
Proposal of MMI-API and library for JavaScript

Kouichi Katsurada, Taiki Kikuchi, Yurie Iribe, and Tsuneo Nitta

Toyohashi University of Technology,

Toyohashi, Aichi 441-8580, Japan
{katsurada, nitta}@cs.tut.ac.jp,

kikuchi@vox.cs.tut.ac.jp

iribe@imc.tut.ac.jp

Abstract. This paper proposes a multimodal interaction API (MMI-API) and a

library for the development of web-based multimodal applications. The API

and library enable us to embed synchronized multiple inputs/outputs into an

application, as well as to specify concrete speech inputs/outputs and actions of

dialogue agents. Because the API and the library are provided for JavaScript,

which is a commonly used web-development language, they can be executed on

general web browsers without having to install special add-ons. The users can

therefore experience multimodal interaction simply by accessing a web site

from their web browsers. In addition to presenting an outline of the API and the

library, we offer a practical example of the use of the multimodal interaction

system, as applied to an English pronunciation training application for Japanese

students.

Keywords: MMI-API, JavaScript, web-based multimodal interaction

1 Introduction

The use of web-based multimodal interaction is one of the most absorbing research

topics in the area of multimodal interaction. Some multimodal description languages

such as X+V [1] and XISL [2] have been proposed to describe speech interaction

scenarios and are used together with HTML pages, while SALT [3] provides a set of

tags that are used to embed a speech interface into HTML documents. Other languag-

es such as SMIL [4], MPML [5], and TVML [6] define the synchronization of output

media or the gestures of animated characters for the rich presentation of output me-

dia/agents. Although these languages have resulted in significant advances in web-

based multimodal interaction, not many of them are widely used as practical systems.

One reason for this is the difficulty that application developers face in mastering a

new description language. Although the above languages provide a strong foundation

for developing multimodal applications, application developers must make considera-

ble effort to learn them. If developers could instead use a well-known language, they

could create many applications without such an investment of time and effort. The

other difficulty presented by the currently available language is the complexity faced

by users in the installation and compilation of an interpreter. For general web users, it

is time-consuming to install new software when they use a new application. To avoid

this labor, it is desirable for multimodal applications to be executed without the use of

any additional software.

Against this background, we propose an MMI-API for JavaScript and provide a li-

brary that can be executed on general web browsers. Because JavaScript is the most

commonly used language for web development and provides rich descriptive power

for controlling multimodal interaction, developers can create rich multimodal applica-

tions without needing to learn a new language. This enables users to experience mul-

timodal interaction on the web through their browsers. The ease of use of these fea-

tures will accelerate the use of multimodal interaction on the web.

A number of APIs and libraries have been proposed for the handling of speech and

dialogue agents in JavaScript. Microsoft agent [7] is one approach to handling ani-

mated characters on the web. It provides an API to control the gestures of animated

characters in JavaScript. It differs from our proposal, however, in that the characters

need to be installed on the user’s PC, whereas our API and library require no installa-

tion in order for the user to experience multimodal interaction. Other approaches to

providing rich web contents using Flash and JavaScript utilize synchronized outputs of

speech, music, and movies. Most of them, however, just provide output functionality.

The purpose of our approach is to provide an API that can handle both output and

input modalities, including speech interaction with dialogue agents. This distinguishes

our approach from other approaches for delivering rich content through the web.

In the rest of this paper, we first discuss the requirements for the API in Section 2,

and present an outline of the API specifications in Section 3. In Section 4, we show

the system structure of the library. Next, in Section 5, we introduce a sample applica-

tion, and then conclude our proposal in Section 6.

2 Requirements for MMI-API

A number of languages have been proposed for the development of multimodal inte-

raction systems. SALT is a tag set that is used to add a voice interface to its mother

language (which is usually presumed to be HTML). It provides tags for speech in-

put/output, binding them to HTML forms, along with some other functions that are

used in speech interaction. SALT tags are activated by the JavaScript described in its

mother HTML document. X+V achieves multimodal interaction by using VoiceXML,

which defines speech interaction, together with XHTML. VoiceXML and XHTML

tags are bound by the original tags. The VoiceXML document is invoked by an XML

event that occurs in the XHTML document. XISL is a language that is used to control

a multimodal interaction scenario, which includes speech interface, HTML pages, and

so on. In an XISL document, HTML is handled as one of the output/input modalities.

