Applications of Computer Algebra – ACA 2022 Gebze-Istanbul, Turkey, | August 15-19, 2021 Session on "*Parametric Polynomial Systems*"

Generic Gröbner basis of a parametric ideal and its application to a comprehensive Gröbner system

<u>Katsusuke Nabeshima¹</u>

[nabeshima@rs.tus.ac.jp]

¹ Department of Applied Mathematics, Tokyo Univ. of Science, Kagurazaka, Tokyo, Japan

We introduce a new computational method for stability conditions of Gröbner bases and a new algorithm for computing comprehensive Gröbner systems.

The concepts of a comprehensive Gröbner basis and a comprehensive Gröbner system were introduced by V. Weispfenning [5] as a special basis of a parametric polynomial system and has been regarded as one of the new most important tools to study parametric systems. After 2001, by utilizing results of M. Kalkbrener [1], new effective algorithms have been introduced in A. Suzuki and Y. Sato [4]; D. Kapur et al. [2]; K. Nabeshima [3] for computing comprehensive Gröbner systems in a commutative polynomial ring.

We remark that since algorithms, that are presented in [2,3], are generalizations of the Suzuki-Sato algorithm [4], thus all the first steps of the algorithms, in [2,3,4], for computing comprehensive Gröbner systems are the same "computing a Gröbner basis in a polynomial ring over a polynomial ring". Hence, the first steps also become the bottlenecks. Here we give a new method to become the substitute for computing the Gröbner basis.

We use the notation t as the abbreviation of m variables t_1, \ldots, t_m and the notation x as the abbreviation of n variables x_1, \ldots, x_n . Let K and \bar{K} be fields such that \bar{K} is an algebraic closure field of K. Let K[t][x] be a polynomial ring with coefficients in a polynomial ring K[t]. For $f_1, \ldots, f_s \in K[x]$ (or K[t][x]), $\langle f_1, \ldots, f_s \rangle = \{\sum_{i=1}^s h_i f_i | h_1, \ldots, h_s \in K[x] (\text{or } K[t][x])\}$. A symbol Term(x) means the set of terms of x. Fix a term ordering \succ on Term(x). Let $f \in K[x]$ (or $f \in K[t][x]$), then ht(f), $\beta hm(f)$ and hc(f) denote the head term, head monomial and head coefficient of f i.e. hm(f) = hc(f)ht(f). For $F \subset K[x]$ (or $F \subset K[t][x]$), $ht(F) = \{ht(f)|f \in F\}$. For $g_1, \ldots, g_r \in K[t]$, $\mathbb{V}(g_1, \ldots, g_r) \subset \bar{K}^m$ denote the affine variety of g_1, \ldots, g_r , i.e. $\mathbb{V}(g_1, \ldots, g_r) = \{\bar{t} \in \bar{K}^m \mid g_1(\bar{t}) = \cdots = g_r(\bar{t}) = 0\}$. In this talk, we use an algebraically constructible set that has a form $\mathbb{V}(f_1, \ldots, f_\ell) \setminus \mathbb{V}(f'_1, \ldots, f'_{\ell'}) \subset \bar{K}^m$ where $f_1, \ldots, f_\ell, f'_1, \ldots, f'_{\ell'} \in K[t]$. For $\bar{t} \in \bar{K}^m$, the canonical specialization homomorphism $\sigma_{\bar{t}} : K[t][x] \to \bar{K}[x]$ (or $K[t] \to \bar{K}$) is defined as the map that substitutes t by \bar{t} in $f(t, x) \in K[t][x]$. The image $\sigma_{\bar{t}}$ of a set $F \subset K[t][x]$ is denoted by $\sigma_{\bar{t}}(F) = \{\sigma_{\bar{t}}(f)|f \in F\} \subset \bar{K}[x]$.

We adopt the following as a definition of comprehensive Gröbner system.

Definition 1. Fix a term ordering \succ on Term(x). Let $F \subset K[t][x], \mathbb{A}_1, \ldots, \mathbb{A}_r \subset \overline{K}^m$,

 $G_1, \ldots, G_r \subset K[t][x]$. If a finite set $\mathcal{G} = \{(\mathbb{A}_1, G_1), \ldots, (\mathbb{A}_r, G_r)\}$ of pairs satisfies the properties such that

- for $i \neq j$, $\mathbb{A}_i \cap \mathbb{A}_j = \emptyset$, and
- for all $\overline{t} \in A_i$ and $g \in G_i$, $ht(g) = ht(\sigma_{\overline{t}}(g))$ and $\sigma_{\overline{t}}(G_i)$ is a Gröbner basis of $\langle \sigma_{\overline{t}}(F) \rangle$ in $\overline{K}[x]$,

then, \mathcal{G} is called a comprehensive Gröbner system (CGS) of $\langle F \rangle$ over \overline{K} on $\mathbb{A}_1 \cup \cdots \cup \mathbb{A}_r$. We call a pair (\mathbb{A}_i, G_i) segment of \mathcal{G} . We simply say that \mathcal{G} is a comprehensive Gröbner system of $\langle F \rangle$ over \overline{K} if $\mathbb{A}_1 \cup \cdots \cup \mathbb{A}_r = \overline{K}^m$.

Let I be a monomial ideal in K[x]. Then, the minimal basis of I is written as MB(I). In [3], Nabeshima gives the following theorem.

