Acceleration of Spoken Term Detection Using a Suffix Array
by Assigning Optimal Threshold Values to Sub-Keywords

Kouichi Katsurada®, Seiichi Miura®, Kheang Seng*, Yurie Iribe?, Tsuneo Nitta™

Toyohashi University of Technology, Toyohashi, Japan
2Aichi Prefectural University, Nagakute, Japan
Waseda University, Tokyo, Japan
{katsurada, nitta}@cs.tut.ac.jp, {miura, kheang}@vox.cs.tut.ac.jp, iribe@imc.tut.ac.jp

Abstract

We previously proposed a fast spoken term detection method
that uses a suffix array data structure for searching large-scale
speech documents. The method reduces search time via
techniques such as keyword division and iterative lengthening
search. In this paper, we propose a statistical method of
assigning different threshold values to sub-keywords to further
accelerate search. Specifically, the method estimates the
numbers of results for keyword searches and then reduces
them by adjusting the threshold values assigned to sub-
keywords. We also investigate the theoretical condition that
must be satisfied by these threshold values. Experiments show
that the proposed search method is 10% to 30% faster than
previous methods.

Index Terms: spoken term detection, suffix array, keyword
division, threshold value assignment

1. Introduction

Fast spoken term detection has become an essential function in
utilizing large-scale speech documents. Many studies have
been conducted on this topic, and reasonable progress has
been made in detecting keywords from a speech database
[31[4]. Recently, studies have focused on search speed
[51[6][7] as a priority for large speech/video databases, such as
digital archives of TV/radio programs or video sites on the
internet. Nevertheless, existing methods are still too slow for
useful processing of a 10,000-h speech database.

Recognizing this, we previously proposed a fast spoken

term detection method for large-scale speech documents [1][2].

This method reduced search time using a suffix array data
structure and other techniques, such as keyword division and
iterative lengthening search. Using the proposed method, a
keyword is divided into sub-keywords, which are then
searched instead of the initial keyword. To guarantee that the

search results are unchanged from the original keyword search,

we control the search threshold value attached to each sub-
keyword according to the number of sub-keywords. However,
in this previous proposal, we considered only the case in
which the threshold value is assigned equally to each sub-
keyword. In this paper, we investigate the theoretical condition
that must be satisfied by a threshold value when different
values are assigned to each sub-keyword. We also propose a
statistical indicator that can help identify optimal threshold
values for efficient search.

Text abr acadabr a
Index 012 3 456 7 8 9 10
v emETL
Suffix m| Index |=
a x 10 |a
abr a : 7 :
abr acadabr a 0 M
acadabr a : 3 :
adabr a = 5 |= Suffix array
br a i 8 |a
br acadabr ans 1 n
cadabr a o4 .
dabr a] 6]
r a o9 =
racadabr a . 2 U
Ygun®

Figure 1: Example suffix array.

2. Keyword detection using suffix array

2.1. Structure of suffix array

A suffix array [8] is a data structure that is used to quickly
search for a keyword in a text database. We have previously
employed it for phoneme-based keyword detection. The data
structure holds sorted indexes for all suffixes of phoneme
sequences in a database. Figure 1 shows a sample of a suffix
array constructed from the character string® “abracadabra.”
The indexes in the figure represent the positions at which the
suffixes start in the string. Because the indexes are sorted
alphabetically, we can use an efficient binary search to detect a
keyword. Moreover, because the array holds only the indexes,
memory requirements are modest.

2.2. Similarity search on suffix array

The original suffix array was designed to support exact string
matches. To adapt it for use with speech recognition and
speech data, we employed a search algorithm using DP-
matching (or dynamic time warping (DTW)) on the suffix
array that is proposed by Yamashita et al. [9]. This algorithm
regards the suffix array as a tree, and DP-matching is applied
to all paths from the root of the tree. If the distance between a
keyword and a path is not more than a threshold value, the
path is output as a search result. Otherwise, the search is
terminated at a higher node.