SMIL, MPML, and TVML are languages that are used to control multimedia presen-

tations or the gestures of dialogue agents. SMIL provides detailed synchronization of

multimedia outputs such as audio and movies, whereas MPML offers a number of

gestures that are performed by animated characters. TVML also controls the perfor-

mance of animated characters for TV programs. Table 1 lists the features of these

languages.

Table 1. Features of existing languages

 SALT X+V XISL SMIL MPML TVML

multimodal inputs Yes Yes Yes No Yes
*

No

multimodal outputs Yes Yes Yes Yes Yes Yes

media synchronization No No Yes
**

 Yes Yes Yes

dialogue agent No No Yes No Yes Yes

compatibility with HTML Yes Yes Yes No No No

* Some versions of MPML support speech interface [8].

** XISL provides limited input/output synchronization.

For an MMI-API, the handling of multimodal inputs/outputs is an essential function.

At the same time, the synchronization of inputs/outputs and the gestures of dialogue

agents play important roles in the development of rich applications with various in-

put/output modalities. Another important feature of an MMI-API is compatibility with

HTML. To create useful applications, data binding with HTML is a fundamental re-

quirement. To summarize the above discussion, we defined the following require-

ments that an MMI-API should ideally satisfy.

1. It can handle multimodal inputs.

2. It can handle multimodal outputs.

3. It can control the synchronization of multimodal inputs/outputs.

4. It can control the gestures of dialogue agents.

5. It has a strong connection with HTML.

Because requirement 5 is a preexisting JavaScript feature, we sought to create an

API that satisfies requirements 1-4.

3 Outline of MMI-API

Based upon the discussion in Section 2, we created the following specifications for an

API in order for it to handle multimodal inputs/outputs. Table 2 shows the multimodal

input/output functions provided by the API. It provides four types of input functions:

Input, seqInput, altInput, and parInput; these handle unimodal input,

multimodal sequential inputs, multimodal alternative inputs, and multimodal parallel

inputs, respectively. As for outputs, the API provides three types of functions: Out-

put, seqOutput, and parOutput; these handle unimodal output, multimodal

sequential outputs, and multimodal parallel outputs, respectively.

These functions only partially satisfy requirements 1-3 because they do not define

any details with regard to concrete inputs, outputs, and synchronization. These details

are provided by the arguments given to the functions. These arguments are described

in the JSON format [9], as listed in Figure 1. The JSON format is used to describe

multiple pairs of properties and their values. Each property represents the type of

modality, the conditions for accepting input, or some other options. Tables 3-5 show

the available properties of inputs, outputs, and gestures performed by the dialogue

agents, respectively.

Table 2. Multimodal input/output functions

Type Function Outline

Input Input Accepts a unimodal (single) input

 seqInput Accepts sequential inputs

 altInput Accepts alternative (exclusive) input

 parInput Accepts simultaneous inputs

Output Output Outputs a unimodal (single) content

 seqOutput Outputs contents sequentially

 parOutput Outputs contents simultaneously

Fig. 1. Descriptive example of multimodal input/output functions

// Input example

mmi.altInput({

 "type" :"click",

 "match" :"agent"

},{

 "type" :"speech",

 "match" :"./grammar/start.txt"

}); //start interaction with the agent

 //click the agent or talk to the agent

// Output example

mmi.parOutput({

 "type" :"audio",

 "event" :"play",

 "match" :"./sound/isshoni.ogg",

 "options":{

 "begin":500

 }

},{

 "type" :"agent",

 "event" :"gesture",

 "gesture":"speak",

 "options":{

 "begin":500,

 "dur" :5500

 }

}); //output the agent’s speech

 //This example does not use TTS.

