeBiV(x,6,) = 4 (Vo(x,6,) — Vi (x,6y)), 0>0xc2, (56)
(=1

where

7(x,0,) = /K e y(x, dy),
X+

Do(x, 6) — /K oY)y (x, dy),

x0
W0 = [ e SI06 (xdy)vl),

Since function e~ (%) is in C ,; (K), the necessity is immediate. For the necessity,
we need to approximate functions in Cg with compact supports by Fourier series.
This can be found in [26] again.

Up to now, we are mainly concerned with a single point process N for the macro
state transitions. We can decompose this N into point processes observed at sites.
For each subset U of {1,2,...}, define point process Ny as
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Ny(B)=Y Y 1(X(t)=xY,(t)=0,LcUNJ(x)), BeABR),
teBxe ¥

and let Ay = E(Ny((0,1])). Since Ay < A < oo, we can define Palm distribution
Py of P with respect to Nyy. Denote the distribution of Z(z) under Py by vy. Let
Vu (x,0x) be the Laplace transform with respect to the remaining lifetimes under
macro state X € 2, and let

V) (x,6¢) = /K /K e YO (x,dy))vy(Z).

Then, (56) can be replaced by

m(x)

Y a0V (x,65) = Y Ay (Vu(x,6x) =V (x,6)),  6>0. (57)
(=1 U

In many cases, U is a singleton for Ay > 0. In this case, we simply write () and
Vi as A¢ and vy, respectively, for U = {(}.

15 Exponential and non-exponential clocks in RGSMP

In this section, we consider the stationary distribution of RGSMP (reallocatable
generalize semi-Markov process), provided it exists. In what follows, we use the
notations in Definition 12, and assume that {(X(¢),Y(¢))} is stationary under P.

As we have considered in Section 13, it is interesting to see the case where some
of lifetime distributions are exponential. We here consider such a case for RGSMP.
Denote the set of the indexes in D which specify the exponential distributions by D,.
Similarly, let J.(x) be the set of the sites whose clocks have indexes in D,. Those
clocks are activated with lifetimes subject to the exponential distributions. For the
other distributions, we let

Dg=D\De,  Jg(x) =J(x) \Je(x).

In this section, we shall use Theorem 9 and Corollary 7 to characterize the sta-
tionary distribution. We first prepare some notations. For each d € D, denote the
mean of distribution F; by my, and its reciprocal by u,. Denote the Laplace trans-
form of F; by F;(0). Since Fy is exponential for d € D,

£ Ha

Fd()C)ZI—efﬂaVC7 x>0, Fy(0) = TR 6>0

Let 6y = (01,...,0,x))- For U C J(x), let 6x(U) denote the 6 in which the
components with indexes in U is replaced by 0. In particular, if U = {¢}, then 6(U)
is denoted by 6 (¢). Let Ny be the point process generated by expiring instants of
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clocks at site £. This point process is obviously stationary under P. In what follows,
we also assume

(15a) The mean my of Fy is finite for all d € D.
(15b) Not more than one clock simultaneously expires.
(15¢) Y7 Ar < oo, where A, is the intensity of Np.

Let P, be the Palm distribution concerning N;,. We denote the distribution of
(X(2),Y(¢)) under P by v, and its Laplace transform concerning Y (¢) under X(¢) =
by V(x, 6) for each x € 2. Similarly, the distribution of (X(0—), Y (0—)) under the
Palm distribution P, and its Laplace transform under X(0—) = x are denoted by v,
and V,(x, ), respectively.

Lemma 12. For x € 2" and 6 > 0, we have

s S ‘U'YX()
V(x,6x) = V(X, 6x(Je(X))) I (58)
ielj} ) Mol + 617
5 o My (i)
Vo(x, 0) = V(x, 6 (Je (X)) (59)
' ' lEJEH\{[} [CAR
CxtMy (1) V (X, Ox(Je(X))) = AeVe(xX, Bx(Je(x))), 0 € Jo(x). (60)

Proof. (58) and (59) are immediate from the memoryless property of the exponential
distribution. Substituting them into (57) and letting 6; — oo yield (60). O

The next result is a specialization of Corollary 7 to the case that some of lifetime
distributions are exponential, but can be viewed as a special case of Theorem 9.

Theorem 10. Under the assumptions (15a), (15b) and (15¢), RGSMP has the sta-
tionary distribution if and only if there exist Laplace transforms V,V, and A,
(¢ =1,2,...) such that (60) holds and, for each x € 2" and 6 (J.(x)) > 0,

Z cxi0iV(x, 6x(Je(x)))

ieJg(x)
= Y e - Y Y Y AN (6(e(x)
icJ(x) XeZ ieJ(x)UCJ(x)
Xp((X/,i),(X,U)) H ﬁ'x(j)(ej)a (61)
JEUNT (%)
where Fx . XU(QX) is the m(x’)-dimensional vector whose j-th entry is Or,, () if

j#iand Iy (j) € J(x) and equals O otherwise. In this case, ¥ is the Laplace
transform of the stationary distribution v.

Remark 7. 1t is not hard to see that (61) is a special case of (54).

Proof. We apply Corollary 7. From the assumption (15a),

XVO X ex lew X GX)
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Similarly, from the definition of Fx liU,

=

ATy (x,60) = ¥ 497" (x, 64)

i=1

gk

AV \Z ) x’sz(e ))p((x’,i),(x,U)) H F%((j)(ej)'

i=lx'e 2’ UCJ(x) JjeUNJg(x)

Substituting these formulas together with (58) and (59) into (56) and dividing both

sides by [Tjes. (x) “(y";j: g-» We have

m

—~

X)

Cxiei‘?(xv GX(JB(X)))

Il
-

Z Aivi(x, 0x(Je(x)) + Z /'L)/x ) Vi(x, Ok (Je(x))

i€Tg(x) i€Je(x) “w()
m(x")
X, 35 RO L0MPX-0: 60 TT (@)
XeZ i=1 UCJ(x )

JjeUNJg(x

By Lemma 12, (60) is necessary. We apply it to the second term in the right-hand
side of this equation, then we can see that the terms of i € J¢(x) in the left-hand side
are cancelled, which yields (61). Thus, (60) and (61) are necessary. These arguments
can be traced back, so the converse is proved (see also the proof of Theorem 9). O

Example 15. Let us formulate the M/G/1 queue of Example 7 by the RGSMP. We
here assume the first-come first-served discipline. Let X (7) be the number of cus-
tomers in the system, and R(t) be the remaining service time of a customer in ser-
vice, where R(¢) = 0 if the system is empty. Obviously, (X (¢),R(¢)) is a continuous-
time Markov chain, and it is easy to see that this process is a RGSMP.

We show how the notations of the RGSMP are specified in this case. Let 2" =
{0,1,2,...}. D ={0,1}, where O represents the exponential distribution with mean
A~!, and 1 represents a generic distribution with mean p~! and distribution F.
Define the jump transition function by

p((n,0),(n+1,U))=1ifn=0and U = {0,1} orif n > 1 and U = {0},
p((n,1),(n=1,U))=1ifn=1andU =0Qorifn>2and U = {1},

and let ¢, 0 = cpq1,1 = 1 forn > 0. Let
J.(0)={0,1}, Je(n)={0}, J,(0)=0, J,(n)={1}, n>1.

