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Abstract. The purpose of this paper is to determine the set of non- isomorphic
indecomposable RG-lattices, where R is a certain ring of algebraic integers, and
G is a cyclic group of prime order.
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§1. Introduction.

Let G be a finite group, and let R be a ring of integers. By RG, we denote
the group ring consisting of all formal combinations of the elements of G with
coefficients in R. We shall here be concerned with representations of G by
matrices with entries in R, or equivalently, with left RG-modules having a
free finite R-basis.

The first systematic study of this problem occurred in a paper by
Diederichsen [1]. Let G denote a cyclic group generated by an element g
of prime order p. Also we set

K = Q(ζp), S = alg. int.{K} = Z[ζp],

where for a positive integer s, ζs is a primitive s-th root of 1 over Q. The
following result was shown:

Theorem. (Diederichsen [1], Reiner [3]). Every ZG-module M is isomorphic
to a direct sum

(A1, a1) ⊕ · · · ⊕ (Ar, ar) ⊕ Ar+1 ⊕ · · · ⊕ An ⊕ Y

where the {Aν} are S-ideals in K, the {aν} are chosen so that ai ∈ Ai, ai 6∈
(ζp − 1)Ai, and Y is a Z-module having a finite Z-basis such that gy = y for
all y ∈ Y . The isomorphism class of M is determined by the integers r, n, the
Z-rank of Y , and the ideal class of A1 · · ·An in K.

In this paper, we shall classify all left RG-modules, where G is a cyclic
group of order p, and

R = alg. int.{Q(ζq)} = Z[ζq].

Our proof will be based on the treatment given by Heller-Reiner [2].
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§2. Representations of a cyclic group of order p

Throughout this section, let G be a cyclic group generated by an element
σ of prime order p.

For convenience, we set

R = Z[ζq], B = R[ζp] = Z[ζpq],

where p and q are distinct odd primes. We have ring isomorphisms

RG

(σ − 1)RG
' R,(2.1)

RG

(Φp(σ))RG
' B,(2.2)

given by σ 7−→ 1, and σ 7−→ ζp, respectively, where Φp(x) is the cyclotomic
polynomial of order p (and degree p − 1). By (2.1) and (2.2), both R and B
are left RG-modules.

Let M be any RG-module, and set

N = {m ∈ M ; (σ − 1)m = 0}.

Then N is an RG-submodule of M annihilated by (σ − 1). Therefore we may
consider that N is R-torsion-free.

Hence there exist ideals I1, I2, · · · , It of R such that

N ' I1 ⊕ I2 ⊕ · · · ⊕ It.

This gives the structure of N both as R-module and as RG-module.
On the other hand M/N is annihilated by Φp(σ), so that it may be viewed

as B-module. Also M/N is B-torsion-free. Therefore there exist ideals J1, J2,
· · · , Ju of B such that

M/N ' J1 ⊕ J2 ⊕ · · · ⊕ Ju.

This shows that M/N is considered both as B-module and as RG-module.
The problem of classifying all RG-modules is reduced to that of determining
extensions of J1 ⊕ J2 ⊕ · · · ⊕ Ju by I1 ⊕ I2 ⊕ · · · ⊕ It.

For the rest of this section, we write Ext in place of Ext1RG. Since RG is a
commutative ring, we may view Ext itself as RG-module.

Lemma. There are RG-isomorphisms

Ext(Bj , Ai) ' Ai/pAi,
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where integral ideals A1, · · · , AhR
are representatives of the hR distinct ideal

classes of Q(ζq), and integral ideals B1, · · · , BhB are representatives of the hB

distinct ideal classes of Q(ζpq).

Proof. By (2.2), the following sequence

0 −−−−→ Φp(σ) · RG
τ−−−−→ RG −−−−→ B −−−−→ 0

is exact. Then, for every Bj , there exists an integral ideal Sj of RG such that
the sequence

0 −−−−→ Φp(σ) · RG
τ−−−−→ Sj −−−−→ Bj −−−−→ 0

is exact. It follows that

0 −→ HomRG(Bj , Ai) −→ HomRG(Sj , Ai)
τ∗

−→
HomRG(Φp(σ) · RG,Ai) −→ Ext(Bj , Ai) −→ Ext(Sj , Ai) −→ · · · .

