
Fast Keyword Detection Using Suffix Array

Kouichi Katsurada, Shigeki Teshima, Tsuneo Nitta

Toyohashi University of Technology, Toyohashi, Japan
{katurada, nitta}@tutkie.tut.ac.jp, teshima@vox.tutkie.tut.ac.jp

Abstract
In this paper, we propose a technique for detecting keywords
quickly from a very large speech database without using a
large memory space. To accelerate searches and save memory,
we used a suffix array as the data structure and applied
phoneme-based DP-matching. To avoid an exponential
increase in the process time with the length of the keyword, a
long keyword is divided into short sub-keywords. Moreover,
an iterative lengthening search algorithm is used to rapidly
output accurate search results. The experimental results show
that it takes less than 100ms to detect the first set of search
results from a 10,000-h virtual speech database.
Index Terms: keyword detection, large-scale speech database,
suffix array, iterative lengthening search

1. Introduction
Keyword detection is an essential issue in effectively utilizing
a speech database. Considerable research has been conducted
on this issue, and a reasonable performance has been achieved
in detecting the correct keywords from a speech database
[1][2]. Recently, some studies focused on the search speed
[3][4][5] because a quick search is important when executed
on very large speech/video databases such as the digital
archives of TV/radio programs or video sites on the Internet.
However, most existing methods need a large memory space to
hold temporal index data; furthermore, the existing methods
cannot be used for a 10,000-h speech database. This paper
provides fast keyword detection for a large speech database
without using a large memory space.

We employed a suffix array, which enables a fast binary
search and decreased memory usage, as a data structure and
applied phoneme-based DP-matching (or DTW: Dynamic
Time Warping) to detect a keyword from the array. Even
though the suffix array enables binary search, a DP-matching-
based similarity search causes an exponential increase in
processing time with length of a keyword. To avoid the
problem, we split a long keyword into short sub-keywords
during the search. Moreover, an iterative lengthening search
algorithm is introduced to rapidly output accurate results.
These techniques make it possible to show search results
quickly.

In the following sections, we explain the outline of a suffix
array and search algorithm using DP-matching. Then, we
present keyword division and an iterative lengthening search
algorithm for a faster search. After evaluating our approach,
we provide our conclusion and suggest future research.

2. Keyword matching using a suffix array
2.1. Structure of suffix array
A suffix array [6] is a data structure that is used for quickly
searching for a keyword from a text database. We employ it
for phoneme-based keyword detection. It holds sorted indexes
of all suffixes of the phoneme string in a database. Figure 1

sh
st
po
in
bi
sp

2.
In
er
an
si
a
pr
an
tre
th
if
se
em
pr
su

1 I
str

Text a b r a c a d a b r a
Index 0 1 2 3 4 5 6 7 8 9 10

Suffix Index
a 10
a b r a 7
a b r a c a d a b r a 0
a c a d a b r a 3
a d a b r a 5
b r a 8
b r a c a d a b r a 1
c a d a b r a 4
d a b r a 6
r a 9
r a c a d a b r a 2

Figure 1: Example of suffix array.

Suffix array
a b

number :
distance from “bra”

1.0

1.0

1.0

2.0 2.0

0.0

0.0

0.0
output

root

b c d r

r a

a b

number :
distance from “bra”

1.0

1.0

1.0

2.0 2.0

0.0

0.0

0.0
output

root

b c d r

r a

Figure 2: Similarity search on a suffix array.
ows a sample of a suffix array constructed from a character
ring 1 “abracadabra.” Indexes in the figure represent the
sition at which the suffixes start in the string. Since the
dexes are sorted by dictionary order of suffixes, we can use a
nary search to detect a keyword. Moreover, a large memory
ace is not required because the array holds only the indexes.