Figure 2 shows an example in which the keyword “bra” is
detected within the character string “abracadabra.” In this

1n this example, we use a character string instead of a phoneme
string to simplify the explanation.

number :
distance from “bra”

1.0

~

l':igure 2: Similarity search on éuffix array.

al|i|lujle|ol|k]s

low I R R - R R
high + -1 -1T-1-1T+71-
plosive A
affricative B e

Figure 3: Table of distinctive phonetic features.

example, the threshold is assumed to be 1.0, and edit distance
is used to calculate the distance between two strings. In the
example, we cut off the descendant nodes of the paths “ac”
and “ad” because their distances are greater than the threshold.
As a result, “bra,” “abra,” and some other strings are detected
within the threshold. Finally, by referring to the suffix array
shown in Figure 1, we output the indexes 8, 1, 7, 0, etc. as
results.

In the DP-matching process, we use distinctive phonetic
features to calculate the distance between phonemes. These

features represent a phoneme using fifteen articulatory features.

Figure 3 shows a portion of the relationship between Japanese
phonemes and these articulatory features. We used the
Hamming distance of these features to calculate the distance
between two strings of phonemes.

2.3. Iterative lengthening search

If the threshold is set at a large value, the recall rate of the
search will increase because many results are output, whereas
the precision rate will decrease and the search time will
increase exponentially. On the other hand, if the threshold is a
small value, the precision rate will increase and the search
time will be small. Considering these characteristics, we
employed an iterative lengthening search algorithm for
keyword detection. In this search, the threshold is initially set
at a small number to output accurate results rapidly, and as the
user is checking the former results, the threshold is slowly
increased and the search is executed iteratively.

3. Keyword division

3.1. Outline
procedure

of keyword division and search

In the algorithm described in Section 2.2, all paths that lie
within the threshold are temporarily stored in memory while
DP-matching is applied. Thus, if the threshold is large, the
processing time will increase exponentially according to the
depth of the tree. Because the threshold must increase in
proportion to the length of the keyword, an exponential

Phoneme sequence :

Keyword | toyohasSi

‘Avide l

Sub-keywords | toy | | oha |

Candidates

Figure 4: Outline of keyword search.

T:30

Keyword | 1 p | n=3
’ —T T m=2

PR TS N 1115 \

Sub-keywords | |: | |

i . ki . i R _ i

' distance 0.0 ¢ distance 1.48 % distance 1.51 !

Phoneme . -
sequence [L | . J]

" detected I | detected - total distance 2.99

Figure 5: Example where equation (2) is satisfied.

increase in processing time will result if the keyword is long.
To avoid this problem, we divide a long keyword into short
sub-keywords, and searched for them instead of the original
keyword.

Of course, the results obtained using sub-keywords,
hereafter referred to as the “candidates,” may not actually
match the results when the original keyword is used. To
guarantee that the same results are obtained, we have proposed
a search algorithm composed of the following four steps: (I)
divide, (1) search, (1) filter, and (IV) confirm. In step (1), the
original keyword (threshold value: T) is divided into n sub-
keywords with the threshold of t; ... t,. In step (II), n sub-
keywords are searched for in the phoneme sequence. In step
(11), the phoneme sequences with at least m candidates in
adjacent regions are extracted. In step (IV), the phoneme
sequences whose distance from the original keyword is less
than T are output as the final results.

A remaining issue is how best to determine t; ... t, for the
above procedure. In the following section, we discuss the
condition that needs to be satisfied by t; ... t,.

3.2. Condition to be satisfied by threshold values

In [2], we presented a condition that ensures that all candidates
are detected when the following threshold value is attached to
each sub-keyword:

T @)

S n-m+1

where T is the threshold assigned to the original keyword. The
keyword is divided into n sub-keywords of which at least m
are detected. t; is then the modified threshold assigned to a
sub-keyword. A proof of equation (2) is provided in the
Appendix, and Figure 5 provides an example of its application.
In this figure, T = 3.0, n = 3, m = 2, and there is a sequence
whose distance from the keyword is 2.99. The sub-strings
corresponding to the sub-keywords have distances of 0.0, 1.48,
and 1.51. Note that, in this case, t; becomes 1.5, and two sub-
keywords can be detected.

