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Abstract 
We previously proposed a fast spoken term detection method 
that uses a suffix array data structure for searching large-scale 
speech documents. The method reduces search time via 
techniques such as keyword division and iterative lengthening 
search. In this paper, we propose a statistical method of 
assigning different threshold values to sub-keywords to further 
accelerate search. Specifically, the method estimates the 
numbers of results for keyword searches and then reduces 
them by adjusting the threshold values assigned to sub-
keywords. We also investigate the theoretical condition that 
must be satisfied by these threshold values. Experiments show 
that the proposed search method is 10% to 30% faster than 
previous methods. 
Index Terms: spoken term detection, suffix array, keyword 
division, threshold value assignment 

1. Introduction 
Fast spoken term detection has become an essential function in 
utilizing large-scale speech documents. Many studies have 
been conducted on this topic, and reasonable progress has 
been made in detecting keywords from a speech database 
[3][4]. Recently, studies have focused on search speed 
[5][6][7] as a priority for large speech/video databases, such as 
digital archives of TV/radio programs or video sites on the 
internet. Nevertheless, existing methods are still too slow for 
useful processing of a 10,000-h speech database. 

Recognizing this, we previously proposed a fast spoken 
term detection method for large-scale speech documents [1][2]. 
This method reduced search time using a suffix array data 
structure and other techniques, such as keyword division and 
iterative lengthening search. Using the proposed method, a 
keyword is divided into sub-keywords, which are then 
searched instead of the initial keyword. To guarantee that the 
search results are unchanged from the original keyword search, 
we control the search threshold value attached to each sub-
keyword according to the number of sub-keywords. However, 
in this previous proposal, we considered only the case in 
which the threshold value is assigned equally to each sub-
keyword. In this paper, we investigate the theoretical condition 
that must be satisfied by a threshold value when different 
values are assigned to each sub-keyword. We also propose a 
statistical indicator that can help identify optimal threshold 
values for efficient search. 

2. Keyword detection using suffix array 

2.1. Structure of suffix array 
A suffix array [8] is a data structure that is used to quickly 
search for a keyword in a text database. We have previously 
employed it for phoneme-based keyword detection. The data 
structure holds sorted indexes for all suffixes of phoneme 
sequences in a database. Figure 1 shows a sample of a suffix 
array constructed from the character string 1  “abracadabra.” 
The indexes in the figure represent the positions at which the 
suffixes start in the string. Because the indexes are sorted 
alphabetically, we can use an efficient binary search to detect a 
keyword. Moreover, because the array holds only the indexes, 
memory requirements are modest. 

2.2. Similarity search on suffix array 
The original suffix array was designed to support exact string 
matches. To adapt it for use with speech recognition and 
speech data, we employed a search algorithm using DP-
matching (or dynamic time warping (DTW)) on the suffix 
array that is proposed by Yamashita et al. [9]. This algorithm 
regards the suffix array as a tree, and DP-matching is applied 
to all paths from the root of the tree. If the distance between a 
keyword and a path is not more than a threshold value, the 
path is output as a search result. Otherwise, the search is 
terminated at a higher node. 

Figure 2 shows an example in which the keyword “bra” is 
detected within the character string “abracadabra.” In this 

                                                                 
 
1 In this example, we use a character string instead of a phoneme 
string to simplify the explanation. 

Text a b r a c a d a b r a 
Index 0 1 2 3 4 5 6 7 8 9 10 
 

Suffix Index 
a           10 
a b r a        7 
a b r a c a d a b r a 0 
a c a d a b r a    3 
a d a b r a      5 
b r a         8 
b r a c a d a b r a  1 
c a d a b r a     4 
d a b r a       6 
r a          9 
r a c a d a b r a   2 

 
Figure 1: Example suffix array. 

 

Suffix array 
 



example, the threshold is assumed to be 1.0, and edit distance 
is used to calculate the distance between two strings. In the 
example, we cut off the descendant nodes of the paths “ac” 
and “ad” because their distances are greater than the threshold. 
As a result, “bra,” “abra,” and some other strings are detected 
within the threshold. Finally, by referring to the suffix array 
shown in Figure 1, we output the indexes 8, 1, 7, 0, etc. as 
results. 

