Extensible Interaction Sheets Language
XISL

version: 1.0
January 30, 2002

Lls__Goalsof xusL 4
Lls__ScopeofxISL 4
Us—piatogtevets -’!
L1 Exchange 2
(5.2 pialeg g
U5.3.—Document g
Lls.4. Application g
g

P,

|—|5Hessicn
|—|6. XISL-elements.
Ls#yctumand-exacuyzw-aﬁ)ﬂsgdccument 14
|L1.—Stpuctu;a-omsgdoeument 10!
|7-.3.—Dialog-tpansiti9n-and-change-9f-app!ication 14!

8. Variables

8.1. Declaration of variables

8.2. Scope of variables
8.3. Reference to variables
8.4. Application variable and document variable
8.5. Dialog variable
8.6. Local variable
8.7. Session variable
9. Expressions
10. Dialog description

10.1. Asetof interaction -- <dialog>

10.2. Aunitof interaction -- <begin>, <exchange>, <end>

10.3. Complex dialog flow -- <seq_exchange>, <par_exchange>, <alt_exchange>
11. Prompts to user -- <prompt>, <reprompt>

12. User's inputs

12.1. <operation>
12.2. <input>
12.3. Combination of complex inputs
13. System’s actions -- <action>
14. Declaration of variables
15. Arithmetical operations -- <assign>
16. Conditional branches
16.1. <if>, <elseif>, <then>, <else>
16.2. <switch>, <case>, <other>
17. Iterations -- <while>
18. Transition of dialogs
18.1. <call>
18.2. <return>
18.3. <goto>
19. Communicaton with external component -- <submit>
20. End of Session -- <exit>
21. Reprompt to user -- <reprompt>
22. Reference to variables -- <value>
23. System’s outputs -- <output>
24. Read XML files
24.1. Read XML elements -- <get_element>
24.2. Read contents of XML elements -- <get value>
24.3. Read attributes of XML elements -- <get_attribute>
25. Update XML files
25.1. Update XML elements -- <set_element>
25.2. Update contents of XML elements -- <set value>
25.3. Update attributes of XML elements -- <set_attribute>
26. Delete XML elements -- <delete_element>

[|

lappendix 1 DTD of XISL 1

Abstract
This document specifies XISL, the Extensible Interaction Sheet Language. XISL is
designed for describing interaction using multimodal inputs and outputs. Its goal is to

realize advanced interaction using multi-modalities.

1. Introduction

XISL is designed for describing interaction between an element in an XML document
(XML element) and a user. Interaction, in this document, is composed of a user’s
operation (e.g. click, speech input) for an XML element (e.g. displayed on a web
browser) and an action (e.g. screen update, speech output) according to the operation.
XISL can deal with multimodal interaction that uses input/output modalities
cooperatively. For this purpose, XISL is designed to control parallel inputs/outputs,
sequential inputs/outputs, and alternative input. Moreover, to control dialog (a set of
interaction) flow, some commands, such as dialog transition, bargein control, and so on,
are prepared.

mshows an example of XISL and XML to output “Hello World”. In this
example, “Hello.xml” is an XML document to which an interaction is attached. The
element <page> is assumed to be displayed on a web browser decorated by a XSL style
sheet “hello.xsl”. The XISL document “hello.xisl” contains a user’s click operation and
system’s speech action.

NOTE : This document does not specify strict attributes and contents of <input> and
<output> elements. That is, the authors have the flexibility to describe input/output
modalities. This enables us to expand or modify modalities easily. The descriptive
details of <input> and <output> should be specified by the platform developers. (It is

intended that some standards should be specified for each type of terminal.)

hello.xml

<?xml version="1.0" encoding="Shift-JIS"?>
<?xml-stylesheet type=“text/xs|” href="hello.xsl|"?>
<IDOCTYPE hello SYSTEM “hello.dtd”>
<page>

Touch this page to hear“Hello World!”