Thus, we indeed have the RGSMP. Assume the stability condition p =A/u < 1. In
what follows we solve the stationary equation (61), which becomes
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0=A9(0,0) — A¥(1,0),
99(1,8) = A(¥(1,0) + ¥(1,0)) — A(¥(0,0) + ¥(2,0))£(8),
09(n,0) = A(¥(n,0) + ¥(n,0)) — A(¥(n—1,8) + V(n+1,0)£(8)),

for n > 2, where we have used the fact that A; = A. By letting 8 = 0 in these formu-
las. it is easy to see that ¥;(n,0) = ¥(n— 1,0) for n > 1. Then, it is routine to solve
these stationary equations by taking the generating function:

V(z,0)=1—p+ i 7'V(n,0).
n=1
Let ©(0) = ¥(0,0). This yields
(0 —A(1-2))(%(2,0) — 7(0)) = A(1 —2)F(8)7(0) + A(z — F(8)):(2,0). (62)

Let 6 = A(1 —z) in this equation, then we have

(1-p)(1 -9F (201 -2))

0.(2,0) = F((1—2) 2

(63)

We can compute V,(z, 0) by substituting this into (62). These results are well known.
The advantage of the present derivation is that the existence of the density of F is
not needed, which is often assumed in the literature. O

If Dy = 0 in Theorem 10, i.e., all the lifetimes are exponentially distributed, then
the set of equations (60) and (61) with 6; = 0 uniquely determines the stationary
distribution of the macro states. Hence, we have the following corollary.

Corollary 8. For the RGSMP satisfying (15a), (15b) and (15¢), if all the lifetime
distributions are exponential, then a probability distribution 7 on 2" is the stationary
distribution of X(#) if and only if, for all x € 2,

Y oetlyr®) =Y Y Y vty prX)p((X,0),(x,U)).  (64)

leJ(x) X' eZ leJ(x')UC(x)

Equation (64) can be interpreted as the stationary equation for the macro state.
To see this, define the transition rate function g(x,x’) as

=Y Y ngl.ty x,0),(x',U)).

teJ(X)UCJ(x

Then, it is not hard to see that (64) is equivalent to

) Z q(x,x') = Z n(x)q(x',x), xc .

xX'eZ xX'eZ

Thus, we can find the time-reversed process of {X(#)}, which has the transition
rate function:
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Then, it is not hard to see the following result.

Corollary 9. Under all the conditions of Corollary 8, the time-reversed macro pro-
cess can be considered as that of the RGSMP with the speeds ¢y and the rates of
the exponential distributions fi, ;) and jump transition 5((x,U), (x',£)) as long as
they satisfy

Subyu) = —= Y, Y, oy, on(xX)p((X,0),(x,U)), (65)
(X)W 1700)
1

ﬁ((X>U)>(X/7£)) = Cx’l“yx/(Z)E(X/)p((x/7€>7(XvU))‘ (66)

7 (X)éxu fly ()
Remark 8. If U is not a singleton in this corollary, then clocks in U are forced to

expire except for one in the constructed RGSMP for reversed time. However, active
clocks are singly created. This is contrasted with the forward process.

Example 16 (Reversibility of the M/M /1 queue). We show how Corollary 9 can be
used for applications. Consider the M/M/1 queue with arrival rate A and service
rate (1. We assume the stability condition p = % < 1. This model is a special case of
the M/G/1 queue, which is formulated by the RGSMP in Example 15, and we can
apply Corollary 9 because all lifetime distributions are exponential. Since F'(8) =
w/(u+0), (63) becomes

1-p

V. (z,0) = [ po

Hence, the stationary distribution {7 (n)} is given by m(n) = (1 — p)p”, as is well
known. Remind that D = D, = {0, 1}, J(0) = {0}, and J(n) = {0, 1} for n > 1. From
(65), we have, forn > 0,

Am(n)=2Ap ' =u,

B _ 1
Clnt+1)0Mo = m

o 1
ey = @H”(Wr )=up=A4,

Similarly we have

p((n,U),(n+1,1)) =p((n+1,1),(n,U)) =1,
p((n+1,U),(n,0)) = p((n,0),(n+1,U)) = 1.
Thus, letting ¢(,41)0 = ¢ = 1 for n > 0, the time reversed RGSMP is identical

with the same M/M/1 queue except for the indexes, which are exchanged. Thus,
the departure process of the original M/G/1 queue is the Poisson process with rate
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A and independent of the past history of the system. This is known as the Burke’s
theorem [7], which is obtained for the M /M /s queue. O

16 Product form decomposability

Under the assumptions of Corollary 8, {X(#)} is a continuous time Markov chain.
However, this is not the case if there are non exponential lifetime distributions, so
determined by (64) may not be the stationary distribution of the macro state. We are
interested in the case that this 7 is either still the stationary distribution of X(z) or
can be modified to be the stationary distribution. We guess this could occurs when
the remaining lifetimes are independent, and give the following definition.

Definition 13. If RGSMP {(X(#),Y(¢))} is stationary and if there exist distribution
function Hy for each d € D such that H;(0) = 0 and, under the stationary probability
measure P,

m(x) m(x)
P(X( e[I;IIOW) ny (we), x€ Z,u >0,

~
—

then the RGSMP or its stationary distribution is said to have product form decom-
position with respect to remaining lifetimes

Remark 9. The product form decomposability is slightly different from the condi-
tionally independence of Yy(¢) (¢ = 1,2,...,m(X(¢)) given X(7) = x, that is,

m(x) m(x)
P(X( )e [Tl W) (X(t) =x) [T Pa(t) < up).
=1 =1

Clearly, they are equivalent if no reallocation occurs.

Lemma 13. Assume that the RGSMP satisfies the assumptions (15a) and (15¢). If
the RGSMP has a product form decomposable stationary distribution v, then (15b)
is satisfied, and there exists a; > 0 for each d € D such that

Ha(x) = 1— ﬁd/ (1 - Fyuw))e %@ Dgy,  x>0deD,  (67)
cxgu;x(g)\A/(x, 0x(€)) = AgVo(x,0x(£)), xe 2, Lel(x), (68)
where B; and uj are given by
2 o #£0 Galy(0u)
By =< 1-Falaw)’ a 70, py =1 1-Faloy) aa # 0, (69)
M oy =0, Ug o;=0.

Proof. Assume that (X(¢),Y(¢)) is a stationary process with the stationary distribu-
tion v. When F; is exponential, we obviously have (67), and (68) is easily obtained
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similarly to (60). Hence, it is sufficient to prove (67) and (68) for d € D, and for
¢ € Jg(x). If ¢xp = 0, then (68) obviously holds, so we assume that ¢y, > 0. Let
Ty = inf{r > 0;Ny((0,2]) = 1}. Since ¥¢(0) = cx¢Ty1, we have, from Corollary 1,

AP (X(0—) =x,Y:(0—) <wpi € J(x)\ {£})

1
= lim P (X(Ty—) =x,Y%(Tn—) Swpi € JX)\ {0}, Tn <1)
t

. Cxp
= lim
110 Ccxpt

P(X(0) = x,%(0) — exiTy1 < uiyi € J(x)\ {€}, ¥4(0) < cxet).

Hence, from the product form decomposability and the definition of Palm distribu-
tion, we have

m(x) m(x)
)»[Vg 0 u, =cxyr=—V | X, 0 u,
=1 ‘9 ue i=1
up=0

= CXZH’J//x([) (O)TC(X) H ny(i) (ui)v (70)
ieJ(x)\{¢}

where H;,x< 0 (0) must exist and be finite because the left-hand side is finite. Note
that this formula also holds for ¢ € J.(x). Furthermore, if more than one clocks
simultaneously expire, then we can put u; = uy for some i # ¢ in the right-hand
side of (70), which implies that the corresponding Palm distribution vanishes. Thus,
(15b) is satisfied.