T:3.0 Table 1: Search time and number of candidates.
Keyword [| Average Search time Number of candidates
S0 ‘r’: fy:1.95 :V\‘rllﬂ kK - threshold [SeC]

Sub-keywords (| [] per phoneme (A) (B) (A) (B)
Phoneme “‘ distance 1.01 i“'r distance1.96 ¥ distance 0 r'l 1.0 0.076 0.065 946,313 587,103
sequence L | _ - 12 0.161 | 0.124 | 2,753,235 | 1,740,630

toral distance 2.97 " detected | 1.4 0.433 | 0.310 | 5,303,355 | 4,439,691
Figure 6: Example where Inequality (3) is not satisfied. ig ;g?i ;égg igggg;gi éiégggig

In this paper, we extend the above condition so that it can
be applied to different threshold values for the sub-keywords.
We prove that if the threshold values t; ... t, attached to the
sub-keywords satisfy the condition below, we can detect all
the candidates. Let¢; ,---,t; . be an arbitrary combination
of n — m + 1 threshold values of t; ... t,. Then the following
inequality must be satisfied:

ti, +ott >T ©)

ln—m+1

If ;< ... <t, is satisfied, inequality (3) is equivalent to the
following inequality:

tl + -+ tn_m+1 = T (4)

The proof of inequality (3) is given in the Appendix. In the
example shown in Figure 5, the two arbitrary t, values satisfy
ts + ts > T. Therefore, this example satisfies inequality (3), and
at least two sub-keywords can be detected. On the other hand,
Figure 6 shows an example in which inequality (3) is not
satisfied. In this example, t; + t, = 2.95 which is less than T =
3.0. Therefore we can detect only one sub-keyword. Ift, = t; =
2.0, t; + t, > T is satisfied and we can detect two sub-keywords
(the second and third). Note that equation (2) is derived from
inequality (3) by assigning t; = t, ..., t, = t; and by changing
the inequality to an equation.

In paper [2], we showed m=1 is best for quick search. In
addition, total number of threshold values should be
minimized to reduce search space and search time. From this
discussion, the following equality is derived from inequality
(4) for quick search.

ittt =T 5)

We attach the threshold values assigned to sub-keywords
S0 as to satisfy the above equation (5).

In previous research, similar arithmetic analysis about the
condition satisfied by the threshold values assigned to sub-
keywords was performed by Navarro et al. [10]. They also
proposed a search method with a suffix array and keyword
division. The difference from our method is that they analyzed
only the case of m=1 when DP-matching is applied? and they
assumed that the threshold values are integer. Our discussion
in this paper is regarded as an extension of their analysis to
arbitral number of m with DP-matching and real number
threshold values.

4, Statistic indicator of threshold value
assignment
The numbers of candidates obtained in sub-keyword search

can differ even when the threshold values are equal. When
some sub-keywords output large number of candidates, the

2 They analyzed the case of arbitral m when exact matching is applied.

confirmation time will increase. By averaging the number of
candidates, we can reduce the total and decrease confirmation
time. For this purpose, we estimate the number of candidates
to be detected and control the threshold value assigned to each
sub-keyword so that equal number of candidates are detected
in each sub-keyword search.

As our estimate of the number of candidates, we use the
number of candidates detected in the last iteration of the
iterative lengthening search. Suppose that threshold values t;’
(1 <i < n) were assigned to n sub-keywords of an original
keyword, and C;’ candidates (1 < i < n) were detected in the
last iteration. Since the number of candidates is almost
proportional to the search space of the suffix array search, the
number can be expected to increase exponentially with an
increase in threshold value. Therefore, the number of
candidates C; in the current iteration can be estimated as
follows:

C; = Ci’ea(ti_f{) (6)

where C;’ is the number of candidates detected in the last
iteration of the iterative lengthening search, a is a constant, t; is
the threshold value assigned to the sub-keyword in the current
iteration, and t;” is the threshold value assigned to the sub-
keyword in the last iteration. The constant a is preliminarily
determined using a statistical method.

