REMARKS ON COHOMOLOGY RINGS OF THE QUATERNION GROUP AND THE QUATERNION ALGEBRA

Katsunori SANADA

(Received April 6, 1995)

Abstract. We will give a homomorphism of the cohomology rings $H^*(\Gamma, \Gamma) \to H^*(Q_8, {}_{\psi}\Gamma)$ induced by the ring homomorphism from the integral group algebra $\Lambda = \mathbb{Z}Q_8$ of the quaternion group Q_8 to the quaternion algebra $\Gamma = \Lambda e$ for a central idempotent e in $\mathbb{Q}Q_8$.

AMS 1991 Mathematics Subject Classification. Primary 16A61.

 $Key\ words\ and\ phrases.$ Hochschild (co)homology, quaternion group, quaternion algebra.

Introduction

Let G be a finite group and e a central idempotent of $\mathbb{Q}G$. We set $\Lambda = \mathbb{Z}G$ and $\Gamma = \mathbb{Z}Ge$. The ring homomorphism $\varphi : \Lambda \to \Gamma, w \mapsto we$ derives a homomorphism $F^n : H^n(\Gamma, M) \to H^n(G, \psi M)$ for any left Γ^e -module M, where ψM denotes M regarded as a G-module using the ring homomorphism $\psi : \Lambda \to \Gamma^e, x \mapsto xe \otimes (x^{-1}e)^\circ$ for $x \in G$. The map F^n induces the homomorphism of the cohomology rings $F^* : H^*(\Gamma, \Gamma) \to H^*(G, \psi \Gamma)$. In the paper we determine F^* in the case G is the quaternion group Q_8 and Γ is the quaternion algebra over \mathbb{Z} .

In Section 1, as preliminaries, we give the above F^n on the cochain level explicitly for any finite group G following [CE] and [M]. Moreover we show that F^n preserves the cup product, hence that F^n yields the ring homomorphism F^* . In Section 2 we give the ring structure of $H^*(Q_8, \psi\Gamma)$ (Theorem 1). In fact, we define a transformation map between the well known periodic resolution of period 4 and the standard resolution for Q_8 , and compute the cup products of the generators of $H^*(Q_8, \psi\Gamma)$. In Section 3, we determine the ring homomorphism F^* by investigating the images under F^1 of the generators χ, ξ and ω of $H^*(\Gamma, \Gamma) = \mathbb{Z}[\chi, \xi, \omega]/(2\chi, 2\xi, 2\omega, \chi^2 + \xi^2 + \omega^2)$ (Theorem 2).

§1. Preliminaries

Let G be a finite group and e a central idempotent of the group algebra $\mathbb{Q}G$. We set $\Lambda = \mathbb{Z}G$ and $\Gamma = \mathbb{Z}Ge$ in this section. Then we have a ring homomorphism $\varphi : \Lambda \to \Gamma$ by $\varphi(w) = we$ for $w \in \Lambda$. Let M be a left Γ^e -module, which is regarded as a left Λ^e -module using $\varphi^e : \Lambda^e \to \Gamma^e$, hence it is denoted by $\varphi^e M$. Then we have a homomorphism

$$H^n(\Gamma, M) \to H^n(\Lambda, \varphi^{e}M)$$

for $n \ge 0$ (see [CE, Chapter IX, Section 5]). This is induced by the homomorphisms

$$\operatorname{Hom}_{\Gamma^{e}}\left((X_{\Gamma})_{n},M\right) \xrightarrow{g_{n}^{\#}} \operatorname{Hom}_{\Gamma^{e}}\left(\Gamma^{e} \otimes_{\Lambda^{e}} (X_{\Lambda})_{n},M\right) \xrightarrow{\sim} \operatorname{Hom}_{\Lambda^{e}}\left((X_{\Lambda})_{n},\varphi^{e}M\right)$$

by means of the standard complex X_{Λ} and X_{Γ} of Λ and Γ respectively, where the above $g_n^{\#}$ is given by

$$g_n: \Gamma^{e} \otimes_{\Lambda^{e}} (X_{\Lambda})_n \to (X_{\Gamma})_n,$$
$$(\gamma \otimes {\gamma'}^{\circ}) \otimes_{\Lambda^{e}} \lambda_0[\lambda_1, \dots, \lambda_n] \lambda_{n+1} \mapsto \gamma(\lambda_0 e)[\lambda_1 e, \dots, \lambda_n e](\lambda_{n+1} e) {\gamma'}.$$

Unless otherwise stated, in the rest of the paper, X_{Λ} and X_{Γ} denotes the standard complex of Λ and Γ respectively.

Next, we have an isomorphism

$$H^n(\Lambda, N) \xrightarrow{\sim} H^n(G, {}_{n}N) := \operatorname{Ext}_{\Lambda}^n(\mathbb{Z}, {}_{n}N)$$

for a left $\Lambda^{\rm e}$ -module N (see [M, Chapter X, Theorem 5.5]). In the above, ${}_{\eta}N$ denotes N regarded as a G-module using the ring homomorphism

$$\eta: \Lambda \to \Lambda^{e}, \quad x \mapsto x \otimes (x^{-1})^{\circ} \quad \text{for} \quad x \in G.$$

The above map is induced by the homomorphism

$$\operatorname{Hom}_{\Lambda^{e}}((X_{\Lambda})_{n}, N) \to \operatorname{Hom}_{\Lambda}((X_{G})_{n}, {}_{\eta}N),$$

$$f \mapsto \left(x_{0}[x_{1}| \cdots | x_{n}] \mapsto f\left(x_{0}[x_{1}, \dots, x_{n}](x_{0}x_{1} \cdots x_{n})^{-1}\right)\right) \quad \text{for} \quad x_{i} \in G,$$

where $(X_G)_n$ denotes $(X_A)_n \otimes_A \mathbb{Z}$ and the element $x_0[x_1|\cdots|x_n]$ denotes $x_0[x_1,\ldots,x_n]\otimes_A 1$ for $x_i\in G$.