2. Similarity search on a suffix array
 the case of speech data, we are unable to ignore recognition
rors. Since the original suffix array is intended to search for
 exact string, we need to introduce some technique for a

milarity search together with a suffix array. For this purpose,
search algorithm using DP-matching on the suffix array is
oposed [7]. This algorithm regards a suffix array as a tree,
d DP-matching is applied to all paths from the root of the
e. If the distance between a keyword and a path is not more

an a threshold value, the path is output as a search result, but
the distance is more than a threshold at some node, the

arch is terminated at the node. One of the reason we
ployed suffix array is to use this similarity search and

uning algorithm that cannot be applied to the other structure
ch as hash table, and so on.

n this example, we use a character string instead of a phoneme
ing for simplicity of explanation.

Figure 2 shows an example in which the keyword “bra” is
detected from the character string “abracadabra.” In this
example, the threshold is assumed to be 1.0 and the distance
between different characters is defined as 1.0. In the example,
the descendant nodes of the paths “ac” and “ad” are cut off
because their distances are greater than the threshold. As a
result, “bra,” “abra,” and some other strings are detected
within the threshold. Finally, indexes 8, 1, 7, 0, etc., are output
as the results by referring to the suffix array shown in Figure 1.

3. Keyword detection from speech database
3.1. Distinctive phonetic features
Before starting the keyword search, a speech database is
transformed into a sequence of phonemes by means of Large
Vocabulary Continuous Speech Recognition (LVCSR) or
other methods. To apply DP-matching to the sequence of
phonemes, the distinctive phonetic feature-based distance is
introduced. These are articulatory features that represent a
phoneme by using 15 features such as plosive, affricative, and
so on. Figure 3 shows a fragment of the relationship between
phonemes and distinctive phonetic features. We used the
hamming distance of these features to calculate the distance
between two strings of phonemes.

The definition of the distance used in DP-matching is
given by the following equation:









+
+
+

=

−

−

−−

),(
),(
),(

min

1,

,1

1,1

,

jiji

jiji

jiji

ji

badP
badP
badP

P (1)

where ai is a phoneme in a keyword a1a2 ... aK; bj is a
phoneme in a speech database; Pi, j is the distance between
a1a2 ... ai and b1b2 ... bj; and d(ai, bj) is the hamming distance
calculated from the articulatory features of ai and bj. Although
we currently use the hamming distance for simplicity, we will
replace it with weighted distances based on recognition error
rate of articulatory features.

3.2. Keyword division
According to the algorithm shown in section 2.2, all paths
within the threshold are temporarily stored in the memory
while DP-matching is applied. Therefore, if the threshold is
large, memory usage (and process time) will increase
exponentially according to the depth of the tree. Since the
threshold increases in proportion to the length of the keyword,
an exponential increase in process time will result if the
keyword is long. To avoid this problem, a long keyword is
divided into short sub-keywords, which are then searched on
the array instead of the original keyword. Of course, the results
obtained by using sub-keywords, hereinafter called the
candidates, may not actually match the results when the
original keyword is used. Thus, to confirm the validity of the
candidates, DP-matching process is repeated.

Even though the above division reduces the process time,
a large number of candidates can be detected. To reduce the
process time, we modified the threshold by using the
following equation so as to detect at least two candidates at the
same time if the original keyword is within the threshold.

 t
p

pt
1

'
−

= (2)

In the above equation, t’ is the modified threshold per
phoneme, p is the number of division, and t is the original
threshold. Note that t’ is a threshold per phoneme. The total
threshold for a sub-keyword is the multiplied value by the
number of phonemes. If p=2, the threshold per phoneme is
twice the original threshold according to equation (2). In this
case, the total threshold of sub-keywords is same value as that
of the original keyword. This division has no meaning for a
fast search. For this reason, a division is executed if the
original keyword is divided into at least three sub-keywords.

Figure 4 illustrates the outline of a keyword search. The
search algorithm is summarized as follows.
1. If the keyword is long, divide it into more than three

sub-keywords.
2. Search the sub-keywords on the suffix array by DP-

matching, and find candidates.
3. Find pairs of candidates with different sub-keywords

close to each other.
4. Detect the final results from the pairs by using DP-

matching again.