In the DP-matching process, we use distinctive phonetic 
features to calculate the distance between phonemes. These 
features represent a phoneme using fifteen articulatory features. 
Figure 3 shows a portion of the relationship between Japanese 
phonemes and these articulatory features. We used the 
Hamming distance of these features to calculate the distance 
between two strings of phonemes. 

2.3. Iterative lengthening search 
If the threshold is set at a large value, the recall rate of the 
search will increase because many results are output, whereas 
the precision rate will decrease and the search time will 
increase exponentially. On the other hand, if the threshold is a 
small value, the precision rate will increase and the search 
time will be small. Considering these characteristics, we 
employed an iterative lengthening search algorithm for 
keyword detection. In this search, the threshold is initially set 
at a small number to output accurate results rapidly, and as the 
user is checking the former results, the threshold is slowly 
increased and the search is executed iteratively. 

3. Keyword division 

3.1. Outline of keyword division and search 
procedure 
In the algorithm described in Section 2.2, all paths that lie 
within the threshold are temporarily stored in memory while 
DP-matching is applied. Thus, if the threshold is large, the 
processing time will increase exponentially according to the 
depth of the tree. Because the threshold must increase in 
proportion to the length of the keyword, an exponential 

increase in processing time will result if the keyword is long. 
To avoid this problem, we divide a long keyword into short 
sub-keywords, and searched for them instead of the original 
keyword. 

Of course, the results obtained using sub-keywords, 
hereafter referred to as the “candidates,” may not actually 
match the results when the original keyword is used. To 
guarantee that the same results are obtained, we have proposed 
a search algorithm composed of the following four steps: (I) 
divide, (II) search, (III) filter, and (IV) confirm. In step (I), the 
original keyword (threshold value: T) is divided into n sub-
keywords with the threshold of t1 ... tn. In step (II), n sub-
keywords are searched for in the phoneme sequence. In step 
(III), the phoneme sequences with at least m candidates in 
adjacent regions are extracted. In step (IV), the phoneme 
sequences whose distance from the original keyword is less 
than T are output as the final results. 

A remaining issue is how best to determine t1 ... tn for the 
above procedure. In the following section, we discuss the 
condition that needs to be satisfied by t1 ... tn. 

3.2. Condition to be satisfied by threshold values 
In [2], we presented a condition that ensures that all candidates 
are detected when the following threshold value is attached to 
each sub-keyword:  

 
1+−

=
mn
Tts

 (2) 

where T is the threshold assigned to the original keyword. The 
keyword is divided into n sub-keywords of which at least m 
are detected. ts is then the modified threshold assigned to a 
sub-keyword. A proof of equation (2) is provided in the 
Appendix, and Figure 5 provides an example of its application. 
In this figure, T = 3.0, n = 3, m = 2, and there is a sequence 
whose distance from the keyword is 2.99. The sub-strings 
corresponding to the sub-keywords have distances of 0.0, 1.48, 
and 1.51. Note that, in this case, ts becomes 1.5, and two sub-
keywords can be detected. 

 
 

Figure 4: Outline of keyword search. 
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Figure 2: Similarity search on suffix array. 

a b

number : 
distance from “bra”

1.0

1.0

1.0

2.0 2.0

0.0

0.0

0.0
output

root

b c d r

r a

a b

number : 
distance from “bra”

1.0

1.0

1.0

2.0 2.0

0.0

0.0

0.0
output

root

b c d r

r a

 a i u e o k s ... 
low - + + - - - -  
high + - - - - + -  

plosive - - - - - + -  
affricative - - - - - - -  

:         
 

Figure 3: Table of distinctive phonetic features. 
 

 

Figure 5: Example where equation (2) is satisfied. 