Letting u; = oo in (70) and summing both sides of it for all x € 2" and ¢ € ¥ ! (d)
for each d € D, we have

Y nm=Hj0)) Y cun(x). (71)

teyc ' (d) X2 teyc ! (d)

Thus, the right-hand side is finite by the assumption (15c).
Let d = %(¢), and letting 6; = 0 for all i € J(x)\ {¢} and 6; = 0 in (61) of
Theorem 10 and substituting (70) yield, for £ € J4(x),

exOT(X)Hg(0) = cxeHy(O)m(x) + Y. cxitll ;) (0)7(x)Hy(6)
ieJ(x)\{¢}
- Y Y Y ey, (0r)p((x,i), (x,U))Ha(6)
X' e 2 icJ(x') (gUCJ(x)

-y ¥y Y cx,,.H;x,(,.)(O)n(x’)p((x’,i),(x,U))Fd(e). (72)

x'eZ ieJ(x') teUCJ(x)

Summing this formula for all x € 2" and ¢ € ¥% () for each fixed d € D,, we can
see that the sum of the left-hand side is finite by (71) and the second sum is not
less than the third sum because of the interruption (they must be identical if there is
no interruption). So, there exist a nonnegative constant a and positive constants b, c
such that
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0H,(0) = c+aH,(0)—bEy(0).
Letting 6 = 0 in this equation, we have ¢ = b — a. Thus, we have, rewriting 6 as 0,
0H,(6) —aH,(0) = —a+b(1—Fy(0)). (73)
This is equivalent to the following differential equation.

& Ha() ~ aHa() = ~a+b(1 ~ Fy(x) (74)

In fact, using the fact that H;(0) = 0, one can check this equivalence by integrating
both sides of the above equation multiplying e~ ®* concerning x over [0,0) for each
0 > 0. We can easily solve the linear differential equation (74) using the boundary
conditions H;(0) = 0 and limy_,.. Hy(x) = 1. Thus, we get

x)=1 —b/ (1 —Fy(x))e““ ) dy, x> 0.
Denote a by o;. Then, b = B, and we have (67). From (74), we have
Hy(0) = Ba — aa = 1.

Hence, (70) implies (68). O

Remark 10. From (73) and the expression of f8;, we have

A Fy(og) — Fy4(6)

Hy(0) = By 6 o 0z0deD, (75)

From (68), we can interpret o;; as the rate for the interruption of a clock with
index d. This rate does not depend on the macro state x and site £ € J(x) as long as

d= YX(E)'

Lemma 14. Under the assumptions of Lemma 13, we have, for each x € 2,

Z CXi“;x(i) Z Z Z sz"ly, ) (( )7(X7U))7 (76)

icJ(x) xX'eZ ieJ(x')UCJ(x)
cxz(am 0 F M) ()
Z Z Cx/i“;x, (i)ﬂ(xl)p((xl7i)a (Xﬂ U))? te JX(X) (77)

X' eZ ieJ(x') teUCJ(x)

Remark 11. The right-hand side of (77) is the rate for the event that a new clock is
activated at site /. On the other hand, the left-hand side is the expiring rate of a clock
at site £. Hence, (77) represents the balance of the rates for expiring and activating
clocks at the same site Z, so it is referred to as a local balance at site /.

Proof. Substituting HJ’,,( )( )= [.Ly into (72) with 8 = 0 in the proof of Lemma 13
and noting the fact that (72) also holds for ¢ € J,(x), we have (76) for their summa-
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tion. We next consider (72). For this let

K (X,g) = Z cxiu;x(i)n?(x)
ieJ(x)\{¢}

-y Y X cxuuy, (X)p((x,i),(x,U)),  (78)

X' eZ icJ(x') (U (x

Z Z Z sz“y/ ) (( i),(x,U)). (79)

x'eZ ieJ(x') teUCJ(x)

Then, (72) can be written as
exeOm(x)Hy(0) = cxeHy(0)7(x) + Ky (x,£)Hy(0) — Ka(x,£)Fy(6)
Subtracting this from (73) multiplied by ¢y, 0,7 (x), we have
(Gac(x) = Ki(x,0)(1— Ha(6)) = (Bacwm(x) — Ka(x,0))(1 - F(6)).

Because 1 — H,;(0) can not be a constant multiplication of (1 — £;(8)) for d € D,
by Lemma 13, their coefficients must vanish. Thus, we have

(XdngTE(X) =K (Xv Z)v ﬁdcxfn(x) = KZ(Xa E) (80)
This is nothing but (77) because fB; = 0tz + 1. |

It is notable that (76) represents the global balance under macro state x while
(77) is the local balance at site £ under macro state x. We are now ready to prove the
following theorem.

Theorem 11. The RGSMP satisfying the assumptions (15a) is product form decom-
posable and satisfies and (15¢) if and only if there exist the distribution 7 on 2" and
nonnegative numbers {0,;;d € D, } satisfying the global balance (76), the local bal-
ance (77) and the finite intensity condition:

Y Y ettypn(x) <. 81)

xe 2 (eJ(x)

In this case, the stationary distribution V is given by

v(xHOu,)—n HH (), x€2,u;>0, (82)

ieJ(x ieJ(x

where oy = 0 for d € D, and p; and H; are defined in Lemma 13. Furthermore,
under this stationary distribution, (15b) is satisfied, and not more than one clock is
activated at once, that is, we have, for each x € 2" and any /1,4, € J,(x) such that
by # b,

Z Cx’i“;x/(i)n(xl)p((xlv i)v (Xv U)) =0. (83)
XeZiel(x') {{1.}CUCg(x)



Palm Calculus, Reallocatable GSMP and Insensitivity Structure 57

Proof. We have already shown that the product decomposability with conditions
(15a), (15b) and (15c¢) implies (76), (77), (81) and (82) with the nonnegative number
oy for d € D. Thus, for the necessity, we only need to prove the last statement.
Suppose that £1, ¢, € J,(x) satisfying 1 # (> are simultaneously activated. Let d; =
¥ (¢;) for i = 1,2. Then, similar to (72), it follows from (61) that

(cxt, 01 + cxt,02) T(x)Ha, (61)Ha, (62)
= (CX[] u;l [:Idl (91) + Cxl/,z.u;zﬁdz (92))7[(X)

+ Z Cxi,u;x(i)ﬂ:(x)ﬂdl (91)1:1512(92)
i1\ 11.02)

Y Y Y cait, o m (X0, (5 U)) Ay (8) Ay (62)
xX'eZ ieJ(x') 01 ,lrgUCJ(x)

- Z Z Z CX'[“;X,(i)n(X/)p((X/7i)7(XvU))I:Idl (el)ﬁdz(ez)
X' e 2 ieJ(x') 1 ¢U l,eUCJ(x)

Y Y Y et om0, (5, U))F (61) Ay (62)
xXeZ iE](X,) 1€l ly ¢UC](X)

- Z Z Z Cx/i”;x,(i)ﬂ(xl)p«xlﬂi)»(X’U))Fdl(el)ﬁdz(ez)' (84)
X' e ieJ(x') ) ,l,eUCJ(x)