</page>

hello.xisl

<?xml version="1.0" encoding="Shift-JIS"?>
<IDOCTYPE xisl SYSTEM “xisl.dtd”>
<xisl version="1.0">

<head> </head>
<body>
<dialog id="Hello World">
<exchange>

<operation target="hello.xml">
<input type="pointing” event="|_click” match="/page” />
</operation>
<action>
<output type="speech” event="play”>
<I[CDATA[
<param name="speech_text"> Hello World! </param>
>
</output>
</action>
</exchange>
</dialog>
</body>
</xis|>

Figure 1: Sample of an XML and an XISL document

2. XISL execution system

XISL execution system shown in wconsists of the following three modules: a
front-end module, a dialogue manager module, and a document server module. The
document server is a general web server. It holds XISL, XML, and other documents (e.g.
XISL stylesheet, speech grammar file, and so on), and sends them to the dialogue
manager according to demands. The dialogue manager interprets XISL documents,
manages dialog flow, and controls inputs and outputs. The front-end is a user interface
terminal that contains microphone, speaker, screen, and so on. It is recommended that

the dialog manager module is independent of the front-end module for modularity.

Front—end Dialogue Manager Document Server

O
o Interface Int:;ajttion L o
\ o
o (inputs) Mudde E S L docurments
-3
—_0
T3
o 0 [
3 =
3D SL documents
« =+ 3
- Interface Action s g @
A 4Y
« (outputs) Module =
User Other documents
(XSL, etc.)

Figure 2: Architecture of XISL execution system

3. Goals of XISL

XISL is a language that:

1. Enables to use various type of front-ends (e.g. mobile phone, PC, digitai TV, ...),
and realizes seamless web services.
Is useful for describing complex multi-modal interaction.
Makes it easy to reuse XML contents and interaction by separating them.
Provides means for describing user initiative interaction, system initiative
interaction, and mixed initiative interaction.

In order to bring these features, 1) XISL has the flexibility to expand input/output
modalities arbitrary, 2) a lot of commands are prepared (e.g. parallel, sequential, and
alternative dialog flow, bargein, conditional branch, iteration, calculation, editing of
XML documents, and so on), 3) only interaction is described in XISL, 4) both prompting

interaction and non-prompting interaction are able to be described.

4. Scope of XISL

XISL is a language to describe interaction between an arbitrary XML element and a
user. Each XML element has to be presented to a user by some method (e.g. displayed
in a web browser, provided as some hardware) in order to catch operations from the
user. The front-end module may be a personal computer or a mobile phone, and so on,
however, XISL does not restrict the type of terminals. (The front-end might be a robot
which possesses a lot of sensors as input modes, and operates three-dimensional

actions as outputs.)

5. Dialog levels

XISL constructs five layers of dialog levels: session, application, document, dialog,
and exchange. A user always executes a dialog, and at the same time, the user executes
the document, the application, and the session containing the dialog. A user is either
executing an exchange or standing by to execute some exchanges. An XISL author can
declare variables in all levels except for session level, and can describe transition of
dialog to all levels except for session level and exchange level. mmows the
relation of the levels.

Session
Application Application
yeeeeeeecnaa B D L et e ceeeeeecaaaaaa '
' Application root document : : Application root document 0
. e ‘
: e e '
. ADD'!Cat'O” Don't specify * * Application Don't specify !
' Variables ' Variables .
! any root : any root
.
' pratenreeseeee, .
. Application (I S " '
. v
] Dialog : : .. Dialog :
v] e '
: ¥ :
[} '
: ¥ -
. M .
L} . L]
' A % ‘e 7 % '
' /~ S ' -~ AN '
. ,* Specify a root N - , Specify a root's_ '
[d N ' s N
: pid S : ')i AN :
' B . . Document '
: Document og : [., Dialog :
: Variables : : I Exchange I :
"0
:) 1
' P ' ' — Dialog '
o | . Dialog Vel | —— i Dialog '
L} . L]
: i :
"0
' ' .
: [) L]
"0
: Leaf Document Leaf Document v o+ Leaf Document Leaf Document :
----------------------------- | Lecccccccccccccnccncccnacanacancas

Figure 3: Relation of dialog levels

5.1. Exchange

Exchange is a unit of interaction between a user and a system. Two ways are
prepared to denote exchange. One is the non-prompting description that only contains
a user’s operation and a system’s action. This description is used for user initiative
interaction without prompting. The other is the prompting description that contains a
prompt, a user’s operation, and a system’s action. This description is used for system

initiative interaction by the prompt. By mixing these descriptions, the author can

describe mixed initiative interaction.