3.3. Iteratively lengthening the search
If the threshold is set at a large value, the recall rate of the
search will increase because many results are output, whereas
the precision rate will decrease and the search time will
increase exponentially. On the other hand, if the threshold is a
small value, the precision rate will increase and the search
time will be small. Considering these characteristics, we
employed an iterative lengthening search algorithm for
keyword detection. In this search, the threshold is initially set
at a small number to output accurate results rapidly, and as the
user is checking the former results, the threshold is slowly
increased and the search is executed iteratively.

4. Evaluation
4.1. Experimental setup
Experiments were carried out on a PC with an Intel PentiumD
2.8GHz processor and a 4GB main memory. The speech
database is 390-h male speakers’ lecture speeches from CSJ
(Corpus of Spontaneous Japanese). For speech recognition, we
used Julius [8] with its default trigram language model
(60,000 words) and a speaker independent acoustic model.

t o y o h a S iKeyword

t o y o h a S iSub-keywords

Candidates

1. Division

2. DP-matching

3. Find pair

Database
4. DP-matching for confirmation

t o y o h a S iKeyword

t o y o h a S iSub-keywords

Candidates

1. Division

2. DP-matching

3. Find pair

Database
4. DP-matching for confirmation

Figure 4: Outline of keyword search.

 a i u e o k s ...
low - + + - - - -
high + - - - - + -

plosive - - - - - + -
affricative - - - - - - -

:

Figure 3: Distinctive phonetic feature table.

The correct rate and accuracy of phonemes were 71% and 66%,
respectively. The size of the suffix array was 52 MB. The
average distance between phonemes was 5.7; therefore, if the
threshold is set at 1.0, we can allow one phoneme error per 5.7
phonemes.

We carried out a preliminary experiment to find the
optimum number of phonemes in a sub-keyword. In the
experiment, the keywords containing 6 to 30 phonemes were
used. We searched 10 keywords per size and measured the
processing time. The threshold was set at 1.0. As shown in
Figure 5, the process time is the shortest when the number of
phonemes is six. Therefore, we used this size for the following
experiments.

4.2. Evaluation of search performance and process
time
We evaluated the search performance (recall rate and precision
rate) and process time with keywords containing 6, 12, 18, and
24 phonemes. Figure 6 shows the results of searching 100
keywords. In Figure 6, (a), (b), (c), and (d) represent the
results of 6, 12, 18, and 24 phoneme keywords, respectively.
The horizontal axis in each graph represents the threshold of
the search, the left vertical axis represents the performance,
and the right vertical axis represents the processing time. The
results show that the processing time is less than 10 ms when
the threshold is 0.0 or 0.2 for any number of phonemes. At the

same time, a high precision rate is obtained especially in the
results for (b), (c), and (d). These results show the iterative
lengthening search works well for long keywords.

Even though the threshold is 1.4, for which the recall rate
is around 50% in all results, the process time is between 100
ms and 3,500 ms. This means that half of the results to be
obtained are definitely output to a user while he/she is
checking the former results.

The process times of (c) and (d) rapidly increase according
to the threshold. This is because keyword division is applied to
the keywords of (c) and (d); this occurs in combination with
an increase in the threshold per phoneme according to
equation (2). Nevertheless, keyword division reduces the
process time. We compared the processing time when keyword
division is applied with that when it is not applied. Figure 7
shows the results when the keywords contain 24 phonemes. It
shows that the processing time is about 1/7 times the original
time if division is applied; thus, we confirmed that keyword
division works well for fast searches.

4.3. Comparison between suffix array and
continuous DP-matching
Figure 8 shows the process time required when using our
approach and when using continuous DP-matching without
using a suffix array. The results for continuous DP-matching
were obtained by searching the database from beginning to

0

2000

4000

6000

8000

4 5 6 7 8 9 10
Number of phonemes

Pr
oc

es
s

tim
e

[m
se

c]

Figure 5: The number of phonemes in a sub-keyword.