On the other hand, multiplying (72) for £ = ¢, and 6 = 6; by Hy,(6,), we have

cxt, 0170(x)Hy, (01)Hy, (62)
= (cx, a, Ha, (61)Ha, (62) + cxe, g, Hay (62)) 7(x)
+ Y ity F(X)Ha (61)Hay(62)
ieJ(x)\ {016}
- Z Z Z CX'i“;x,(i)n(X/)p((X/7i)7(X7U))I:Id1 (el)l:ldz(ez)
X e icJ(x) ,t2UcC(x)
Y Y Y et om)p((x.0), (x U))A (61) Ay (62)
x'eZ iEJ(X’) 01¢U by EUCJ(X)
- Z Z Z Cx’i“;x,(j)ﬂ(xl)p((xlai)v(XvU))Fdl(el)I:Idz(ez)
X e icJ(X) 6, eU,LEUCT(x)
~ Y Y Y ety o m)p((X.0). (x,U))Fa, (00 (8:). (85)
xX'eZ ieJ(x') 0y ,lreUCI(x)
Subtracting both sides (85) from (84), we have

Cxty 0270(x)Ha, (61)Ha, (62) = cxe, i, T(X) (1 — Ha, (62))Ha, (61)

- Z Z Z Cx’i.u;x,(i)n(xl)p«X/’i)’(X7 U))I:Id|(91))(ﬁd2(92)_ﬁd2(62))
x'eZ ieJ(x') 1 ¢U leUCJ(x)

Y Y Y et o m)p((X0) (x,U)) Eay (61) (B (62) — iy (62).
X/GC%iEJ(X/)Zl,lzeUC‘KX)

Dividing both sides of the above formula by 6, and letting 6, | 0 yield
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exty T(X)Hy, (61) = cxe i, T(X) (—Hyy, (0))Hy, (61)
-y Y Y. cwibly, () ®(X)p((X,0), (x,U))Ha, (61)) (£, (0) — Hy, (0))

x'eZ ieJ(x') (1 ¢U l,eUCJ(x)

Y Y XY cwitty,(n(X)p((X,0), (x,U))Fy (81) (£, (0) — Hy, (0)).

XEX i€l (X) 1 LU CI(X)

Consequently, £y, (6) must be proportional to Hy, (1) and therefore identical with
Hy, (61). This is impossible. Thus, not more than one clock can not be activated at
once.

We next show the converse. Summing (77) over all £ € J,(x) and subtracting this
sum from (76), we have

Z Cxi .uy Z Cxi Oy, (i)

i€y (x) i€Jg(x)

+Y )Y Y x/,uy, T )p((X,0),(x,U)).  (86)

X' eZ icJ(x')UCJ (x
From the definition of Hy(8), it follows that
BaFa(6) = (0tg — 0)Hy(6) + 1.

Multiplying both sides of (77) by £,;(8) and substituting the above Fy(8) to its left
side, we have

ngeﬂ'<X)I:]d<9) = cxellym(X) + ng(xdﬂ(x)[:]d(e) K (X,f)ﬁd(e). 87
From (76) and (77), we have
Z Cxiﬂ;x(,')”(x) = Z Z Z Cx/i.u;x, (i)ﬂ(X/)P((le i),(x,U))
ieJ(x) x'eZ ieJ(x') (gUCJ(x)

+ Z Z Z Cx/i.u;x,(j)ﬂ(xl)p((xlvi)a (XaU))

x'eZ ieJ(x') teUCJ(x)
= Z Z Z Cx/i‘u;x/(i)n-(xl)p((x/7i)?(X7U))
X' e 2 ieJ(x') (gUCJ(x)
+fo(ayx([) +,u;x(/>)7f(X)

Substituting cx @y (o) 7(x) from this equation into (87), we arrive at

exeOm(x)Ha(0) = cxepgm(x)+ ), cxibly ) (%) Ha(6)
ieJ(x)\{}
Z Z Z Cx’z.uy/ ) (( )7(XaU))I:Id(9)

X' e 2 icJ(x') (¢UCJ(x)

Y Y Y et o n)p((K.0), (xU))Fa(6).

x'eZ ieJ(x') teUCJ(x)
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This equation is identical with (72). Let d = %(¢), multiply both sides of it by
[Ticsx)\{0} I-AI%((,») (6;) and define distributions v, v, and constants A; by

V(x,6x(Je(x))) = m(x) ] Hy)(8),

icJ(x)
(x,6x(Le(x)) =7(x) [] Hy(6),
ieJ(x)\{¢}
)u[ = Z CX[I.L;X(Z)TL' X
xeZ

We then have the stationary equation (61). Hence, V is the stationary distribution of
the RGSMP by Theorem 10. |

There are a number of remarks on this theorem.

Remark 12. This theorem does not answer the uniqueness of the stationary distri-
bution. However, the uniqueness can be considered through the irreducibility. In
particular, for the macro state distribution, it is not hard to check the irreducibility
from the global balance equation (76) similar to the irreducibility of a Markov chain
with discrete state space 2 .

Remark 13. Although at most one clock with non exponentially distributed lifetime
is activated at each completion time, some clocks with exponentially distributed life
times may be activated at the same instant. Thus, it is not necessary that U = {{} in
(76) and (77).

Remark 14. From the proof of Lemma 14, we can see that o ;) > 0 if and only if
Ki(x,£) > 0, that is

Z Cxi,u;x(i)n(x) - Z Z Z Cx’i“;x,(i)n(x/)p((xlv i)7 (X7 U)) > 0.

icI(X)\{¢} XEe2 ic)(x) (gUCI(x)

By the global equation (76), this is equivalent to

Z Z Z cx’i.u;x, (i)ﬂ'(X/)p«X/, i)7 (X7 U)) - CX[“;X(Z)E(X) > 0.

x'eZ ieJ(x') teUC(x

This means that o, () > 0 holds if and only if the total activation rate of type d =
1 (€) clock is greater than its total completion rate. Thus, ¢ can be interpreted as
an interruption rate.

Remark 15. We have not discussed how to compute the interruption rate ¢;. In many
cases, they are given as modeling parameters. If this is not the case, they would be
determined by (80) although they are highly nonlinear equations.

In the rest of this section, we consider the case where there is no interruption, that
is, oy = 0 for all d € D. The following corollary is immediate from Theorem 11.
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Corollary 10. Suppose the RGSMP satisfies (15a) and has no interruption. Then,
the RGSMP is product form decomposable and satisfies (15b) and (15c¢) if and only
if there exist the distribution 7 on 2~ satisfying the global and local balances:

Z CXinu%((i)n(x): Z Z Z CX’iuyx/(i)”(X/)p((X/’i)7(XvU))v (88)

icJ(x) x'eZ ieJ(x')UCJ(x)

cxlf.uyx(é)ﬂ(x) = Z Z Z Cx! lnu'y/ (( )a (Xa U))7 te Jg(X)7 (89)
x'eZ ieJ(x') teUCJ(x)

and the finite intensity condition:

Y Y cxtiym(x) < oo (90)

xeZ leJ(x)

In this case, the stationary distribution V is given by

V(X,H[O,ul>—ﬂ: Hu7x / (1= Fyy())dv, x€ 2 ,1;>0. (91)

icJ(x) icJ(x
Furthermore, not more than one clock is activated at once.

Note that the stationary distribution 7 of the macro states depend on F; for d € D,
only through their means ~!. This stationary distribution is said to be insensitive
with respect to F; for d € D,.

Example 17. Consider the M/G/1 queue of Example 15. We have formulated it by
the RGSMP. Since there is no interruption, we examine the product form decom-
posability by Corollary 10. The local balance condition (89) is

wr(l) =Am(0)+ uym(2), p(n) = wr(n+1), n>2.