5.2. Dialog

Dialog is composed of some exchanges. The user is always executing a dialog. The
exchanges in a dialog are executed in sequential order unless any dialog control
commands are described. An XISL author can indicate the subsequent dialog in the
arbitrary dialog.

Each dialog belongs to dialog level, document level, or application level. A dialog
belongs to the dialog level is executed only when the dialog is indicated to be the
subsequent dialog. That is, it is not executed if it is not indicated to be the subsequent

dialog.

5.3. Document

Document is an XISL file composed of some dialogs. In each XISL document, the
author can declare document level variables and document level dialogs. Document
level variables are available during the document is being executed. Document level
dialogs are available during the document is being executed, that is, the user can
transit to those dialogs at all times in the document. These variables and dialogs

become unavailable when the dialog transits to the other document.

5.4. Application

Application, which constructs a task, is composed of a set of XISL documents. An
application contains zero or more leaf documents and an application root document. In
the application root document, the author can declare application level variables and
application level dialogs.

When an application is executed, either a leaf document or an application root
document is executed. In the case where a leaf document is executed, corresponding
application root document is also loaded to enable use of application level variables and
dialogs.

Application level variables are available during the application is being executed.
Application level dialogs are available during the application is being executed, that is,
the user can transit to the dialog at all times in the application. These variables and

dialogs become unavailable when the dialog transit to the other application.

5.5. Session

Session begins when a user connects to the XISL execution system. It continues as

XISL documents are loaded and processed, and ends when requested by the user or the

XISL execution system.

6. XISL elements

Element Purpose

<action> Execute the actions in the element

<alt_exchange> <exchange>s in this element are executed alternatively.
<alt_input> <input>s in this element are accepted alternatively.
<assign> Assign a variable a value

<author> The author of the document

<begin> Initial processes in a <dialog>

<body> A container of <dialog>s

<call> Go to another dialog (Return to the original dialog)
<case> Used in <switch> elements

<date> The date of document update

<details> Details about the document

<delete_element>

Delete an XML element from the indicated XML document or the
XML element held in an indicated variable

<dialog>

A set of interactions

<dialog_var>

Declare dialog level variables

<document_var>

Declare document level variables

<else> Used in <if> elements

<elseif> Used in <if> elements

<end> Terminal process in a <dialog>

<exchange> A unit of interaction between a user and a system
<exit> Terminate executing dialog, document, and application

<get_attribute>

Obtain an attribute of XML element from the indicated XML
document or the XML element held in an indicated variable

<get_element>

Obtain an XML element from the indicated XML document or the
XML element held in an indicated variable

<get value>

Obtain the text content of an XML element from the indicated
XML document or the XML element held in an indicated variable.

<goto> Go to another dialog (Does not return to the original dialog)

<head> Meta informations about the XISL document

<history> Update history

<if> Conditional branch used together with <else>, <then>, and
<elseif>

<input> A user input

<item> An item of update history

<name> Name of the dialog

<operation> A set of user’s input

<other> Used in <switch> elements

<output> A user output

<par_exchange>

<exchange>s in this element are executed parallel.

<par_input>

<input>s in this element are accepted parallel.

<par_output>

<output>s in this element are executed parallel.

<prompt> Give prompt to the user

<reprompt> Reprompt the <prompt> element

<return> Return to the original dialog

<seg_exchange> | <exchange>s in this element are executed sequentially.
<seq_input> <input>s in this elements are accepted sequentially.

<seq_output>

<output>s in this elements are executed sequentially.

<set_attribute>

Update the attribute of an XML element in the indicated XML
document or the XML element held in an indicated variable

<set_element>

Update the XML element in the indicated XML document or the
XML element held in an indicated variable

<set value>

Update the content of an XML element in the indicated XML
document or the XML element held in an indicated variable

<submit> Send some values to the document server via HTTP GET or
HTTP POST request, and receive its return value

<switch> Conditional branch used together with <case> and <other>

<then> Used in <if> elements

<var> Declare a variable

<value> Insert the value of an expression in an <output>

<while> Itarate the process in this element while the condition is true

<xisl> The root element of an XISL document

7. Structure and execution of XISL document
7.1. Structure of XISL document

XISL is an XML application. The authors are expected to be familiar with the

concepts and notations of XML 1.0. The grammar of XISL is defined by the DTD shown

in Appendix.1. Here is a basic structure of an XISL document.

