
Evaluation of Fast Spoken Term Detection Using a Suffix Array

Kouichi Katsurada, Shinta Sawada, Shigeki Teshima, Yurie Iribe, Tsuneo Nitta

Toyohashi University of Technology, Toyohashi, Japan
{katsurada, nitta}@cs.tut.ac.jp, {sawada, teshima}@vox.cs.tut.ac.jp, iribe@imc.tut.ac.jp

Abstract

We previously proposed [1] fast spoken term detection that

uses a suffix array as a data structure for searching a large-

scale speech documents. In this method, a keyword is divided

into sub-keywords, and the phoneme sequences that contain

two or more sub-keywords are output as results. Although the

search is executed very quickly on a 10,000-h speech database,

we only proposed a variety of matching procedures in [1]. In

this paper, we compare different varieties of matching

procedures in which the number of phonemes in a sub-

keyword and the required number of sub-keywords to be

contained in a search result are different. We also compare the

performance and the process time of our method with typical

spoken term detection using an inverted index.

Index Terms: spoken term detection, large scale speech

document, suffix array, keyword division, iterative

lengthening search

1. Introduction

Fast spoken term detection is essential in effectively utilizing

large-scale speech documents. A considerable number of

studies have been conducted on this topic, and reasonable

performances have been achieved in detecting keywords from

a speech database [2][3]. Recently, some studies have focused

on search speed [4][5][6] because quickness is important when

a search is executed on very large speech/video databases such

as the digital archives of TV/radio programs or video sites on

the internet. However, most existing methods are not fast

enough on a 10,000-h speech database.

For this situation, we proposed fast spoken term detection

for large-scale speech documents [1]. It reduces search time by

employing a suffix array as the data structure and introducing

other techniques such as keyword division and an iterative

lengthening search. However, in our previous paper [1], we

only provided a variety of matching procedures and evaluated

its performance. In this paper we conduct some experiments

under various conditions in which the number of phonemes in

a sub-keyword and the required number of sub-keywords to be

contained in a search result are different. We also compare our

method with typical spoken term detection using an inverted

index.

2. Keyword detection using a suffix array

2.1. Structure of the suffix array

A suffix array [7] is a data structure that is used for quickly

searching for a keyword in a text database. We employ it for

phoneme-based keyword detection. It holds sorted indexes of

all suffixes of the phoneme string in a database. Figure 1

shows a sample of a suffix array constructed from the

character string1 "abracadabra." Indexes in the figure represent

1 In this example, we use a character string instead of a phoneme string

for simplicity of explanation.

the position at which the suffixes start in the string. Because

the indexes are sorted by the dictionary order of suffixes, we

can use a binary search to detect a keyword. Moreover, large

memory space is not required because the array holds only the

indexes.

2.2. Similarity search on a suffix array

In the case of speech data, we are unable to ignore recognition

errors. Since the original suffix array is intended to search for

an exact string, we need to introduce a technique for a

similarity search together with the suffix array. For this

purpose, a search algorithm using DP-matching (or Dynamic

Time Warping (DTW)) on the suffix array is proposed [8].

This algorithm regards a suffix array as a tree, and DP-

matching is applied to all paths from the root of the tree. If the

distance between a keyword and a path is not more than a

threshold value, the path is output as a search result, but if the

distance is more than a threshold at some node, the search is

terminated at the node.

Figure 2 shows an example in which the keyword "bra" is

detected from the character string "abracadabra." In this

example, the threshold is assumed to be 1.0 and the distance

between different characters is defined as 1.0. In the example,

the descendant nodes of the paths "ac" and "ad" are cut off

because their distances are greater than the threshold. As a

result, "bra," "abra," and some other strings are detected within

the threshold. Finally, indexes 8, 1, 7, 0, etc., are output as

results by referring to the suffix array shown in Figure 1.