Obviously, these are impossible. Hence, the M/G/1 queue with the first-come first-
served discipline can not be product form decomposable. O

17 Applications to queues and their networks

How we can check the conditions in Theorem 11 and Corollary 10 to see the decom-
posability ? It is notable that we do not need to consider the RGSMP with generally
distributed lifetimes. Namely, we only need to find the stationary distribution of the
macro state which satisfies (76) and (77) (or (88) and (89)). In particular, if there
is no interruption, it is sufficient to consider the RGSMP all of whose lifetimes are
exponentially distributed. This greatly simplifies the verification of the decompos-
ability.

In this section, we exemplify queues and their networks by applying Corollary 10
and Theorem 11 in this way. We first consider the following queueing system.
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(17a) There are service positions numbered 1,2, ... to accommodate one customer
in each position. Customers arrives subject to the Poisson process with rate A
with i.i.d amounts of work for service, whose distribution is denoted by F. This
F is assumed to have a finite mean L.

(17b) An arriving customer who found n customers in the system gets into posi-
tion ¢ with probability 8,4 for £ =1,2,--- ,n+ 1, and customers in positions

£0+1,--- .nmovetol+1,{+2, --- n+ 1, respectively, where

n+1
ZS}H»I,[: 17 nZO
(=1

Thus, if there are n customers in the system, positions 1,2, --- ,n are occupied.

(17¢) A customer in position £ is served at rate ¢, ¢ for £ = 1,2,...,n when there
are n customers in the system. Denote the total service rate in this case by o' (n).
That is,

G(n):chg, n>1.
(=1

If a customer in position ¢ leaves the system, customers in positions £+ 1,¢+
2,---,nmoveto {4+ 1,--- n—1.

This model is referred to as a packed positioning queue. For each 7, denote the
number of customers in system by X (¢) and the remaining work of the customer at
position £ by Y;(¢) for £ =1,2,...,X(t). Let Y(t) = (Y1(t), ..., Yx()(t)). We show
that the process (X (7),Y(¢)) is the RGSMP. Let

2 =Ny, D={eg}, J(n)={0}, Jg(n)={1,2,...,n} forne 2,

where N; ={0,1,2,...}. The index functions are defined as ¥,,(0) = e and ¥,,(¢) =
g for £ > 1, where e and g represent exponential and general distributions, respec-
tively.

Let ¢,0 = A for all n € Z°. We interpret ¢,y for £ > 1 as the speed of a clock at
the site £ under the macrostate n. Define transition probabilities by

p((n,0),(n+1,£)) = S(t1)e; (ne Z,1<f<n+1),
p((n,0),(n—1,0)) =1, (n>1,1<0<n),
Pe=A,  pHg=p.

Thus, (X(¢),Y(¢)) can be considered as the RGSMP. Hence, by Corollary 10, the
RGSMP supplemented by the remaining service requirements is product-form de-
composable if and only if

cptm(n) = Adyn(n—1) (n>1,1<£<n). (92)

From this, we see that
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cne = (1) Oy, n>1,0=1,2,...,n.

This service discipline is called symmetric by Kelly [18, 19].

Thus, the packed positioning queue with Poisson arrivals and i.i.d. service re-
quirements is product form decomposable if and only if its service discipline is
symmetric. In this case, (92) uniquely determines the stationary distribution {7 (n)}
as

l}’l
nn)=n0)—————, n>1.
=0, o0
where 6(n) =Y)_, cur, if
o0 A"

— = < oo
r;) ur T o (i)
This stationary distribution is insensitive with respect to the work for service. Fur-
thermore, (92) implies

n+l
chg/.l,ﬂ?(nJrl):?Ln?(n) n>0.
(=1

Hence, by a similar time-reversed argument in Example 16, we can see that the
departure process from this queue is also Poisson. This is generally known as quasi-
reversibility (see [9] for its details).

Note that packing rule of service positions does not affect to get (92), that is,
any reallocations are possible at arriving and departing instants if all positions are
packed. In what follows, we refer to this model simply as a symmetric queue.

Remark 16. One might expect that the insensitivity of the queue length distribution
implies the symmetric condition. But, this is not true. For example, assume that,
for each n, ¢,y = % for 1 <¢<nand 8, =1 only if £ = 1. Then, the sample
path of {X(¢)} is identical with that of the corresponding symmetric queue with
Cnt = Opp = % for 1 < ¢ < n since all customers in service have a same service rate
after arriving of a new customer. Thus, (92) does not hold but the queue length
distribution is still insensitive. This example is rather trivial, but shows the local
balance (76) is indeed stronger than the insensitivity. |

We next consider the case where interruptions occur in the symmetric queue with
Poisson arrivals. In addition to the assumptions (17a), (17b) and (17c), we assume
the following condition.

(17d) Negative signals arrive according to the Poisson process with rate oo (n),
which is independent of everything else, and delete a customer in position ¢
with probability §,, when n customers are in the system.

The index for this signal is denoted by —1. That is, J(n) = {—1,0,1,2,...,n}
for n > 0. Suppose the local balance (77) holds. Since the general index g is only
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activated by arrivals, we have

(W +a)dyo(n)n(n) =Adyun(n—1), n>1,0=1,2,...,n,
where p* is given by (69) for @; = «. Thus, the stationary distribution is given by

l n

7(n) = m(0) (u*+a)' T, o(i)’

n>0,

< oo is assumed. Then, it is

=) A, n
where the stability condition -

n;() (0 + o) [Ty o (0)
easy to see that this distribution satisfies the global balance (76):

A+ (W +a)o(m)mn) = An(n—1)+ W +a)dn+ D)an+1), n>1.

Hence, (77) indeed holds, and we have the product form decomposability by Theo-
rem 11.

Example 18. The symmetric queue can be generalized for multi-class queues and
their networks. We show how to formulate multi-class symmetric queues by an
RGSMP. Suppose there are T types of customers. Denote a set of their types
{1,2,---,T} by 7. We assume that the arrival process of type i customers is Poisson
with the rate A; and the arrival streams of different types of customers are indepen-
dent. Now the macrostate needs to specify the configuration of customer types in
positions. So far, we let

Z={x=((1),1(2),---,t(n));n>0,t(i) € T} .

The site space is same as the packed positioning queue, but D is changed to
{e,1,---, T}, which means that different types of customers may have different ser-
vice time distributions. Service discipline is also same as the packed positioning
queue. We assume that the speeds of service and position selecting probabilities
of arriving customers may depends on n = |x|, so the total speed also only de-
pends on n, which is denoted by o(n). Then, the local balance (76) becomes, for
X= (t(l)’ ,t(l’l)) andxOey = (t(l)v 7t(£7 l)at(£+1)7"' ,t(l’l)),

cng,u,(@n(x) = 6ngl,(4)7r(x@eg), {e Jg(X) ={1,2,...,n}. 93)

Thus, if the queue is symmetric, i.e., if ¢, is proportional to J,, concerning £ for
each n = x|, then

)
n(x)=m(0 _
( ) ( )yzl ,ut(f)c(g)

gives a stationary distribution if the total sum of 7(x) over .2 is finite, where 7 (0) is
the normalizing constant. From (93), we again have the quasi-reversibility for each
fixed type t as
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n+l1

Z Clh T(x D eyg(t)) = A m(x), xe %2,
=1

where x @ es(t) = (¢(1),---,t(£ — 1),t,6({+ 1),...,¢(n)) for x = (¢(1),--- ,¢(n)).
since ©(n)y(p)7(X) = A,y 7(X¢) by the symmetric condition. These are the well-
known results originally obtained by [18] and Chandy, Howard and Towsley [8]. We
here note that (93) fully verifies the insensitivity with respect to the distributions of
the amount of work for all types due to Corollary 10. O

Consider an open or closed queueing network with multi-class Markovian rout-
ing whose nodes have symmetric service discipline in the sense of Example 18.
Then, each node in separation with multi-class Poisson arrivals is quasi-reversible.
Hence, from the product form solution for a quasi-reversible network (see, e.g.,
[9]), if all service requirement distributions are exponential and exogenous arrivals
are subject to Poisson processes, then this queueing network has the product form
stationary distribution for all type configurations over the network, and satisfies the
local balance at each node for each type of customers.