<head>

</head>
<body>

</body>
</xis|>

<?xml version="1.0" encoding="Shift-JIS"?>
<IDOCTYPE xisl SYSTEM *“/xisl.dtd">
<xisl version="1.0">

--title, author, history, etc. --

--contents--

The root element of an XISL document is <xisl>, which contains elements <head>

and <body>. Attribute “version” of <xisl> is a required attribute that indicates the

version of XISL. Current version is 1.0. Attribute “application” specifies the URI of

application root document (See section a If the specified document does not exist,

10

XISL execution system generates an execution error.

The <head> element is a container of the document’s meta informations such as

author, update history, and so on. The <body> element is a main component of XISL

document that contains dialogs.

element <xisl>

purpose The root element of an XISL document

attributes | version Indicate the version of XISL. Current version is 1.0.
application | Specify the URI of application root document

element <head>

purpose Meta informations about the XISL document

attributes | No attributes

element | <body>

purpose A container of <dialog>s

attributes | No attributes

Here is an example of <head> description.

<head>

<name> OnLine Shopping System </name>
<author> Takanori Kobayashi </author>
<date> Dec.26 2001 </date>
<details> Version 1.0 </details>
<history>
<item>
<date> Jun.18 2001 </date>
<details> Version 0.0 </details>
</item>

</history$

</head>

The <head> element contains following elements.

element <author>

purpose The author of the document
attributes | No attributes

element <date>

purpose The date of document update
attributes | No attributes

11

element <details>

purpose Details about the document
attributes | No attributes

element | <history>

purpose Update history
attributes | No attributes

element | <item>

purpose | An item of update history
attributes | No attributes

element <name>

purpose Name of the dialog
attributes | No attributes

The <body> element contains a set of user-system interactions, their control
description, and the other commands. <body> is composed of a <document var>
element and some <dialog> elements. The first <dialog> of an XISL document is
executed if no <dialog> is specified to be executed. If a <dialog> terminates without

specifying the next <dialog>, current document, and application are also terminated.

<body>
<document_var>
--Declaration of document variables--
</document_var>
<dialog> --A unit of dialogue-- </dialog>

</body>

7.2. Application and its execution

The attribute “application” in <xisl> is used to distinguish between the application
root document and the leaf document. If an <xisl> does not have an attribute
“application”, the document itself is the application root document. On the other hand,
if an <xisl> has an attribute “application”, and indicats a URI, the document indicated
by the URI is the application root document. In this case the document itself is a leaf
document. In order to construct an application by multiple documents, firstly the
author selects a document as the application root document, and then indicates its URI
in the other documents’ “application” attributes.

Every time the XISL interpreter loads a leaf document, it checks whether its

12

application root document has already been loaded. If it has not been loaded, it loads at
that occasion. The application root document remains loaded until the application

changes. Thus one of the following two conditions always holds during interpretation.

1. An application root document is loaded and the user is executing it.
2. An application root document and a leaf document of the application are both

loaded and the user is executing in the leaf document.

There are several benefits to multi-document applications. First, the application
level variables are available for use by the other documents in the application, so that
information can be shared and retained. Second, the application level dialog is
available when the user is executing a leaf document, so that some common interrupt
dialog can be described.

The following is an example of application composed of two documents.

app-root.xisl (root document)

<?xml version="1.0" encoding="Shift-JIS"?>
<IDOCTYPE xisl SYSTEM “xisl.dtd">
<xisl version="1.0">

<head> </head>
<body>
<dialog id="Help” scope="document”>
<exchange>

<operation target="help.grxml|”>
<input type="speech” event="recognize”
match="/grammar/rule[@id=help]">
<param name="mode">command</param>
</input>
</operation>
<action>
<output type="speech” event="play”>
<I[CDATA[
<param name="speech_text"> Click the Page! </param>
1>
</output>
</action>
</exchange>
</dialog>
</body>
</xisl>

13

hello.xisl (leaf document)

<?xml version="1.0" encoding="Shift-JIS"?>
<IDOCTYPE xisl SYSTEM “xisl.dtd">
<xisl version="1.0" application="app-root.xis|">

<head> </head>
<body>
<dialog id="Hello World">
<exchange>

<operation target="hello.xml">
<input type="pointing” event="|_click” match="/page” />
</operation>
<action>
<output type="speech” event="play”>
<I[CDATA[
<param name="speech_text"> Hello World! </param>
1>
</output>
</action>
</exchange>
</dialog>
</body>
</xis|>

This example assumes that “hello.xisl” is executed as a leaf document. The attribute
“application” of <xisl> in “hello.xisl” indicates “app-root.xisl” as the application root
document. In the “app-root.xisl” document, <dialog>'s attribute “scope” is set to
document. This means the dialog “Help” is declared as an application level dialog.