In this paper, we extend the above condition so that it can 
be applied to different threshold values for the sub-keywords. 
We prove that if the threshold values t1 ... tn attached to the 
sub-keywords satisfy the condition below, we can detect all 
the candidates. Let 𝑡𝑖1 ,⋯ , 𝑡𝑖𝑛−𝑚+1 be an arbitrary combination 
of n – m + 1 threshold values of t1 ... tn. Then the following 
inequality must be satisfied:  

  𝑡𝑖1 + ⋯+ 𝑡𝑖𝑛−𝑚+1 ≥ 𝑇 (3) 

If t1 ≤ … ≤ tn is satisfied, inequality (3) is equivalent to the 
following inequality: 

  𝑡1 + ⋯+ 𝑡𝑛−𝑚+1 ≥ 𝑇 (4) 

The proof of inequality (3) is given in the Appendix. In the 
example shown in Figure 5, the two arbitrary ts values satisfy 
ts + ts ≥ T. Therefore, this example satisfies inequality (3), and 
at least two sub-keywords can be detected. On the other hand, 
Figure 6 shows an example in which inequality (3) is not 
satisfied. In this example, t1 + t2 = 2.95 which is less than T = 
3.0. Therefore we can detect only one sub-keyword. If t2 = t3 = 
2.0, t1 + t2 ≥ T is satisfied and we can detect two sub-keywords 
(the second and third). Note that equation (2) is derived from 
inequality (3) by assigning t1 = ts, …, tn = ts and by changing 
the inequality to an equation. 

In paper [2], we showed m=1 is best for quick search. In 
addition, total number of threshold values should be 
minimized to reduce search space and search time. From this 
discussion, the following equality is derived from inequality 
(4) for quick search. 

𝑡1 + ⋯+ 𝑡𝑛 = 𝑇 (5) 

We attach the threshold values assigned to sub-keywords 
so as to satisfy the above equation (5). 

In previous research, similar arithmetic analysis about the 
condition satisfied by the threshold values assigned to sub-
keywords was performed by Navarro et al. [10]. They also 
proposed a search method with a suffix array and keyword 
division. The difference from our method is that they analyzed 
only the case of m=1 when DP-matching is applied2 and they 
assumed that the threshold values are integer. Our discussion 
in this paper is regarded as an extension of their analysis to 
arbitral number of m with DP-matching and real number 
threshold values. 

4. Statistic indicator of threshold value 
assignment 

The numbers of candidates obtained in sub-keyword search 
can differ even when the threshold values are equal. When 
some sub-keywords output large number of candidates, the 
                                                                 
 
2 They analyzed the case of arbitral m when exact matching is applied. 

confirmation time will increase. By averaging the number of 
candidates, we can reduce the total and decrease confirmation 
time. For this purpose, we estimate the number of candidates 
to be detected and control the threshold value assigned to each 
sub-keyword so that equal number of candidates are detected 
in each sub-keyword search. 

As our estimate of the number of candidates, we use the 
number of candidates detected in the last iteration of the 
iterative lengthening search. Suppose that threshold values ti’ 
(1 ≤ 𝑖 ≤ 𝑛) were assigned to n sub-keywords of an original 
keyword, and Ci’ candidates (1 ≤ 𝑖 ≤ 𝑛) were detected in the 
last iteration. Since the number of candidates is almost 
proportional to the search space of the suffix array search, the 
number can be expected to increase exponentially with an 
increase in threshold value. Therefore, the number of 
candidates Ci in the current iteration can be estimated as 
follows: 

 
  𝐶𝑖 = 𝐶𝑖′𝑒𝑎(𝑡𝑖−𝑡𝑖

′) (6) 

where Ci’ is the number of candidates detected in the last 
iteration of the iterative lengthening search, a is a constant, ti is 
the threshold value assigned to the sub-keyword in the current 
iteration, and ti’ is the threshold value assigned to the sub-
keyword in the last iteration. The constant a is preliminarily 
determined using a statistical method.  

To equalize the number of candidates to be detected means 
that the condition 𝐶1 = ⋯ = 𝐶𝑛 must be satisfied. Equation (5) 
should also be satisfied to maintain a speedy search. Based on 
these conditions, ti is formally calculated as follows: 

𝑡𝑖 =
ln𝐶1

′ ∙𝐶2
′ ∙⋯∙𝐶𝑛′

𝐶𝑖
′𝑛

𝑎∙𝑛
+ 𝑡𝑖′ + 𝑇−𝑇′

𝑛
 (7) 

where 𝑇′ = 𝑡1′ + 𝑡2′ + ⋯+ 𝑡𝑛′ . In the experiment in the next 
section, the threshold values are assigned to sub-keywords 
using this formula. 