To equalize the number of candidates to be detected means
that the condition C; = -+ = C,, must be satisfied. Equation (5)
should also be satisfied to maintain a speedy search. Based on
these conditions, t; is formally calculated as follows:

+t + 20 %

where T' = t; + t3 4+ -+ t;,. In the experiment in the next
section, the threshold values are assigned to sub-keywords
using this formula.

5. Experiment

An experiment was conducted using a PC with a 3.0 GHz Intel
Core2Duo processor and 6 GB main memory. The CSJ
(Corpus of Spontaneous Japanese) 606-h speech database was
used for evaluation. For speech recognition, we used Julius [8]
with its default trigram language model (60,000 words) and a
speaker independent tri-phone acoustic model. The constant a
in equation (6) was statistically determined to be 0.7123 based
on preliminary measurements. In the experiment, we
compared the following two threshold value assignment
methods to show effectiveness of our approach.

A) Threshold value is equally assigned to each sub-
keyword.

B) Threshold value is controlled by equation (7).

We searched for 30 keywords (10 to 18 phonemes)
selected from the NTCIR-9 SpokenDoc test collection. These
30 keywords were enough long to be divided into more than
two sub-keywords in our search method.

The average search time per keyword and the total number
of candidates detected in search process (Il) are shown in
Table 1. Note that the search time has a strong correlation with
the number of candidates. This result confirms that reducing
the number of candidates using the proposed method (B) does
indeed help to speed up searches.

Further, note that there were some cases in which we
could not estimate the number of candidates correctly. In the
DP-matching process, we used distinctive phonetic feature-
based distance for substitution between phonemes. But we
determined a constant penalty for insertion/deletion of a
phoneme. For more accurate estimation, we have to refine
equation (6) so that it can deal with these different types of
measures.

6. Conclusions

We have investigated the theoretical condition that must be
satisfied by threshold values assigned per sub-keyword. We
have also proposed a statistical indicator for tuning these
threshold values to achieve speedier searches. Experimental
results confirm that this indicator is effective for reducing the
number of search results detected, and thereby significantly
decreasing the search time. In future work we will further
optimize the threshold values assigned to sub-keywords by
refining the indicator.

7. Acknowledgements

This work has been supported by a Grant-in-Aid for Young
Scientists (B) 24700167 2012 and for Scientific Research (B)
22300060 2012 by MEXT, Japan, and the Kayamori
Foundation of Information Science Advancement.

8. Appendix

[Proof of Equation (2)]

Let K be a keyword, ki, ..., k, be sub-keywords, S be a
phoneme sequence in the speech database, s,, ..., S, be sub-
sequences, D < T be the distance between K and S, and d; be
the distance between k; and s;. We assume without loss of
generality that d,, ..., d, is sorted as d; < ... < d,. From the
relation D < T, d; +...+ d, < T is derived. This formula is
converted to the following: d, < T — (d; +...+ dipg) — (st
+...+d,). Fromd; < ... <d,, d,, is maximized if dy, ..., d,,1=0,
and dm41, ..., dy= dp. In this case, the following formula is
satisfied: (n — m + 1) d,, < T. To find at least m adjacent
candidates under any condition, t; should be equal to the
maximum value of d,,. Thus, equation (2) is derived. []

[Proof of Inequality (3)]

Inequality (3) is derived from the two lemmas that follow. For
these lemmas, let K be a keyword, ki, ..., k, be sub-keywords,
S be a phoneme sequence in the speech database, sy, ..., S, be
sub-sequences, D < T be the distance between K and S, and d;
be the distance between k; and s;, and assume without loss of
generality that d, ..., d, are sorted as d; < ... <d,. [

[Lemma 1]

Ift;, +--+t; ., =T is satisfied by arbitrary n —m + 1
threshold values, there are at least m pairs of d;, and ¢;, that
satisfy d;, <t¢tj,-,d; <t .

[Lemma 2]

If there is an n — m + 1 combination of threshold values
ti,, . ti, .., that satisfies t; +--+¢t; <T, there are
some cases where fewer than m pairs of d;, and t;, satisfy

dj, < tj,, . dj, <t

[Proof of Lemma 1]

If there are fewer than m pairs of d; and ¢; that satisfy
di <t;,then n - m + 1 or more pairs must satisfy the

Tk = Tk .
following inequality:
dj1 > tjl' Y djn—mﬂ > tfn—mﬂ
From this inequality, d; +--+d; . >t +-+
ti, e, = T is derived. This contradicts D (= d; +...+ d;) < T.