Hence the dialog is available during the application is being executed.

7.3. Dialog transition and change of application

Dialog transition sometimes causes change of application and document. The
followings are the relation between dialog transition and change of application, change
of document. mmows the relation.

« Dialog transition that does not change document
If the executing dialog and the subsequent dialog are in the same document, the
dialog transition does not change the document.

« Dialog transition that changes document
When the executing dialog and the subsequent dialog are in the different
document, the dialog transition changes the document.

« Dialog transition that does not change application

This type of transition belongs to one of the following cases.

14

» The application root document of current dialog and that of the subsequent
dialog are the same document.

» The current dialog is in the application root document D, and the subsequent
dialog’s application root document is also D.

» The application root document of current dialog is the document D, and the
subsequent dialog is in the document D.

> The current dialog is in the application root document D, and the subsequent
dialog is also in the document D.

« Dialog transition that changes application

The application changes if a dialog transition does not satisfy the above

conditions.

Application Application

Application root document Application root document

. Document
... Dialog
—Dialog
Leaf Document Leaf Document Leaf Document
, > i --3
Don't change application Change application

Figure 4: Transition of dialog and change of application

15

Appendix 1. DTD of XISL
<l--

XISL 1.0 DTD

version 2002-01-21

>

<IENTITY % exchange.type " par_exchange | seq _exchange | alt _exchange |
exchange ">

<IENTITY % input.type " input | par_input | seq_input | alt_input ">

<IENTITY % output.type " output | seq_output | par_output ">

<IENTITY % begin.end.content " var | assign | if | switch | while |
call | return | goto | submit |
exit |
seq_output | par_output | output |
get_value | get_element | get_attribute |
set value | set_element | set_attribute |
delete_element ">

<IENTITY % action.content " %begin.end.content; | reprompt ">

<IENTITY % boolean "(true | false)" >

<IENTITY % duration "CDATA" >

<IENTITY % conditional.logic "CDATA">

<IENTITY % expression "CDATA" >

<IENTITY % variable.name "CDATA" >

<IENTITY % variable.names "CDATA" >

<IENTITY % integer "CDATA" >

<IENTITY % target.name "CDATA" >

<IENTITY % uri "CDATA" >

<IENTITY % path "CDATA" >

<IENTITY % get.set.attrs " target %target.name; #REQUIRED

16

var %variable.name; #REQUIRED
match %path; #REQUIRED

place (temp | master) ‘temp'">

<l-- = Root =

<IELEMENT xisl (head?,body) >

<IATTLIST xisl version CDATA #REQUIRED
application %uri; #IMPLIED>

<IELEMENT head (name?,author?,date?,details? history?)>

<IELEMENT name (#PCDATA)>

<IELEMENT author (#PCDATA)>

<IELEMENT date (#PCDATA)>

<IELEMENT history (item+)>

<IELEMENT item (date,details)>

<IELEMENT details (#PCDATA)>

<IELEMENT body (document_var?,dialog*)>

<IELEMENT document_var (var+)>

=->

<I-- = Dialog ===

<IELEMENT dialog (dialog_var?, begin?, (%exchange.type;)* , end?) >

<IELEMENT dialog_var (var+) >
<IATTLIST dialog id ID #REQUIRED
comb (par | seq | alt) "seq"
repeat CDATA "
scope (dialog | document) "dialog"
arg %variable.names; #IMPLIED>

<l-- = Begin === =

<IELEMENT begin (%begin.end.content;)*>

<l-- ========== End ==================

17

<IELEMENT end (%begin.end.content;)*>

>

<I-- = Exchanges =
<IELEMENT par_exchange (%exchange.type;)+>
<IELEMENT seq_exchange (%exchange.type;)+>
<IELEMENT alt_exchange (%exchange.type;)+>