5. Experiment 
An experiment was conducted using a PC with a 3.0 GHz Intel 
Core2Duo processor and 6 GB main memory. The CSJ 
(Corpus of Spontaneous Japanese) 606-h speech database was 
used for evaluation. For speech recognition, we used Julius [8] 
with its default trigram language model (60,000 words) and a 
speaker independent tri-phone acoustic model. The constant a 
in equation (6) was statistically determined to be 0.7123 based 
on preliminary measurements. In the experiment, we 
compared the following two threshold value assignment 
methods to show effectiveness of our approach. 

 
A) Threshold value is equally assigned to each sub-

keyword. 

 
 

Figure 6: Example where Inequality (3) is not satisfied. 

Table 1: Search time and number of candidates. 
Average 
threshold 

per phoneme 

Search time 
[sec] 

Number of candidates 

(A) (B) (A) (B) 
1.0 0.076 0.065 946,313 587,103 
1.2 0.161 0.124 2,753,235 1,740,630 
1.4 0.433 0.310 5,303,355 4,439,691 
1.6 1.252 1.129 16,488,792 16,203,510 
1.8 2.671 2.093 40,225,231 31,619,312 

 



B) Threshold value is controlled by equation (7). 
 

We searched for 30 keywords (10 to 18 phonemes) 
selected from the NTCIR-9 SpokenDoc test collection. These 
30 keywords were enough long to be divided into more than 
two sub-keywords in our search method. 

The average search time per keyword and the total number 
of candidates detected in search process (II) are shown in 
Table 1. Note that the search time has a strong correlation with 
the number of candidates. This result confirms that reducing 
the number of candidates using the proposed method (B) does 
indeed help to speed up searches.  

Further, note that there were some cases in which we 
could not estimate the number of candidates correctly. In the 
DP-matching process, we used distinctive phonetic feature-
based distance for substitution between phonemes. But we 
determined a constant penalty for insertion/deletion of a 
phoneme. For more accurate estimation, we have to refine 
equation (6) so that it can deal with these different types of 
measures. 

6. Conclusions 
We have investigated the theoretical condition that must be 
satisfied by threshold values assigned per sub-keyword. We 
have also proposed a statistical indicator for tuning these 
threshold values to achieve speedier searches. Experimental 
results confirm that this indicator is effective for reducing the 
number of search results detected, and thereby significantly 
decreasing the search time. In future work we will further 
optimize the threshold values assigned to sub-keywords by 
refining the indicator. 
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8. Appendix 
[Proof of Equation (2)] 
Let K be a keyword, k1, …, kn be sub-keywords, S be a 
phoneme sequence in the speech database, s1, …, sn be sub-
sequences, D ≤ T be the distance between K and S, and di be 
the distance between ki and si. We assume without loss of 
generality that d1, …, dn is sorted as d1 ≤ … ≤ dn. From the 
relation D ≤ T, d1 +…+ dn ≤ T

 
is derived. This formula is 

converted to the following: dm ≤ T – (d1 +…+ dm-1) – (dm+1 
+…+ dn). From d1 ≤ … ≤ dn, dm is maximized if d1, …, dm-1=0, 
and dm+1, …, dn= dm. In this case, the following formula is 
satisfied: (n – m + 1) dm ≤ T. To find at least m adjacent 
candidates under any condition, ts should be equal to the 
maximum value of dm. Thus, equation (2) is derived.   

 
[Proof of Inequality (3)] 
Inequality (3) is derived from the two lemmas that follow. For 
these lemmas, let K be a keyword, k1, …, kn be sub-keywords, 
S be a phoneme sequence in the speech database, s1, …, sn be 
sub-sequences, D ≤ T be the distance between K and S, and di 
be the distance between ki and si, and assume without loss of 
generality that d1, …, dn are sorted as d1 ≤ … ≤ dn.  ∎ 

 
[Lemma 1] 
If 𝑡𝑖1 + ⋯+ 𝑡𝑖𝑛−𝑚+1 ≥ 𝑇  is satisfied by arbitrary n – m + 1 
threshold values, there are at least m pairs of 𝑑𝑗𝑘and 𝑡𝑗𝑘  that 
satisfy 𝑑𝑗1 ≤ 𝑡𝑗1 ,⋯ ,𝑑𝑗𝑚 ≤ 𝑡𝑗𝑚 . 