The mapping τ∗ is induced from τ as follows:
for each f ∈ HomRG(Sj , Ai),

(τ∗f)x = f(τx), x ∈ HomRG(Φp(σ) · RG,Ai).

For convenience let Y = Φp(σ) · RG. Since Sj is RG-projective, we obtain
Ext(Sj , Ai) = 0. Therefore,

(2.3) Ext(Bj , Ai) ' HomRG(Y,Ai)/τ∗HomRG(Sj , Ai).

Now set y = Φp(σ) ∈ Y ; then each F ∈ HomRG(Y,Ai) is completely
determined by the value F (y) ∈ Ai, and each a ∈ Ai is of the form F (y) for
some such F . Thus

HomRG(Y,Ai) ' Ai

as RG-modules. Let us determine which elements in Ai correspond to elements
in the image of τ∗. Because τ is the inclusion mapping, the image of τ∗ in Ai

is exactly Φp(σ)Ai, and by (2.3) we obtain

Ext(Bj , Ai) ' Ai/Φp(σ)Ai.

Since
Φp(σ)a = pa, a ∈ Ai,

we get
Ext(Bj , Ai) ' Ai/pAi.

This completes the proof. ¤
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Note that p is unramified in R. If

pR = P1P2 · · ·Pm

is the factorization of pR into distinct prime ideals of R, then

R/pR ' R/P1 ⊕ R/P2 ⊕ · · · ⊕ R/Pm ' F ⊕ F ⊕ · · · ⊕ F︸ ︷︷ ︸
m

,

where F is a finite field of characteristic p. Since

Ai/pAi ' R/pR, 1 ≤ i ≤ hR,

we obtain that Ext(Bj , Ai) is isomorphic to the direct sum of m copies of F .
On the other hand, by the following pullback diagram,

RG −−−−→ Ry y
B −−−−→ R/pR

we define the group homomorphism ϕij : u(Ai)×u(Bj) −→ u(R/pR). In addi-
tion, we define the group homomorphism π

(k)
s1s2···sk from u(A/pA) '

F ∗ ⊕ F ∗ ⊕ · · · ⊕ F ∗︸ ︷︷ ︸
m

to F ∗ ⊕ · · · ⊕ F ∗︸ ︷︷ ︸
k

(F ∗ = F − {0}) by

π
(k)
s1s2···sk(a1, a2, · · · , am) = (as1 , · · · , ask

)

for every k = 1, 2, · · · ,m, and set

lij =
m∑

k=1

∑
1≤s1<s2<···<sk≤m

∣∣∣∣∣ Im π
(k)
s1s2···sk

Im π
(k)
s1s2···sk ◦ ϕij

∣∣∣∣∣ .

Now we are ready to prove the following result:

Theorem. Keep the above notations. Up to RG-isomorphism, there are hA+
hB +

∑
1≤i≤hA, 1≤j≤hB

lij -indecomposable RG-lattices, given by

Ai, Bj , (Bj , Ai)kij (1 ≤ i ≤ hA, 1 ≤ j ≤ hB , 1 ≤ kij ≤ lij)

where (Bj , Ai)kij are the isomorphism classes of non-splitting extentions of Bj

by Ai.

Proof. Let M be an indecomposable RG-module. By the discussion at the
beginning of this section, we know that M must be an extension of J1 ⊕ J2 ⊕
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· · · ⊕ Ju by I1 ⊕ I2 ⊕ · · · ⊕ It for some t and u. If t = 0, then we must have
M ' Bj for some j. While if u = 0, then M ' Ai for some i.

Therefore, for the rest of the proof, we assume that both t and u are positive.
Since M is indecomposable, we must have t = u = 1, that is, M must be an
extension of Bj by Ai. It follows that M ' Ai ⊕R Bj .

Now we consider the extensions of Bj by Ai; each extension determines an
extension class in Ext(Bj , Ai), which is represented by an element αi in Ai =
Ai/pAi. If αi = 0, we get a split extension, which is clearly decomposable.
On the other hand, we consider the orbits of Ext(Bj , Ai) under the action
of AutAi × AutBj . Because ϕij is not an epimorphism in general, there are
lij-isomorphism classes of non-splitting extensions of Bj by Ai. ¤
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