<IELEMENT exchange (prompt?,operation,action)>

<l-- —====== Prompt

<IELEMENT prompt (%output.type;)+ >

<IATTLIST prompt count %integer; 1"
timeout %duration; #IMPLIED
bargein %boolean; "true" >

<I-- = Operation == =

<IELEMENT operation (%input.type;)+ >

<IATTLIST operation target %target.name; #IMPLIED
comb (par | seq | alt) "par">

<IELEMENT par_input (%input.type;)+>

<IELEMENT seq_input (%input.type;)+>

<IELEMENT alt_input (%input.type;)+>

<IELEMENT input (param)*>

<IATTLIST input type CDATA #REQUIRED
event CDATA #REQUIRED
target %target.name; #IMPLIED

match %path; #REQUIRED
return %variable.names; #IMPLIED >

<IELEMENT param (#PCDATA)>
<IATTLIST param name CDATA #REQUIRED >

<l-- ======= Action = =

<IELEMENT action (%action.content;)*>

18

=->

=_=a>

<IELEMENT var EMPTY>

<IATTLIST var name %variable.name; #REQUIRED
expr %expression; #IMPLIED>

<IELEMENT assign EMPTY>

<IATTLIST assign name %variable.name; #REQUIRED
expr %expression; #REQUIRED>

<IELEMENT if (then, (else? | elseif*))>
<IATTLIST if cond %conditional.logic; #REQUIRED>

<IELEMENT then (%action.content;)*>
<IELEMENT else (%action.content;)*>

<IELEMENT elseif (then, (else?]elseif*))>
<IATTLIST elseif cond %conditional.logic; #REQUIRED>

<IELEMENT switch (case+, other?)>
<IATTLIST switch expr %expression; #REQUIRED>

<IELEMENT case (%action.content;)*>
<IATTLIST case value CDATA#REQUIRED>

<IELEMENT other (%action.content;)*>

<IELEMENT while (%action.content;)*>
<IATTLIST while cond %conditional.logic; #REQUIRED>

<IELEMENT call EMPTY>

<IATTLIST call next %uri; #REQUIRED
namelist %variable.names; #IMPLIED
return %variable.names; #IMPLIED>

<IELEMENT return EMPTY>
<IATTLIST return namelist CDATA #IMPLIED>

<IELEMENT goto EMPTY>
<IATTLIST goto next %uri; #REQUIRED
namelist %variable.names; #IMPLIED>

<IELEMENT submit EMPTY>
<IATTLIST submit next %uri; #REQUIRED
method (get | post) "get"
namelist %variable.names; #IMPLIED

19

return %variable.names; #IMPLIED >
<IELEMENT exit EMPTY>
<IELEMENT reprompt EMPTY>
<IELEMENT seq_output (%output.type;)*>
<IELEMENT par_output (%output.type;)*>
<!-- The <value> elements appear in the CDATA section of <output> elements.

<I[ELEMENT value EMPTY>
<IATTLIST value expr %expression; #REQUIRED>

<IELEMENT output (#PCDATA) >
<IATTLIST output type CDATA #REQUIRED
event CDATA #REQUIRED>

<IELEMENT get_value EMPTY>
<IATTLIST get_value %get.set.attrs;>

<IELEMENT get_element EMPTY>
<IATTLIST get_element %get.set.attrs;>

<IELEMENT get_attribute EMPTY>
<IATTLIST get_attribute %get.set.attrs;>

<IELEMENT set_value EMPTY>
<IATTLIST set_value %get.set.attrs;>

<IELEMENT set_element EMPTY>
<IATTLIST set_element %get.set.attrs;
type (insert | overset) #REQUIRED>

<IELEMENT set_attribute EMPTY>
<IATTLIST set_attribute %get.set.attrs;>

<IELEMENT delete_element EMPTY>

<IATTLIST delete_element target %target.name; #REQUIRED
match %path; #REQUIRED
place (temp | master) “"temp">

20

	Abstract
	Introduction
	XISL execution system
	Goals of XISL
	Scope of XISL
	Dialog levels
	Exchange
	Dialog
	Document
	Application
	Session

	XISL elements
	Structure and execution of XISL document
	Structure of XISL document
	Application and its execution
	Dialog transition and change of application

	Appendix 1. DTD of XISL