 
[Lemma 2] 
If there is an n – m + 1 combination of threshold values 
𝑡𝑖1 ,⋯ , 𝑡𝑖𝑛−𝑚+1  that satisfies 𝑡𝑖1 + ⋯+ 𝑡𝑖𝑛−𝑚+1 < 𝑇 , there are 
some cases where fewer than m pairs of 𝑑𝑗𝑘and 𝑡𝑗𝑘  satisfy 
𝑑𝑗1 ≤ 𝑡𝑗1 ,⋯ ,𝑑𝑗𝑚 ≤ 𝑡𝑗𝑚 . 

 
[Proof of Lemma 1] 
If there are fewer than m pairs of 𝑑𝑗𝑘and 𝑡𝑗𝑘  that satisfy 
𝑑𝑗𝑘 ≤ 𝑡𝑗𝑘 , then n – m + 1 or more pairs must satisfy the 
following inequality: 

𝑑𝑗1 > 𝑡𝑗1 ,⋯ ,𝑑𝑗𝑛−𝑚+1 > 𝑡𝑗𝑛−𝑚+1 

From this inequality, 𝑑𝑗1 + ⋯+ 𝑑𝑗𝑛−𝑚+1 > 𝑡𝑗1 + ⋯+
𝑡𝑗𝑛−𝑚+1 ≥ 𝑇 is derived. This contradicts D (= d1 +…+ dn) ≤ T. 
Therefore, there exist at least m pairs of 𝑑𝑗𝑘and 𝑡𝑗𝑘  that satisfy 
𝑑𝑗1 ≤ 𝑡𝑗1 ,⋯ ,𝑑𝑗𝑚 ≤ 𝑡𝑗𝑚 .     

 
[Proof of Lemma 2] 
The inequality 𝑡𝑖1 + ⋯+ 𝑡𝑖𝑛−𝑚+1 < 𝑇 can be represented as 
𝑡𝑖1 + ⋯+ 𝑡𝑖𝑛−𝑚+1 + ∆= 𝑇 (∆> 0) . Consider 𝑑𝑖1 ,⋯ ,𝑑𝑖𝑛  that 
satisfy the following conditions: 

𝑑𝑖1 = 𝑡𝑖1 +
∆
𝑁 ,𝑑𝑖2 = 𝑡𝑖2 +

∆
𝑁 ,⋯ ,𝑑𝑖𝑛−𝑚+1 = 𝑡𝑖𝑛−𝑚+1 +

∆
𝑁,  

𝑑𝑖𝑛−𝑚+2 = 0,⋯ ,𝑑𝑖𝑛 = 0                             (𝑁 ≥ 𝑛 −𝑚 + 1) 
 

These  𝑑𝑖1 ,⋯ ,𝑑𝑖𝑛 also satisfy the following inequality: 

𝑑𝑖1 +  ⋯+ 𝑑𝑖𝑛 = 𝑑𝑖1 + ⋯+ 𝑑𝑖𝑛−𝑚+1 + 𝑑𝑖𝑛−𝑚+2 +  ⋯+  𝑑𝑖𝑛 

                        = 𝑡𝑖1 +  ⋯+  𝑡𝑖𝑛−𝑚+1 +
𝑛 − 𝑚 + 1

𝑁 ∆ ≤ 𝑇 

In this case, d1 +…+ dn ≤ T is satisfied. However, there exist 
only m – 1 pairs of 𝑑𝑗𝑘and 𝑡𝑗𝑘  that satisfy 𝑑𝑖𝑛−𝑚+2 ≤
𝑡𝑖𝑛−𝑚+2 ,⋯ ,𝑑𝑖𝑛 ≤ 𝑡𝑖𝑛 , since we have n – m + 1 pairs of 
𝑑𝑗𝑘and 𝑡𝑗𝑘  that satisfy 𝑑𝑖1 ≥ 𝑡𝑖1 ,⋯ ,𝑑𝑖𝑛−𝑚+1 ≥ 𝑡𝑖𝑛−𝑚+1.  
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