Theorem 2 (Nabeshima [3]). Let G be a Gröbner basis of an ideal $\langle F \rangle \subset K[t][x]$ w.r.t. a term order \succ on Term(x) and $MB(\langle ht(G) \rangle) = \{m_1, \ldots, m_\ell\}$ where $F \subset K[t][x]$. Suppose that $G_i = \{f \in G | ht(f) = m_i\}$ for each $i \in \{1, \ldots, \ell\}$. Then, $\forall \bar{a} \in \bar{K}^m \setminus \bigcup_{i=1}^{\ell} \mathbb{V}(ht(G_i)), \sigma_{\bar{a}}(G_1 \cup G_2 \cup \cdots \cup G_\ell)$ is a Gröbner basis of $\langle \sigma_{\bar{a}}(F) \rangle$ w.r.t. \succ in $\bar{K}[x]$.

In [2], Kapur-Sun-Wang give the following theorem.

Theorem 3 (Kapur-Sun-Wang [2]). Using the same notation as in Theorem 2, let $g_i \in G_i$ and $h_i = hc(g_i)$ for each $i \in \{1, ..., \ell\}$. Then, $\forall \bar{a} \in \bar{K}^m \setminus \mathbb{V}(h_1 \cdots h_\ell)$, $\sigma_{\bar{a}}(\{g_1, ..., g_\ell\})$ is a minimal Gröbner basis of $\langle \sigma_{\bar{a}}(F) \rangle$ w.r.t. \succ in $\bar{K}[x]$.

The bottleneck of the both theorems above for getting the pairs $(\bar{K}^m \setminus \bigcup_{i=1}^{\ell} \mathbb{V}(ht(G_i)), \{G_1 \cup G_2 \cup \cdots \cup G_\ell\})$ or $(\bar{K}^m \setminus \mathbb{V}(h_1 \cdots h_\ell), \{g_1, \ldots, g_\ell\})$ is comptuing the Gröbner basis G of $\langle F \rangle$ in K[t][x].

Method 1

Step 1: Computing a Gröbner basis G of $\langle F \rangle$ in K[t][x].

Let $g = \sum_{i=1}^{r} c_{\alpha_i} x^{\alpha_i} \in K(t)[x]$ where $c_{\alpha_i} \in K(t)$, $\alpha_i \in \mathbb{N}^n$ and K(t) is a field of rational functions. Then, $dlcm(g) = lcm(nd(c_{\alpha_1}), \ldots, nd(c_{\alpha_r}))$ where $nd(c_{\alpha_i})$ is the denominator of c_{α_i} .

The following theorem is a main result that is utilized in the new algorithm for computing comprehensive Gröbner systems.

Theorem 4. Using the same notation as in Theorem 2, let G' be a reduced Gröbner basis of $\langle F \rangle$ w.r.t. \succ in K(t)[x], $G'' = \{ dlcm(g) \cdot g | g \in G' \}$, $h = \prod_{g \in G''} hc(g)$ and S a reduced Gröbner basis of the ideal quotient $\langle F \rangle : \langle G'' \rangle$ w.r.t. a block term order with $x \gg t$ in K[t,x]. Then, (1) $S \cap K[t] \neq \emptyset$, (2) for all $\bar{a} \in \bar{K}^m \setminus ((S \cap K[t]) \cup \mathbb{V}(h))$, $\sigma_{\bar{a}}(G')$ is the reduced Gröbner basis of $\langle \sigma_{\bar{a}}(F) \rangle$ w.r.t. \succ in $\bar{K}[x]$.

In order to obtain the pair $(\bar{K}^m \setminus ((S \cap K[t]) \cup \mathbb{V}(h)), G')$, we have to compute a Gröbner basis G' of $\langle F \rangle$ in K(t)[x] and a reduced Gröbner basis of the ideal quotient $\langle F \rangle : \langle G'' \rangle$.

Method 2

Step 1: Computing a reduced Gröbner basis G' of $\langle F \rangle$ in K(t)[x]. Step 2: Computing the reduced Gröbner basis of the ideal quotient $\langle F \rangle : \langle G'' \rangle$.

In this talk, we report the comparison between Method 1 and Method 2, too.

Corollary 5. Using the same notation as in Theorem 4, let $g \in S \cap K[t]$. Then, for all $\bar{a} \in \bar{K}^m \setminus \mathbb{V}(g \cdot h)$, $\sigma_{\bar{a}}(G')$ is the reduced Gröbner basis of $\langle \sigma_{\bar{a}}(F) \rangle$ w.r.t. \succ in $\bar{K}[x]$.

We also give a new algorithm for computing comprehensive Gröbner systems.

Keywords

comprehensive Gröbner system, stability of Gröbner basis, ideal quotient

References

[1] M. KALKBRENER, On the stability of Gröbner bases under specialization. *Journal of symbolic computation* **24**, 51–58 (1997).

[2] D. KAPUR; Y. SUN; D. WANG, A new algorithm for computing comprehensive Gröbner systems. In *Proceedings of International Symposium on Symbolic and Algebraic Computation 2010*, pp. 29–36, ACM, 2010.

[3] K. NABESHIMA, Stability conditions of monomial bases and comprehensive Gröbner systems. *Lecture Notes in Computer Science*, Vol. 7442, pp. 248–259, Springer, 2012.

[4] A. SUZUKI; Y. SATO, A Simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. In *Proceedings of International Symposium on Symbolic and Algebraic Computation 2006*, pp. 326–331. ACM, 2006.

[5] V. WEISPFENNING, Comprehensive Gröbner bases. *Journal of symbolic computation* **14**, 1–29 (1992).