Table 3. Example of input properties and available values

Property Value Outline
“type” “click” Mouse click
 “mouseover” Mouseover event
 “speech” Speech from the user
 “keydown”

 :
Key event
 :

“match” HTML ID Specify the ID in the HTML document

(“type” is mouse event)
 “agent” Operation to the agent

(“type” is mouse event)
 Grammar file Specify the grammar file

(“type” is “speech”)
 Character

 :

Output contents simultaneously

(“type” is key event)
 :

“options”
 “begin” Time or event Start time or event of input acceptance
 “dur” Time Duration of input acceptance
 “repeatCount” Number Number of repetitions
 : : :

Table 4. Example of output properties and available values

Property Value Outline
“type” “agent” Agent’s gesture
 “audio” Output an audio file
 “browser” Output a HTML page
 : : :
“event” “speech”,“gesture” Agent’s gesture (“type” is “agent”)
 “play”, “stop”,…

 :
Operation to audio (“type” is “audio”)

“match” HTML ID or path to media Specify an output content

(“type” is “browser”, “audio”, …)
“text” Output text Specify the output text

(“type” is “agent”, “browser”)
“gesture” Define a gesture The gesture is performed by the agent
“options”

“begin”

“dur”

“fadein”

“volume”

 :

Time or event

Time

0.1 to 1.0
 :

Start time or event of presentation

Duration of presentation

Fade-in effect

Volume control
 :

Table 5. Gestures performed by dialogue agent

Type Gesture Outline

Facial

expressions

and gestures

(24 gestures)

“happy” Happy expression
“sad” Sad expression
“blink” Blink
“speak” Lip sync
 : :

Hand

gestures

(15 gestures)

“pointup” Point upward
“grab” Grab an object
 : :

Body

gestures

(14 gestures)

“walk” Walk
“explain” An explanatory posture
 : :

User

interaction

(4 gestures)

“appear” An agent appears
“disappear” The agent disappears
 : :

Others

(5 gestures)

“search” Search for something
“wait” Wait
 : :

4 Multimodal Library and System Structure

We provide a multimodal library together with the API. The library includes a Java-

Script program for handling multimodal inputs/outputs, a Java applet program for

recording speech input, and a Java servlet program for managing server-side applica-

tions such as a speech recognition engine, speech synthesis engine, and agent manager.

Figure 2 shows the system structure of the multimodal interaction system.

In this system, a speech input from a user is recorded in the sound recorder module,

which is executed on the web browser. It is then sent to the session manager on the

web server through the JavaScript program that is executed on the web browser. The

session manager sends it to the input manager, and the speech is then recognized by

the speech recognition engine Julius [10]. The recognition result is sent to the Java-

Script program through the input manager and the session manager.

The production of speech output and dialogue agent animation is ordered from the

JavaScript program that is executed on the web browser. An output text and a com-

mand specified by the JavaScript program (using the API) are sent to the agent man-

ager through the session manager, the output control manager, and the output manager.

The agent manager produces a synthesized voice using the speech synthesis engine

Aques Talk [11], and sends it to JavaScript, together with the images of the dialogue

agent through the output manager and the session manager. The images of the dialo-

gue agent are given in a gif format, and are converted into animation on the web

browser.

Fig. 2. Structure of multimodal interaction system

5 Sample Application Using developed API and Library

To confirm the usability of the developed API and library, we embedded multimodal

interaction into a web-based English pronunciation training application for Japanese

students [12] that was scripted using Action Script (A scripting language used for

developing Flash software). The application recognizes the user’s pronunciation of a

phoneme and shows its manner and place of articulation (such as the shape of the

mouth and position of the tongue) on the International Phonetic Alphabet (IPA) vo-

wel-chart. The user can correct his/her pronunciation by modifying his/her mouth

shape and tongue position according to the chart.

Figure 3 shows a screenshot of the application, and Figure 4 outlines its system

structure. The character shown at the center of the figure is a dialogue agent to which

the user speaks. The user can input commands to the system either by operating the

mouse or by speaking to the agent. These commands are sent to the Flash program

that is executed on the browser, after which they are sent to the server. The content is

delivered to the user after synchronization of the dialogue agent’s gestures, speech,

and background music.