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Threshold

R
ec

al
l/P

re
ci

si
on

0

1000

2000

3000

4000

5000

P
ro

ce
ss

 ti
m

e
[m

se
c]

Recall

Precision

Peocess time

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Threshold

R
ec

al
l/P

re
ci

si
on

0

1000

2000

3000

4000

5000

P
ro

ce
ss

 ti
m

e
[m

se
c]

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Threshold

R
ec

al
l/P

re
ci

si
on

0

1000

2000

3000

4000

5000

P
ro

ce
ss

 ti
m

e
[m

se
c]

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Threshold

R
ec

al
l/P

re
ci

si
on

0

1000

2000

3000

4000

5000

P
ro

ce
ss

 ti
m

e
[m

se
c]

(a) 6 phonemes keyword

(c) 18 phonemes keyword

(b) 12 phonemes keyword

(d) 24 phonemes keyword

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Threshold

R
ec

al
l/P

re
ci

si
on

0

1000

2000

3000

4000

5000

P
ro

ce
ss

 ti
m

e
[m

se
c]

Recall

Precision

Peocess time

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Threshold

R
ec

al
l/P

re
ci

si
on

0

1000

2000

3000

4000

5000

P
ro

ce
ss

 ti
m

e
[m

se
c]

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Threshold

R
ec

al
l/P

re
ci

si
on

0

1000

2000

3000

4000

5000

P
ro

ce
ss

 ti
m

e
[m

se
c]

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Threshold

R
ec

al
l/P

re
ci

si
on

0

1000

2000

3000

4000

5000

P
ro

ce
ss

 ti
m

e
[m

se
c]

(a) 6 phonemes keyword

(c) 18 phonemes keyword

(b) 12 phonemes keyword

(d) 24 phonemes keyword

Figure 6: The number of phonemes in a sub-keyword.

0

5000

10000

15000

20000

25000

30000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Threshold

P
ro

c
e
ss

 t
im

e
 [

m
se

c
] nondivision

division

Figure 7: Effect of keyword division.

in
a

However, the process time increases exponentially according
to the threshold of the search, unlike the case when
conventional continuous DP-matching is used by itself. These
results suggest that it is necessary to investigate a combination
of our approach and conventional continuous DP-matching to
develop an optimum method for fast keyword detection.
Future study will focus on how to combine these approaches
appropriately.

6. Acknowledgements
This work was supported by the Telecommunications
Advancement Foundation and the Grant-in-Aid for Young
Scientists (B) 20700156 2009 from MEXT - Japan.

7. References
[1] Fiscus, J., Ajot, J., Garofolo, J. and Doddington, G., “Results of

the 2006 Spoken Term Detection Evaluation”, SIGIR’07
Workshop in Searching Spontaneous Conversational Speech,

0

200

400

600

800

1000

1200

1400

2000 4000 6000 8000 10000
Length of DB [hour]

P
ro

c
e
ss

 t
im

e
 [

m
se

c
]

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2000 4000 6000 8000 10000
Length of DB [hour]

P
ro

c
e
ss

 t
im

e
 [
m

se
c
]

(i) Threshold : 0.0 (ii) Threshold : 0.6 (iii) Threshold : 1.0

0

20

40

60

80

100

120

2000 4000 6000 8000 10000
Length of DB [hour]

P
ro

c
e
ss

 t
im

e
 [

m
se

c
]

6 phonemes

12 phonemes

18 phonemes

24 phonemes

0

200

400

600

800

1000

1200

1400

2000 4000 6000 8000 10000
Length of DB [hour]

P
ro

c
e
ss

 t
im

e
 [

m
se

c
]

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2000 4000 6000 8000 10000
Length of DB [hour]

P
ro

c
e
ss

 t
im

e
 [
m

se
c
]

(i) Threshold : 0.0 (ii) Threshold : 0.6 (iii) Threshold : 1.0

0

20

40

60

80

100

120

2000 4000 6000 8000 10000
Length of DB [hour]

P
ro

c
e
ss

 t
im

e
 [

m
se

c
]