Text a b r a c a d a b r a

Index 0 1 2 3 4 5 6 7 8 9 10

Suffix Index

a 10
a b r a 7
a b r a c a d a b r a 0
a c a d a b r a 3
a d a b r a 5
b r a 8
b r a c a d a b r a 1
c a d a b r a 4
d a b r a 6
r a 9
r a c a d a b r a 2

Figure 1: An example suffix array.

Suffix array

Figure 2: Similarity search on a suffix array

a b

number :

distance from “bra”

1.0

1.0

1.0

2.0 2.0

0.0

0.0

0.0

output

root

b c d r

r a

a b

number :

distance from “bra”

1.0

1.0

1.0

2.0 2.0

0.0

0.0

0.0

output

root

b c d r

r a

mailto:teshima%7d@vox.cs.tut.ac.jp

3. Keyword detection from a speech

database

3.1. Distinctive phonetic features

Before starting the keyword search, a speech database is

transformed into a phoneme sequence by means of Large

Vocabulary Continuous Speech Recognition (LVCSR) or

some other methods. To apply DP-matching to the phoneme

sequence, distinctive phonetic feature-based distance is

introduced. The distinctive phonetic features represent a

phoneme using fifteen articulatory features such as plosive and

affricative. Figure 3 shows a fragment of the relationship

between phonemes and articulatory features. We used the

hamming distance of these features to calculate the distance

between two strings of phonemes.

The definition of distance used in DP-matching is given by

the following equation:























IP

badP

DP

P

ji

jiji

ji

ji

1,

1,1

,1

,),(min
 (1)

In this equation, ai is a phoneme in a keyword a1a2 ... aK; bj is

a phoneme in a speech database; Pi, j is the distance between

a1a2 ... ai and b1b2 ... bj; D and I are the deletion and insertion

penalties; and d(ai, bj) is the hamming distance calculated from

the articulatory features of ai and bj.

3.2. Keyword division

According to the algorithm described in Section 2.2, all paths

within the threshold are temporarily stored in the memory

while DP-matching is applied. Therefore, if the threshold is

large, process time will increase exponentially according to the

depth of the tree. Because the threshold increases in proportion

to the length of the keyword, an exponential increase in

process time will result if the keyword is long. To avoid this

problem, a long keyword is divided into short sub-keywords,

which are then searched for on the array instead of the original

keyword. Of course, the results obtained by using sub-

keywords, hereinafter called the candidates, may not actually

match the results when the original keyword is used. Thus, to

confirm the validity of the candidates, DP-matching process is

repeated.

Even though the above division reduces the process time, a

large number of candidates can be detected. To reduce the

candidates, we proposed to try detecting at least two adjacent

candidates of different sub-keywords on the phoneme

sequence in paper [1]. Figure 4 illustrates the outline of a

keyword search. The search algorithm is summarized as

follows.

(I) Divide the keyword into sub-keywords.

(II) Search for the sub-keywords in the suffix array and find

candidates.

(III) Filter the candidates by detecting adjacent candidates.

(IV) Confirm the validity of the candidate by DP-matching.

In this paper, we generalize this method so as to detect at

least m candidates of n sub-keywords at the same time. For

this purpose, we modify the threshold assigned to each sub-

keyword by using the following equation.

1


mn

T
Ts

 (2)

In the above equation, T is the threshold assigned to the

original keyword. The keyword is divided into n sub-keywords

and at least m of them are detected. Ts is the modified

threshold assigned to a sub-keyword. This modification and

the following validity confirmation process guarantee that the

same results will be detected in any conditions. Figure 5 shows

an example. In this figure, T = 3.0, n = 3, m = 2, and there is a

sequence whose distance from the keyword is 2.99. The sub-

strings corresponding to the sub-keyword have distances of 0.0,

1.48, and 1.51. In this case Ts becomes 1.5, and two sub-

keywords are detected.

