in &y, where k > j > i

Theorem3.5. For (2 yr,Jym.Fim 1) given asabove, Dy := AP ww, Jyw, Fyms Y) 15 @ quantization category of the matrix regularization
with the limit Mat o of (Jym, Fum).

Proof. From Lemma 3.3, 2 y exists as a pre- Zy category. A limit (Moo, ) of Fyrg is given as the following commutative diagram for
any i, .

X{ZEEEH:"'{.E'C‘II\ JE TS AT

/ §!%®§ﬁﬁmnmmrc%ﬁ\»
¥

Maty, <—— M BIBYMBOIATL . MFBE O
\-/
LRELTVWE T, BREDIATRT—V
From the condition (3.1) of morphisms, M is A(M) or Mat . Le@g}@@ﬁghﬁft@;ﬂﬂ@ﬁ@yﬁﬁ@ = Tioo, and m; =

Tieo, and then, m 0 T = T; and Tj jO ;= T; for all 1,j with X = A(M). From the definition of Mat., the quantization conditions (Q1) and

(Q2) in Definition 2.6 are satisfied on Moo, When Matoo ~ AM), &%4 Jét&? Ek%eglﬁhz\%lgmw Q1) and (Q2) in

Definition 2.6 are trivially satisfied on A(M). Thus, Zy is a quantization category of € 1e matrix regularization O
XK= EE. FLL
Example 3.6 Fuzzy sphere in Example 3.4 is an example of Qyg with h(T;) = b,
BFPEFEOHAFRERETT . T

This quantization category Zy can be further minimized.

fhﬂt“{i%)d)%t.éb\ Be & IC (S IR

Corollary 3.7. For the quantization category Dy, a mmcnon,)MR\w s given as follows:

ﬁﬁﬁ’éfﬁ%‘"t’éﬁﬁb\ BN
ob{ il ) = (A Mat, Mt

(c._.lﬂd' B#Dﬁﬁ ﬁﬂflllra
where i is fixed. Morphisms are restricted to Ti, Too, Tioo, id 4 Ao id Maty » 10Mat, 11 1 an 1somorphism. 1 hen, JMR\W is a quanti-

zation category of the matrix reqularizat nnwﬁhﬂu hm Matoo of (I \m\ H(re Juwli is given by ob(]) = {i, 00} and the mrlymorphnm

of Juw is i - oo, and Fgl; is given by F(i) = Maty, F(co) = Mat oo, and F( = Tico.
= Too € QM because the dimension of Maty, is finite, but the dimension of
) b ce the dmgrmn otﬁxmlwm is given by
(M)
T (38)
X

My H- M(Hfr\ 5

7Eﬁ'E4|3£
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1is corollary is derived in the same way of Theorem 3.5. FoSie . IERHREHAR EE ML AS TS g
HPMEFECBRDEVWEERXED T, FUS<

V. DEFORMATION QUANTIZATION 3 X — )L TiB#8 &L THBIFRTETRE W, &

In the following, we consider the strict d etonnatﬁgut-@mli-got her words, we consider not (F, *), but (Ag(M), 0"). (These
examples are shown in Refs. 17 and 18.)

Definition 4.1, Let (Ag(M), Q") be the strict deformation quantization of a Poisson manifold M (see Definitions 1.3 and 1.4). C" and (’E
are those in Definition 1.3. A subcategory & pq of RMod is defined as follows:

F8 - BFHREH- #4-7—%5(’”%%

.ac.jp
where[ is a subset ot_rea mmkst At col &rame(} Th em rphisms of 2 pg are defined by quantization maps Q" : Ay(M) —>C“ c " forall

ieI In: anon Ifé anlgon >, Tﬁﬁl E%Q d tistying

= {A(M),C" | heT),
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