6 phonemes

12 phonemes

18 phonemes

24 phonemes

Figure 9: Change in process time according to the size of speech database.
end with conventional continuous DP-matching. As shown
Figure 8, a long time is required even if the threshold is

0

2000

4000

6000

8000

10000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Threshold

P
ro

ce
ss

 ti
m

e
[m

se
c]

Continuous DP-matching

Suffix Array

Figure 8: Comparison between continuous DP-matching
and suffix array.
small value. On the other hand, in our approach, a binary
search works well if the threshold values are small. This is
desirable for an iterative lengthening search because the first
several results can be quickly shown to a user. However, if the
threshold is a large number, continuous DP-matching might be
faster than our approach. We are planning to combine our
approach with conventional continuous DP-matching to search
keywords rapidly.

4.4. Process time on a very large speech database
For evaluating the process time on a large speech database, we
constructed a virtual speech database using Mainichi
Newspaper articles from 1997 to 2000. The articles were
converted into strings of phonemes by using a morphological
analyzer MeCab [9] and a dictionary. We constructed a scale
of 2,000-h to 10,000-h phoneme strings virtually and
measured the process time. In Figure 9, (i), (ii) and (iii) show
the process time when the thresholds are 0.0, 0.6, and 1.0,
respectively.

Even though a binary search was applied to the suffix
array, the processing time for 18 and 24 keywords increased in
proportion to the size of the database. This is because the
processing time of DP-matching for confirmation is
considerably more than that of a search on a suffix array. Since
the number of candidates increases in proportion to the size of
database, the processing time increases accordingly.

5. Conclusions
This paper presented fast keyword detection technique for a
10,000-h speech database by using suffix array. The results
show that a suffix array and keyword division work well for
rapidly detecting the first several sets of results. This is
desirable for an iterative lengthening search that shows the
results to a user incrementally from the accurate ones.

2007.
[2] Smidl, L. and Psutka, J.V., “Comparison of Keyword Spotting

Methods for Searching in Speech”, InterSpeech2006, pp.1894-
1897, 2006.

[3] Kanda, N., Sagawa, H., Sumiyoshi, T., and Obuchi, Y., “Open-
vocabulary keyword detection from super-large scale speech
database”, IEEE MMSP 2008, pp.939-944, 2008.

[4] Thambiratnam, K. and Sridharan, S., “Dynamic Match Phone-
Lattice Searches For Very Fast And Accurate Unrestricted
Vocabulary Keyword Spotting”, ICASSP 2005, vol.1, pp.465-
468, 2005.

[5] Kokiopoulou, E., Frossard, P. and Verscheure, O., “Fast
Keyword Detection with Sparse Time-Frequency Models”,
ICME’08, pp.1081-1084, 2008.

[6] Manber, U. and Myers, G., “Suffix arrays: A new method for on-
line string searches”, SIAM J. Computation, vol.22, no.5,
pp.935-948, 1993.

[7] Yamasita, T. and Matsumoto, Y., “Full Text Approximate String
Search using Suffix Arrays”, IPSJ SIG Technical Reports 1997-
NL-121, pp.23-30, 1997. (In Japanese)

[8] Kawahara, T., Lee, A., Takeda, K., Itou, K. and Shikano, K.,
“Recent Progress of Open-Source LVCSR Engine Julius and
Japanese Model Repository”, ICSLP2004, pp.688-691, 2004.

[9] Kudo, T., “MeCab: Yet Another Part-of-Speech and
Morphological Analyzer”, http://mecab.sourceforge.net/,
accessed on April 9, 2009. (In Japanese)

	Introduction
	Keyword matching using a suffix array
	Structure of suffix array
	Similarity search on a suffix array

	Keyword detection from speech database
	Distinctive phonetic features
	Keyword division
	Iteratively lengthening the search

	Evaluation
	Experimental setup
	Evaluation of search performance and process time
	Comparison between suffix array and continuous DP-matching
	Process time on a very large speech database

	Conclusions
	Acknowledgements
	References