Therefore, there exist at least m pairs of d;, and t;, that satisfy

dj1 = tjl‘“"djm = tjm' u

[Proof of Lemma 2]

The inequality ¢; +-+¢t; ..
ty, +-+t, ., +A=T (A>0). Consider d;,
satisfy the following conditions:

< Tcan be represented as
-, d;, that

A A
i1+ﬁvdi2 = ti2+ﬁ,”‘,d
=0,,d;, =0

d
d

=t

In-m+1 tin—m+1 + N’

(Nzn-m+1)

21

ln-m+2

These d;,,---,d;, also satisfy the following inequality:

di1 + -+ din = di1 + -+ din—m+1 +din—m+2 + -+ din
n—-m+1
=ti1+ et tin—m+1+TAST

In this case, d; +...+ d, < T is satisfied. However, there exist
only m - 1 pairs of djandt; that satisfy d; .,
iy i @i, St , since we have n — m + 1 pairs of
dj and t;, thatsatisfy d;, =¢t; ,--,d []

19’

, > t.
ln-m+1 = tln—m+1'

(1]

[2

(3]

[4]

[5]

(6]

[7]
(8]

(9]

[10]

9. References

Katsurada, K., Teshima, S. and Nitta, T., “Fast Keyword
Detection Using Suffix Array”, InterSpeech2009, pp.2147-2150,
2009.

Katsurada, K., Sawada, S., Teshima, S. and Nitta, T.,
“Evaluation of Fast Keyword Detection Using a Suffix Array”,
InterSpeech2011, pp.909-912, 2011.

Fiscus, J., Ajot, J., Garofolo, J. and Doddington, G., “Results of
the 2006 Spoken Term Detection Evaluation”, SIGIR'07
Workshop in Searching Spontaneous Conversational Speech,
2007.

Smidl, L. and Psutka, J.V., “Comparison of Keyword Spotting
Methods for Searching in Speech”, InterSpeech2006, pp.1894-
1897, 2006.

Kanda, N., Sagawa, H., Sumiyoshi, T., and Obuchi, Y., “Open-
vocabulary keyword detection from super-large scale speech
database”, IEEE MMSP 2008, pp.939-944, 2008.

Pinto, J., Szoke, I, Prasanna, S. R. M. and Hermansky, H., “Fast
Approximate Spoken Term Detection from Sequence of
Phonemes”, SIGIR 08 Workshop, pp.28-33, 2008.

Wallace, R., Vogt, R. and Sridharan, S., “Spoken term detection
using fast phonetic decoding”, ICASSP'09, pp.2135-2138, 2009.
Manber, U. and Myers, G., “Suffix arrays: A new method for on-
line string searches”, SIAM J. Computation, vol.22, no.5,
pp.935-948, 1993.

Yamasita, T. and Matsumoto, Y., “Full Text Approximate String
Search using Suffix Arrays”, IPSJ SIG Technical Reports 1997-
NL-121, pp.23-30, 1997. (in Japanese)

Navarro, G., Baeza-Yates, R., Sutinen, E. and Tarhio, J.,
“Indexing Methods for Approximate String Matching”, IEEE
Data Engineering Bulletin, Vol.24, No.4, pp.19-27 (2001).

	Acceleration of Spoken Term Detection Using a Suffix Array by Assigning Optimal Threshold Values to Sub-Keywords
	1. Introduction
	2. Keyword detection using suffix array
	2.1. Structure of suffix array
	2.2. Similarity search on suffix array
	2.3. Iterative lengthening search

	3. Keyword division
	3.1. Outline of keyword division and search procedure
	3.2. Condition to be satisfied by threshold values

	4. Statistic indicator of threshold value assignment
	5. Experiment
	6. Conclusions
	7. Acknowledgements
	8. Appendix
	9. References