4. Experiments

4.1. Experimental setup

Experiments were carried out on a PC with a 3.4 GHz Intel

Core i7-2600 processor and 8 GB of main memory. The CSJ

(Corpus of Spontaneous Japanese: 604 hours) and the CSJ

Spoken Term Detection test collection [9] are used as a data

set to evaluate the effectiveness of the proposed method. For

speech recognition, we used Julius [10] along with its default

speaker independent acoustic model. The language model is

constructed from 2,525 lectures from the CSJ corpus (27,000

words), which is specified by the test collection. The correct

rate and accuracy of the phonemes were 75% and 71%,

respectively.

4.2. Basic search performance

First, we compare the performance of our method with a

method using the phoneme 3-gram inverted index that is

utilized in Kanda’s very fast keyword detection scheme [4]. In

this experiment, 50 OOV words specified in the CSJ STD test

collection are used.

 a i u e o k s ...

low - + + - - - -

high + - - - - + -

plosive - - - - - + -

affricative - - - - - - -

:

Figure 3: Table of distinctive phonetic features.

Figure 5: An example of threshold modification.

Keyword

Sub-keywords

Phoneme

sequence

distance 1.51distance 1.48

T : 3.0

distance 0.0

Ts : 1.5

detected detected

Ts : 1.5 Ts : 1.5

n = 3
m = 2

total distance 2.99

Figure 4: Outline of keyword search.

t o y o h a S iKeyword

t o y o h a S iSub-keywords

Candidates

(I) Division

(II) Search

(III) Filter

Phoneme sequence

(IV) Confirm

Tables 1 and 2 list the recall rate, precision rates, and the

Term Weighted Value (TWV) score [2] of our method and the

method using the phoneme 3-gram inverted index,

respectively. In Table 1, the threshold indicates the average

threshold per phoneme (i.e., if the number of phonemes in a

keyword is 24, and T = 24, then the average threshold is 1.0.).

In Table 2, all phoneme 3-grams of the keyword are searched

for in the phoneme sequence using exact matching, and as in

step (III) of our method, the adjacent 3-grams are found. The

percentage of numbers of adjacent 3-grams to be detected is

given as a threshold value. Figure 6 illustrates the recall-

precision curve of the keyword search.

These results indicate that our method is slightly better

than the method using the phoneme 3-gram inverted index.

The discrepancy is caused by the difference in the search

method. In our method, DP-matching and a distinctive

phonetic feature can evaluate similarities better than the

inverted index-based method, which uses an exact matching of

phoneme 3-grams.

4.3. Ideal number of phonemes in a sub-keyword

In paper [1], the number of phonemes in a sub-keyword is

fixed at six from the results of preliminary experiments. In this

paper, we examine the details of process time and investigate

the ideal number of phonemes in a sub-keyword. Table 3

shows the results in which the number of phonemes in a

keyword is 24, and the numbers of phonemes in the sub-

keywords are 4 to 12. The columns of the table, from left to

right, show the number of phonemes in a sub-keyword (value

of n), the processing times in steps (I), (II), (III), and (IV), and

the total processing time. The number of adjacent candidates

m in formula (2) is set at 1, and the threshold is set at 1.0 per

phoneme.

As shown in the table, if there are few phonemes in a sub-

keyword, the processing time of step (II) is short and that of

step (IV) is long. However, if the number of phonemes is

larger, the processing time for step (II) lengthens but that of

step (IV) is shortened. This is due to the fact that the search

space narrows if n is a large value (that is, Ts is a small value),

but many candidates will be detected because the sub-

keywords are short, which increases the confirmation time in

step (IV). Table 3 indicates that the number of phonemes is

best set at 6 to 8 for an efficient search.

4.4. Ideal number of sub-keywords to be detected

 To investigate the affect of m in formula (2) and effectiveness

of keyword division, we compare the following five conditions.

(a) Keywords are searched for without division.

(b) Keywords are divided and m is set at 1.

(c) Keywords are divided and m is set at 2.

(d) Keywords are divided and m is set at 3.

(e) Keywords are divided and m is set at 4.