Fig. 3. Screenshot of English pronunciation training application

Fig. 4. Browser-side system structure of pronunciation training application

Using the proposed API and library, through the development process of this appli-

cation, we confirmed a number of findings. Compared to the development of the ap-

plication using the other languages, our API and library realize more detailed and

complex control of interaction, including control of the timing of inputs/outputs and

coordination with Flash or other APIs (such as Google map API). Because an applica-

tion developer can now construct an interaction scenario only using JavaScript, he/she

can regard the interaction scenario and the application as a single program unit. This

feature enables developers to construct complicated interaction scenarios far more

easily than they would use some other languages. However, an issue arises due to a

characteristic of the language JavaScript, namely the difficulty of synchronization that

is triggered by the end of an input acceptance or an output presentation. This is be-

cause JavaScript does not provide a “wait” function. The developer still has to write

a somewhat complicated program to execute this type of synchronization. We would

like to resolve this issue in the future.

6 Conclusions

In this paper, we have proposed a multimodal interaction API for JavaScript, and have

also provided a library that can be executed on general web browsers. Although the

API is very simple one which contains only four types of input functions and three

types of output functions, it has a strong descriptive power in the arguments given to

these functions. Through the development process of a web-based English pronuncia-

tion training application for Japanese students, we confirmed that the API and the

library provide more detailed control of a complicated interaction, including control of

the timing of inputs/outputs and coordination with Flash programs. This feature

enables developers to construct complicated interaction scenarios more easily than

they would use some other languages.

The remaining studies are to resolve the problem of output synchronization, which

was mentioned in Section 5, and to implement various non-implemented functions of

the library (such as the nesting of inputs/outputs, and some gestures of the dialogue

agent, among others). In the near future, we intend to publish the API and the library

on the web.

References

1. XHTML+Voice: http://www.w3.org/TR/xhtml+voice/

2. Katsurada, K., Nakamura, Y., Yamada, H. and Nitta, T.: XISL: A Language for Describing

Multimodal Interaction Scenarios. Proc. of ICMI'03 (2003) 281-284

3. Wang, K.: SALT: A spoken language interface for web-based multimodal dialog systems.

Proc. of InterSpeech2002 (2002) 2241-2244

4. SMIL: http://www.w3.org/AudioVideo/

5. Tsutsui, T., Saeyor, S. and Ishizuka, M.: MPML: A Multimodal Presentation Markup Lan-

guage with Character Agent Control Functions. Proc. WebNet 2000 World Conf. on the

WWW and Internet (2000)

6. Hayashi, Ueda, and Kurihara: TVML (TV program Making Language) - Automatic TV

Program Generation from Text-based Script -. ACM Multimedia'97 State of the Art Demos

(1997)

7. http://www.microsoft.com/products/msagent/main.aspx

8. Nishimura, Y., Minotsu, S., Dohi, H., Ishizuka, M., Nakano, M., Funakoshi, K., Takeuchi, J.,

Hasegawa, Y. and Tsujino, H.: A markup language for describing interactive humanoid ro-

bot presentations. Proc. of IUI07 (2007) 333-336

9. JSON: http://www.json.org/index.html

10. Kawahara, T., Kobayashi, T., Takeda, K., Minematsu, N., Itou, K., Yamamoto, M., Yamada,

A., Utsuro, T., Shikano, K.: Sharable software repository for Japanese large vocabulary con-

tinuous speech recognition. Proc. ICSLP'98 (1998) 3257-3260

11. Aques Talk : http://www.a-quest.com/aquestalk/

12. Mori, T., Iribe, Y., Katsurada, K. and Nitta, T.: Real-time Visualization of English Pronun-

ciation on an IPA Vowel-Chart Based on Articulatory Feature Extraction. IPSJ SIG Tech-

nical Report 89-15 (2011) (In Japanese)