This concludes that the stationary distribution is insensitive with respect to the
distributions of the amount of work for all types of customers at each node. This
result is usually verified by approximating such distributions by phase types of dis-
tributions or by assuming the densities of those distributions. We can again fully
verify it by Corollary 10.

For those product form queueing networks, we can also consider the case that
there are negative customers or negative signals at each node as in the condition
(17d). Similar to the single node case, we can show the product form decomposabil-
ity by Theorem 11. Of course, the macro state distribution can not be insensitive in
this case.

18 Further insensitivity structure in RGSMP

The product form decomposable RGSMP has insensitive structure not only for the
stationary distribution but also for other characteristics. A most prominent feature
among them is the conditional mean actual lifetime of a clock given its nominal
lifetime, where the nominal lifetime is meant the total amount of lifetime when the
clock always advances with unit speed. In RGSMP, speeds of clocks may change,
so the actual lifetimes are different from their nominal lifetimes in general. The ac-
tual lifetimes are interesting for us since they correspond with the sojourn times of
customers in symmetric queues and their networks. We shall show that the mean
total sojourn time of a customer arriving at a product form decomposable queue-
ing network is proportional to his total work for service, and its coefficient can be
computed.

We first consider the attained sojourn time of an arbitrary fixed clock of a fixed
insensitive type d € Dg in RGSMS. Such a clock is called tagged. For this purpose,
besides the initial distribution of the RGSMP {Z(¢)} given in (91), we will consider
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a further initial distribution which will be specified below and which can be inter-
preted as a conditional version of that given in (91) under the condition that, at time
zero, a new (tagged) clock of type d € Dy is activated.

Let 7 denote the (total) nominal lifetime of the tagged clock. For y < 7%, let Tf
be the length of time required by the tagged clock to process y units of its nominal
lifetime and let £*(¢) denote the site at which this clock is at time # < 7. Then T}
is given by

ot
7;* = sup {t >0: / CX(u)é*(u)du < y} . 94)
0

Throughout this section we assume that the point process N generated by macro
state transition instants has finite intensity A.

We need further notation for describing various point processes arising in con-
nection with stationary RGSMP. Let N, be the point process generated by all jump
instants at which a new clock of type d is activated. Let 7L<d) and P, denote the
intensity of N(4) and the Palm distribution of P with respect to N(,), respectively.
Note that Py can be interpreted as the conditional probability measure of P given
that a clock of type d starts at time 0. For each site s € J, we also introduce the point
process N generated by all jump instants at which site s gets a new clock of type
d, and denote its intensity and the corresponding Palm distribution by A and P,
respectively. Furthermore, we use the following notation:

Jg=Usea {s €J(x): %(s) =d}, Zs={xe Z :seJ(x)}.

Since N(g) = Ysej, Ns, from the definition of Palm distribution, we have (see (14))

C)=Y MLP(C), CeZ. (95)

seJy

By A*(¢) we denote the amount of the nominal lifetime of the tagged clock processed
up to time ¢, i.e.

!

A*([) :A cx(u)g*(wdu
for every t > 0 with A*(t) < t*. For r > T}, we put A*(r) = t*. Furthermore, by
A%(t) we denote the amount of the nominal lifetime that a clock of type d, which
has been activated at time zero at site s, has consumed up to time ¢ > 0. Since
Py(Ny(0) = 1) = 145 (s') for 5,5’ € J. Hence, (95) yields, for u,y >0, s’ € J; and
Ce7

l(d)P(d)( *(u) < y,I*(0+) = 5',C) Z Ay Py (A* (1) < ,1*(0+) = 5',C)

S”G./d

= ls/Ps/ (A;k’ (M) <Y, C)
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Thus, by summing up for all possible s’ in the above equation, we get the following
result.

Lemma 15. For u,y > 0 and C € .%,

A’(d)P(d) (A* < y,C Z )LV/P‘ < Y, C) .

A E.Id

We denote the nominal lifetime 7* of the tagged clock by 7} if the tagged clock
is created at site 5. For s € S, x € 2 and u,y,; > 0, define the event Cy,(u,y¢) € F

by
Cxs(u,y0) = {X () = %, Ry (u) < yg(s' € J(x)\ {s})},

where y, = {yy:s’ € J(x)\ {s}}. Since the probability Py(A}(u) < y,0*(u) =
8,Cxs(u,y¢) | 7;) does not depend on 7; on the set {7} >y} € %, we can write,
for0<z<t*—y,

Py (A;‘,(u) <y, 0" (u) = 5,Cxs(u,yp) | TS*/ =1")
=Py (A (1) <y, 0" (u) = 5,Cxs(u,y0) | 75 = y+2) (96)

where t* = sup{u : 1 — F;(u) > 0}. Moreover, by Lemma 15, we have

/ Py (A% () < 3,0 () = 5, Cys (1,y,)| T = 2) Fy(d2)
- Y A / Po(A () < 3,0 (w) = 5,Cus (w,y0)| T = DFa(dz) . (OT)
SEJd

We are now in a position to prove the next lemma.

Lemma 16. Assume that Fy is purely atomic and has a finite number of atoms, i.e.
F;(x) is a step function with a finite number of jumps. Then, for every x € 2" and
s € J(x) satisfying %(s) = d, for 0 <y <¢* and for y, > 0, we have

war(x)y ] Fyh )
s'ed(x)\{s}

W / Pay(A* () < 3, 0* () = 5, Cys (1,0 | T = 17)due. (98)

Proof. Let kg(t) denote the site at which the clock being at time ¢ at site s was
originally activated. For u <vlet Ay(u,v), £s(u,v) and 7,(u, v) be the attained sojourn
time, the site and the nominal lifetime, respectively, of a clock of type d at time v
which started at site s at time u. Let x > 0, 5,5 € Jy, x € 25, and y; > 0 be arbitrary
but fixed. Then, by the definition of £y (u,v) and Ny, we have
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P(Ry(0) > v,ks(0) = 5',Cxs(0,y¢))

0
=E < /_ LRy (0)5 ks (0)=5' G (0:30) Ly (1 0) =3}V (du))

0
=E < [ L{Ry(0)>.Cas (0.0 (u.0)=5} Ny (du)> .
Moreover, note that, for u < 0, Ay (u,0) + Rs(0) = 7y (u,0) on the set {{y(u,0) =

s}, and that Ay (u,0) = Ay(0,— ) 0,, Ty (u,0) = 7y(0,—u) o 6, and £y(u,0) =
£y(0,—u) o 6,,. Then, the last term of the above formula becomes

