THE MATSUDA RESEARCH GROUP Department of Applied Chemistry
Tokyo University of Science

   Our research program is grounded in using transition-metal-catalyzed reactions as the tool for developing innovative synthetic methods that enable concise and efficient access to valuable compounds. In particular, we are interested in manipulating unreactive bonds to move beyond the limits of contemporary organic synthesis. Our work is focused on three main areas: synthesis of aromatic and heteroaromatic compounds, design and development of novel domino reactions, and utilization of organometallic compounds for selective organic synthesis.



1. Rhodium(I)- and Iridium(I)-Catalyzed C–H Functionalization under Redox-Neutral Conditions

Org. Biomol. Chem. 2024, 22, 3209.
Org. Biomol. Chem. 2024, 22, 2744.
Synlett 2024, 35, 2037.
Synlett 2023, 1894.
Chem. Lett. 2022, 51, 775.
Org. Biomol. Chem. 2022, 20, 2808.
Org. Lett. 2022, 24, 1141.
Eur. J. Org. Chem. 2021, 4938.

2. Rhodium(I)-Catalyzed Addition Reactions of Arylboron Compounds

Eur. J. Org. Chem. 2020, 306.
Synlett 2015, 26, 1233.
Org. Biomol. Chem. 2015, 13, 702.
J. Organomet. Chem. 2014, 765, 64.
Adv. Synth. Catal. 2013, 355, 3396.
Chem. Commun. 2012, 48, 2988.
Adv. Synth. Catal. 2011, 353, 1923.
Org. Lett. 2006, 8, 3379.
Chem. Lett. 2005, 34, 1416.
Angew. Chem., Int. Ed. 2005, 44, 4608.
Bull. Chem. Soc. Jpn. 2005, 78, 1528.
Org. Lett. 2004, 6, 1257.

3. Synthesis of Aromatic Compounds

Eur. J. Org. Chem. 2020, 306.
Org. Biomol. Chem. 2016, 14, 7024.
Org. Biomol. Chem. 2016, 14, 5023.
Chem. Eur. J. 2016, 22, 1941.
Eur. J. Org. Chem. 2015, 3032.
Tetrahedron 2015, 71, 869.
Angew. Chem., Int. Ed. 2013, 52, 6492.
Org. Biomol. Chem. 2013, 11, 3424.
Chem. Lett. 2011, 40, 40.

4. Successive C–C Bond Formation via 1,4-Rhodium Migration

Eur. J. Org. Chem. 2020, 306.
Synlett 2015, 26, 1233.
Org. Biomol. Chem. 2015, 13, 702.
Chem. Commun. 2012, 48, 2988.

5. Ring Opening and Ring Expansion Reactions Involving β-Carbon Elimination

Synlett 2018, 29, 754.
Org. Biomol. Chem. 2016, 14, 7024.
Eur. J. Org. Chem. 2013, 4219.
Org. Biomol. Chem. 2013, 11, 3424.
Chem. Commun. 2012, 48, 2988.
Org. Lett. 2008, 10, 5219.
J. Am. Chem. Soc. 2007, 129, 12596.
J. Am. Chem. Soc. 2007, 129, 12086.
Chem. Lett. 2007, 36, 744.
Org. Lett. 2006, 8, 3379.
Angew. Chem., Int. Ed. 2005, 44, 4608.
Bull. Chem. Soc. Jpn. 2005, 78, 1528.
Org. Lett. 2004, 6, 1257.

6. Cyclization and Annulation Reactions Toward Nitrogen and Oxygen Heterocycles

Chimia 2018, 72, 888.
New J. Chem. 2018, 42, 19178.
Org. Biomol. Chem. 2018, 16, 6703.
Tetrahedron Lett. 2018, 59, 1458.
Asian J. Org. Chem. 2016, 5, 891.
Tetrahedron 2015, 71, 9264.
RSC Adv. 2014, 4, 37138.
Tetrahedron Lett. 2014, 55, 3302.
Org. Biomol. Chem. 2013, 11, 2084.

7. Gold- and Platinum-Catalyzed Reactions

Tetrahedron 2015, 71, 869.
J. Org. Chem. 2014, 79, 2739.
Angew. Chem., Int. Ed. 2013, 52, 6492.
Tetrahedron Lett. 2011, 52, 4779.
Chem. Commun. 2011, 47, 8697.
Chem. Lett. 2011, 40, 40.
Chem. Commun. 2008, 2744.
Helv. Chim. Acta 2006, 89, 1672.
Synlett 2006, 575.

8. Rhodium(III)-Catalyzed Oxidative Transformations

Tetrahedron 2015, 71, 9264.
Eur. J. Org. Chem. 2015, 3032.
RSC Adv. 2014, 4, 37138.
Tetrahedron Lett. 2014, 55, 3302.

9. Catalytic Synthesis of Metalloles and Their Derivatives

Org. Biomol. Chem. 2012, 10, 3175.
Chem. Commun. 2011, 47, 8697.
Synlett 2011, 813.
Synlett 2010, 2743.
Org. Lett. 2010, 12, 1056.
Chem. Commun. 2008, 2744.
Synlett 2008, 561.
Chem. Commun. 2007, 2627.
Org. Lett. 2007, 9, 133.