In conditions (b) through (e), the thresholds assigned to

sub-keywords are modified according to formula (2). The

length of the sub-keywords is set to 6-phonemes based on the

results in section 4.3. If the original keywords are not long

enough to be divided into several sub-keywords, they are

divided into the highest possible number of sub-keywords, and

the highest possible numbers of sub-keywords are detected

(e.g., if the length of the keyword in condition (e) is 12, it is

divided into two sub-keywords, and two keywords are

detected.). Figure 7 shows the recall-processing-time curve for

each condition. It shows the average processing time when

Table 1. Performance of our method.

Threshold 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Recall rate (%) 3.00 3.67 20.0 31.7 38.7 58.7 70.3 78.0 86.3 92.3

Precision rate (%) 50.0 60.0 49.0 38.5 22.2 11.6 4.12 0.373 0.014 0.002

TWV score 0.0300 0.0366 0.198 0.304 0.331 0.0753 -0.721 -5.37 -23.6 -79.6

Table 4. Details of the processing time under each condition.

Conditions
Step(I)

(ms)

Step(II)

(ms)

Step(III)

(ms)

Step(IV)

(ms)

Total
time

(ms)

Condition (a) 0 11,294 0 0 11,294

Condition (b) 0 47 0 187 234

Condition (c) 0 188 124 437 749

Condition (d) 0 2,184 3,339 0 5,523

Condition (e) 0 60,996 111,852 32 172,880

Table 2. Performance of phoneme 3-gram inverted index-based method.

Threshold 100 90 80 70 60 50 40 30 20 10 5

Recall rate (%) 3.00 4.00 5.67 11.0 18.0 33.0 39.3 53.7 68.3 78.0 81.0

Precision rate (%) 50.0 60.0 34.2 41.5 22.1 13.3 1.92 0.831 0.027 0.003 0.001

TWV score 0.0300 0.0400 0.0563 0.108 0.171 0.288 0.0978 -0.261 -6.89 -33.5 -66.9

Figure 6. Precision-recall curve of our method

and inverted index-based method.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
re

ci
si

o
n

recall

our method

inverted index

Table 3. Processing time when the number of phonemes

 in a sub-keyword is different.

Number of

phonemes in

sub-keyword

Step(I)
(ms)

Step(II)
(ms)

Step(III)
(ms)

Step(IV)
(ms)

Total

time

(ms)

4 (n = 6) 0 31 16 1,248 1,295

5 (n = 4) 0 63 15 1561 1,639

6 (n = 4) 0 63 0 187 250

7 (n = 3) 0 124 0 163 287

8 (n = 3) 0 140 0 47 187

9 (n = 2) 0 671 0 125 796

10 (n = 2) 0 812 0 31 843

11 (n = 2) 0 671 0 0 671

12 (n = 2) 0 858 0 0 858

Note: The original keyword is “koNSumaKarakurarisutiQku.”

detecting 50 OOV keywords. Table 4 shows the detailed

processing time in detecting the phoneme string

“koUSumaKarakutarisutiqku” (24 phonemes).

We can easily confirm that keyword division works well

for speeding up keyword detection by comparing conditions

(a) and (b) in Figure 7. As shown in Table 4, we can also

confirm that the search time (step (II)) dramatically decreases

by applying keyword division. Even though a confirmation

time (step (IV)) is required under condition (b), the total

processing time is considerably reduced.

However, we were unable to confirm the effect of

detecting adjacent candidates as shown in Figure 7, which

shows that condition (b) is the fastest among conditions (b)

through (e). As shown in Table 4, step (II) only requires 47 ms

under condition (b), while step (IV) needs 187 ms. On the

other hand, in the case of condition (e), step (II) requires more

than 60,000 ms. The reason for the expansion in the

processing time is that Ts in formula (2) under condition (e) is

four-times larger than that under condition (b). This tendency

of expansion is also observed in other keywords. Therefore,

condition (c) through (e) could not reduce the search time

effectively.