0
E ( /_ M 00) <5 (00) 3. (0.30) £y (w0) =53V (du)>

0
=E (/ Lia (0,~u) <y (0,~u)—y,Cus (—109¢), Ly (0,—)=s} © OulVy (du)> ;

which, by Lemma 6, equals

0
AyEy ( /700 1{AS,(0,u)<rs,(o,u)y,c,“(u,y[),ﬁs,(o,u)s}du)

= AyEy (/ 1{A/(0,L¢)<TS/(O,M)y,st(u,y[)/S/(O,u)s}du>
= Ay / Py (Ay (0,u) < 79 (0,u) —y,Cxs (11, y¢), £y (0,u) = s)du,

where Ey denotes the expectation taken with respect to the Palm distribution Py .
Thus, from the fact that

Ay (O,Ll) = Aj/(u)v Ts’(ovu) = T:F/v gs’(ovu) =s5= é*(u) Py-as.,
we get
P(R5(0) > y, ks ( 0) =s",Cx(0,¥¢))

Yy / / Py (A% (1) < 2=, (u) = 5,Cxs(1,y0)| T = 2)Fa(d2))du
= Ay yt*(/0 Py(Ay(u) <z—y,0"(u) = 5,Cxs(u,ye)| T = 1")du)F;(dz) , (99)
where we have used (96) in the last equality of (99). Define a function H; by
(3 ye) / Piay(A™(u) <y, (u) = 5,Cxs(u,y0) [ T =1")du .

Sum up both sides of (99) for all s’ € J;, then (97) yields

t*
P(Rs(0) > y,Cxs(0,¥0)) = Aa) [ Halz—y,ye)Fu(dz) . (100)
y
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On the other hand, from (91), the left-hand side of (100) becomes

-—\r r r t*
*FY0) TT Fn0o =mar) TT Fin0o) [ @=)Fatdann
s'eJ(x)\{s} s'el(x)\{s} y

where ffir) (y))=1-F d(r> (y). Because of our assumption on F, there exist a positive
integer n, two sets of positive numbers {a;;i = 1,2,...,n} and {p;;i =1,2,...,n}
satisfying

Fy(y) =Y pilig ) (3) -
i=1

Here, we can assume that g; is increasing in i. Then, from (100), (101), we get, for
0<y<r,

n

May Y, piHa((ai—y)* ye) = pam(x)  [] Fy(xrgs/) (o) Y pilai—y)* , (102)
= yeit\ (s} =

where y* = max(y,0). Finally, (102) implies that, for 0 <y <%,

MayHa(vy) =mam(x)y [T Filoy o) - (103)
s'eJ(x)\{s}

This can be proved in the following way. Consider (102) for each sub-interval
(ai—1,a;], where ag = 0. First, from (102) for y € (an—1,a,], we have (103) for
0 <y <a,—ay_. Then, from (102) for y € (a,—2,a,—1], we have (103) for
ay — ap—1 <y < minfa, — an—2,2(ay — an—1)|. If 2(an — ay—1) < ay — ap—z, then,
by using the equation just proved, we get (103) for 2(a, — a,—1) <y < min[a, —
an—2,3(an—ay—1)]. We repeat the argument and eventually get (103) for a, —a,— <
y < a, —a,—>. In a similar way we inductively get (103) for all the sub-intervals.
(103) is nothing but (98), and therefore the lemma is proved. O

Note that, by (94), Ty* is defined for 0 < y < 7*. Now, we extend T}* to the whole
non-negative half-line by changing the nominal lifetime of the tagged clock to in-
finity, and denote 7" in this case by 77°. Clearly 7" = T7* for 0 <y < 7*. The
nondecreasing process {7;°;y > 0} is called a attained sojourn time process.

Analogously, by ¢*(¢) we denote the site at which the tagged clock is at time ¢
when its nominal lifetime is changed to infinity. Under the assumption of Lemma 16,
we consider a time change of the RGSMP {Z(¢)} by {7,°}.

Definition 14. Let {7,°;1 > Q} be the attained sojourn time process for a fixed index
deD.Let X(1) = X(T;7), £(t) = £(T;") and Ry(t) = Ry(T;"). We define a time-
changed process {Z(7);0 <7 < oo} as

Z(1) = (X(0),0(1) Ry (1):5' € X (1) \{U(1)}) -

This process is said to be a time changed RGSMP concerning the attained lifetime.
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Note that {Z(¢)} is a Markov process because we can trace its history by using
analogous dynamics as for the strong Markov process {Z(z)} and by using the sup-
plementary information #(¢), which indicates the site at which the tagged clock is at
present. For s € J;, x € Z; and t,y, > 0, define the event Cy,(u,y,) € .7 by

Cus(t,y0) = {X(1) = xRy (1) <yy (s € J(x)\ {s})} .

Note that, if we put v = A*(u) on {I*(u) = s} N Cxs(u,y¢), then dv = cxdu and

T;*(u) = u for cx; > 0 while dv = 0 for cy; = 0. Hence, by Fubini’s theorem and by

changing variables from u to v = A*(u), we have, for 0 <y <r*

/ Py (A" (u) < y,07(u) = 5,Cxs(u,y0) | T° =17)du

i #=r)
(/ 1{V<) Z* T*) SCXY 7}’[ }dV T =t )
( / L) =s.Cu(r ,yde>

y ~ ~
=Eq) ( /0 1{Z<v>s,c}.y<v,yf>}dv) = /0 Pay (£(v) = 5,Cxs(v,y0)) dv, (104)

where the expectation E( ) is taken with respect to Fy). Multiplying both sides of
(98) by cxsﬂ,(:i)l, substituting (104) into its right-hand side and differentiating it with
respect to y, we get, for 0 <y <r*,

/ I{A* () <y,0* (u)=s,Cxs (u, YZ)}CXSdu

st.ud”(x)

) ; x
F o 0y) = Pay(£(x) = 5,Cxs (3,¥0)) - (105)
May  yeito\gs) Bl “

Hence, {Z(t);0 <t < o} is a stationary process. By summing up both sides of (105)
for all possible s,x, we get

A’(d) = Ugq Z Z CXSTL'(X) .

xeZ seJ(x)NJy

Hence, the left-hand side of (105) can be expressed by

m*(x,5)  [] F;Xr&,)(ys,), (106)
s'eJ (x)\{s}
where 7*(x, s) is the probability distribution on {(x,s);s € J4,x € Z;} defined as

CxsTT(X)

Zn(x') Z c(s',x)’

xXeZ s'eJ(x")NJy

(107)
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Thus, we arrive at the following result.

Lemma 17. Under the assumption of Lemma 16, {Z(¢);z > 0} is a stationary
Markov process provided that the initial distribution of {Z(¢)} is given by (106).