4.5. Comparison of search speed with the other

approaches

In this section, we compare the speed of our method with two

approaches: continuous DP-matching, and the phoneme 3-

gram inverted index used in Kanda's method [4]. Continuous

DP-matching is a very simple method for acquiring the

distances between the keyword and the sub-sequences in a

phoneme sequence by calculating the distances from the

beginning to the end of the sequence, continuously. Our

method employs condition (b) described above that is faster

than the other conditions.

Figure 8 illustrates the results. The figure shows that the

processing time of DP-matching is almost constant in any

conditions and that of inverted index is almost constant when

the recall rate is low. On the other hand, the processing time of

our method is very short when the recall rate is low (that is,

the threshold is small and the precision rate is high). This is

because a DP-matching based approach cannot reduce the

processing time since it calculates the distance from the

beginning to the end of the phoneme sequence. At the same

time, an inverted index based approach also cannot reduce the

time as it first detects all 3-grams on the sequence, and then

finds adjacent 3-grams, as in step (III) of our method. The

phoneme 3-grams are very short, and a lot of candidates are

found, which increases the processing time. Our method

avoids such overhead by directly reducing the search space by

applying DP-matching on the suffix array when threshold

values are small.

5. Conclusions

This paper evaluated the fast keyword detection technique

using a suffix array. The results show that a suffix array and

keyword division work well for rapidly detecting the results

without spending a large memory space. This characteristic is

desirable for utilizing large scale speech documents on the

internet, call center, broadcast station and so on. The

remaining study is to combine some conditions to improve

precision rate, and to enlarge the speech database size to

100,000-h scale.

6. Acknowledgements

This work was supported by the Grant-in-Aid for Young

Scientists (B) 20700156 2010 and the Grant-in-Aid for

Scientific Research (B) 22300060 2010 from MEXT, Japan.

7. References

[1] Katsurada, K., Teshima, S. and Nitta, T., “Fast Keyword

Detection Using Suffix Array”, InterSpeech2009, pp.2147-2150,

2009
[2] Fiscus, J., Ajot, J., Garofolo, J. and Doddington, G., “Results of

the 2006 Spoken Term Detection Evaluation”, SIGIR'07

Workshop in Searching Spontaneous Conversational Speech,
2007.

[3] Smidl, L. and Psutka, J.V., “Comparison of Keyword Spotting
Methods for Searching in Speech”, InterSpeech2006, pp.1894-

1897, 2006.

[4] Kanda, N., Sagawa, H., Sumiyoshi, T., and Obuchi, Y., “Open-
vocabulary keyword detection from super-large scale speech

database”, IEEE MMSP 2008, pp.939-944, 2008.

[5] Pinto, J., Szoke, I, Prasanna, S. R. M. and Hermansky, H., “Fast
Approximate Spoken Term Detection from Sequence of

Phonemes”, SIGIR ’08 Workshop, pp.28-33, 2008.

[6] Wallace, R., Vogt, R. and Sridharan, S., “Spoken term detection
using fast phonetic decoding”, ICASSP'09, pp.2135-2138, 2009.

[7] Manber, U. and Myers, G., “Suffix arrays: A new method for on-

line string searches”, SIAM J. Computation, vol.22, no.5,
pp.935-948, 1993.

[8] Yamasita, T. and Matsumoto, Y., “Full Text Approximate String

Search using Suffix Arrays”, IPSJ SIG Technical Reports 1997-
NL-121, pp.23-30, 1997. (In Japanese)

[9] Itoh, Y. et al., “Constructing Japanese Test Collections for

Spoken Term Detection”, InterSpeech2010, pp.677-680, 2010.
[10] Kawahara, T., Lee, A., Takeda, K., Itou, K. and Shikano, K.,

“Recent Progress of Open-Source LVCSR Engine Julius and

Japanese Model Repository”, ICSLP2004, pp.688-691, 2004.

Figure 7. Processing time in conditions (a) through (e).

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
ro

ce
ss

in
g

ti
m

e
 (

m
s)

recall

condition(a)

condition(b)

condition(c)

condition(d)

condition(e)

Figure 8. Comparison of process time between

our method and the other methods.