We now remove the assumption of Lemma 16. For this purpose, we will use a
certain continuity property of Markov processes. Let F; be a general lifetime distri-
bution, and let {F; ,} be a sequence of distributions which satisfy the condition of
Lemma 16 and which weakly converge to Fy. Let {Z,(¢);t > 0} and {Z,(¢);t > 0}
be the processes corresponding to {Z(¢);¢ > 0} and {Z(t);t > 0}, respectively, for
the RGSMP’s with Fy, instead of F;. We define the initial distribution of {Z,()}
by (106), in which F; is replaced by F,,. By Lemma 17, {Z,(t)} are stationary
Markov processes. {Z,(t)} and {Z(t)} are self-clocking jump processes as intro-
duced in [26]. We apply Theorem 5.2 of [26] to those processes. Condition (i) of
this theorem is clearly satisfied because of (90). The stationary one-dimensional
distribution of {Z,(t)} weakly converges to the left-hand side of (106), and the
transition function at the jump instants of {Z,(¢)} satisfy conditions (ii) and (iii)
of Theorem 5.2 of [26], which can easily be verified because we only change the
lifetime distributions Fy , (see also Remark 5.2 of [26]). Thus, we get

Theorem 12. Assume that RGSMP is product form decomposable, and let d € D,
be fixed. Then, for a general lifetime distribution Fy, {Z(t);t > 0} is a station-
ary Markov process provided that the initial distribution of {Z(z);¢ > 0} is given
by (106). Furthermore, combining (104) with (105) and (106), we also have (98),
namely,

CxsT(X)y &)
F, (ys )
Y ax) c(s x') veJH\{} ()
xXeZ s'eJ(x')N
_/ Py (A () < 3,0 (u) = 5,Cys (1,30) | ©* = £*)due. (108)

We have the following verbal interpretation of Theorem 12. Under stationarity
conditions, given we freeze a randomly chosen type-d clock once it has been started
(i.e. putting its nominal lifetime equal to infinity), we observe a stationary process
if we look at the remaining system at those times 7, when the frozen clock has
consumed y units of resource, i.e. reached age y > 0. In particular, the distribution
we see when the tagged clock has reached age y is the same for all y and hence,
if we draw the age to be reached, blindly from some distribution, e.g. from Fy, we
have the same distribution of the process at the time this (random) age is reached.
Thus, the next corollary is a direct consequence of Theorem 12, i.e. the stationarity

of {Z(1)}.

Lemma 18. Under the conditions of Theorem 12, forx € 27, s € J; and y > 0, we
have

Pay(X(0) = x,1(0) = ) = Pig)(X (T =) =%, (T =) = s| 7" =y).  (109)
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Note that formula (109) can be somewhat sharpened: In steady state, at the in-
stants right after the starting of a randomly chosen type-d clock and right before
expiring of that same clock, the joint distributions of the state x, the site s € J(x) NJy
on which that clock is found, and the residual lifetimes of the other clocks are both
the same.

Theorem 12 also yields the following corollary because {7;°;x > 0} is com-

pletely determined by {Z(¢);¢ > 0} (see also Theorem 1 of [13]).

Corollary 11. Under the conditions of Theorem 12, the attained sojourn time pro-
cess {7;‘,’°;y > 0} has stationary increments.

Let 7;°(x, s) denote the total sojourn time of the system in state x € 2~ while the
tagged clock is at site s € J(x) NJy, until the tagged clock has processed y units of
its nominal lifetime, where the nominal lifetime of the tagged clock is assumed to
be infinity. Then we have the following result.

Theorem 13. Under the conditions of Theorem 12, we get, for y > 0, and forx € 2
and s € J(x)NJy,

7 (x)

= (110)
Yvea TE(X/) Zs’e](x’)ﬂld Cx's/

and, in particular, by summing up over all possible x and s,

| Ter iU
er%. 7I'(X) Zse](x)ﬁ]d Cxs

E(d)(fo’

; (111)

where |J(x) NJ,| denotes the number of elements of the set J(x) NJy.

Proof. Since, for 0 <y <t*,

T (x,5) = T, (x,5) = /0 Lo (u) <, () =s,X* (u)=g ) AU »
(108) of Theorem 12 yields (110) and (111). O

Remark 17. Note that the right-hand side of (110) does not depend on s € J(x) N J,;.
Furthermore, if we sum (110) up over all x,s such that cx, = 0, we get a formula
for the expected total time during which the tagged clock is interrupted (i.e. stands
still) up to the time age y is reached.

In some systems, e.g., in the processor-sharing queue, many clocks of a given
type d may run at the same time. Consider the time-changed process with respect
to a clock of type d whose lifetime is infinite. Suppose that type-d clocks never
run at zero speeds. Then the time-changed process is the RGSMP with macrostates
(x,5), s € Jy, ¢ € Z, and where, in state (X,s), a clock s’ € J(x) \ {s} is running
at the speed cyy /cxs. Because (106) is the stationary distribution of this RGSMP,
we can, for instance, consider the successive instants at which another type-d clock
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gets started, and study the corresponding time-changed process, all from the starting
point of the first time-changed process. This new time-changed process lives on
the states [s, (x,s)] with s € J(x) NJy, s € J(x)NJy, s # 5. Let (107) be written
as T*(x,s) = ki*cxm(x). Then the corresponding distribution for the second time-
changed process is given by

I ey s

7 (%,9) = 52 2 (x,)
Xs

on account of (107) applied to the second time-changed process. So

c /ﬂ(X) c /7'C(X)
TC** sl x.5)) = XS’ _ XS ]
( 7( Y )) k*k** Z n_(X/) Z CX/S//
Xex s"e(x')NJy

This would be, in steady state, the probability that, right after the instant of birth of
a type-d clock chosen at random while another type-d clock is already running (at
site s), the state is x and that clock is sitting on s'.

Example 19 (Symmetric queue). Consider the symmetric queue of Section 17. Since
there is only one type of customers, |J(x) NJ;| = n for x = n. Hence, by Theorem 13,
the conditional mean sojourn time of a customer who brings y amount of work is

Yo np" T G(i)_ly
=PIl o)

where p = A /. In particular, 6(n) = a for all n > 1 for some positive constant a,
then

Ey(Ty7) =

oo p
Ey(Ty) = ———»
ala—p)
As is expected, the coefficient of the linear function is proportional to the mean
queue length. For the product form decomposable network, similar results can be
obtained for a given sequence of the amounts of work at visiting nodes of a tagged
customer when his route is specified. O

19 Bibliographic notes

We briefly discuss about the literature in this chapter. Point processes and Palm mea-
sures are now standard in queueing books (see, e.g., [1]). In particular, Baccelli and
Bremaud [2] is devoted to this topic and “Palm calculus” was coined there. Histori-
cally, the first comprehensive book on this topic for queues was written by Franken,
Konig, Arndt and Schmidt [14]. However, point processes and Palm distributions
are old stuff, going back to the ninety-sixties (see, e.g., [30, 21, 22]). There are
some other approaches (see, e.g., [6]). The treatments of this topic from Section 2
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to 7 are somehow different from the standard one as in [2]. We more emphasize the
symmetric role of time stationary and Palm probability measures. This idea goes
back to Miyazawa [23].

The materials in Sections 8 and 10 are taken from Miyazawa [24, 25]. The rate
conservation law and their applications are surveyed in [28]. Example 8 is new.
Piece-wise deterministic process (PDMP) in Section 12 was coined by Davis [10],
and detailed in [11]. However, similar types of processes would have been consid-
ered long before since they are typical in queueing applications. Our treatments
of PDMP is slightly different from those of Davis’ as mentioned in Remark 5.
Generalized semi-Markov process (GSMP) for the insensitivity in the same sec-
tion has a long history. The earlier literature is Schassberger [31, 32] and Jansen
Ko6nig and Nawrotzki [15]. However, its limitation had been recognized (see, e.g.,
[3]). Schassberger [33] proposes “relabeling” to relax the limitation. Reallocatable
GSMP (RGSMP) was introduced by Miyazawa[27]. It has a similar mechanism to
Schassberger’s, but allows interruptions.

The stationary equations in Section 12 is taken from Miyazawa [26], and those in
Section 16 from Miyazawa [27]. Symmetric queue and their networks in Section 17
is due to Kelly [18, 19]. The locally balanced conditions and product form solutions
are largely discussed in the queueing network literature (see, e.g., [4, 8, 9, 34] and
references there). Section 18 is largely taken from Miyazawa, Schassberger and
Schmidt [29], which generalizes the results in [12, 13].
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