Therefore, for any left Γ^{e} -module M, we have the homomorphism of cohomologies

$$F^n: H^n(\Gamma, M) \to H^n(G, \mathcal{A}M)$$

given by

$$\tilde{F}^n : \operatorname{Hom}_{\Gamma^e} ((X_{\Gamma})_n, M) \to \operatorname{Hom}_{\Lambda} ((X_G)_n, {}_{\psi}M),$$

$$\tilde{F}^n(f)(x_0[x_1|\cdots|x_n]) = f\left(x_0e[x_1e, \ldots, x_ne](x_0\cdots x_n)^{-1}e\right)$$

where $_{\psi}M$ denotes M regarded as a G-module using the ring homomorphism $\psi = \varphi^{e} \circ \eta : \Lambda \to \Lambda^{e} \to \Gamma^{e}, x \mapsto xe \otimes (x^{-1}e)^{\circ}$ for $x \in G$.

Furthermore F^n preserves the cup products, that is, the following diagram is commutative, which is shown by direct calculation on the cochain level:

$$H^{n}(\Gamma, M) \otimes H^{n'}(\Gamma, M') \xrightarrow{F^{n} \otimes F^{n'}} H^{n}(G, {_{\psi}M}) \otimes H^{n'}(G, {_{\psi}M'})$$

$$\downarrow \cup_{\Gamma}$$

$$H^{n+n'}(\Gamma, M \otimes_{\Gamma} M') \xrightarrow{F^{n+n'}} H^{n+n'}(G, {_{\psi}M} \otimes_{\Gamma} M')).$$

In the above, \cup_{Γ} denotes the map induced by the ordinary cup product $H^n(G, {}_{\psi}M) \otimes H^{n'}(G, {}_{\psi}M') \to H^{n+n'}(G, {}_{\psi}M \otimes_{\psi}M')$ and the left Λ -homomorphism ${}_{\psi}M \otimes_{\psi}M' \to {}_{\psi}(M \otimes_{\Gamma}M')$ given by $(a \otimes a' \mapsto a \otimes_{\Gamma}a')$. Hence F^n yields the ring homomorphism $F^*: H^*(\Gamma, \Gamma) \to H^*(G, {}_{\psi}\Gamma)$, where we set $H^*(-,-) = \bigoplus_{n \geq 0} H^n(-,-)$.

$$\S 2. \ H^*(Q_8, \sqrt{\Gamma})$$

Let G denote the quaternion group $Q_8 = \langle x, y | x^4 = 1, x^2 = y^2, yxy^{-1} = x^{-1} \rangle$. We set $e = (1 - x^2)/2 \in \mathbb{Q}G$. Then e is a central idempotent of $\mathbb{Q}G$ and $\mathbb{Q}Ge$ is the quaternion algebra over \mathbb{Q} , that is, $\mathbb{Q}Ge = \mathbb{Q}e \oplus \mathbb{Q}i \oplus \mathbb{Q}j \oplus \mathbb{Q}ij$ where we set i = xe and j = ye. In the following, we set $\Lambda = \mathbb{Z}G$ and $\Gamma = \Lambda e = \mathbb{Z}e \oplus \mathbb{Z}i \oplus \mathbb{Z}j \oplus \mathbb{Z}ij$ the quaternion algebra over \mathbb{Z} . Let ${}_{\psi}\Gamma$ denote Γ regarded as a G-module using the ring homomorphisms $\psi : \Lambda \to \Gamma^e; x \mapsto -i \otimes i^\circ, y \mapsto -j \otimes j^\circ$ as in Section 1.

We will determine the cohomology ring $H^*(G, \psi \Gamma)$ using the fact that the integral complete cohomology ring $\hat{H}^*(G, \mathbb{Z})$ has an invertible element of degree 4 (and of order 8) (cf. [CE, Chapter XII, Sections 7 and 11]).

2.1. Module structure. The following periodic Λ -free resolution of \mathbb{Z} of period 4 is well known (see [CE, Chapter XII, Section 7] or [T, Chapter 3, Periodicity]):

$$(Y,\delta): \quad \cdots \to \Lambda^2 \xrightarrow{\delta_1} \Lambda \xrightarrow{\delta_4} \Lambda \xrightarrow{\delta_3} \Lambda^2 \xrightarrow{\delta_2} \Lambda^2 \xrightarrow{\delta_1} \Lambda \xrightarrow{\varepsilon} \mathbb{Z} \to 0,$$

$$\delta_1(z_1, z_2) = z_1(y-1) + z_2(x-1),$$

$$\delta_2(z_1, z_2) = (z_1(x-1) - z_2(y+1), z_1(xy+1) + z_2(x+1)),$$

$$\delta_3(z) = (-z(xy-1), z(x-1)),$$

 $\delta_4(z) = zN_G,$

88

where Λ^2 denotes the direct sum $\Lambda \oplus \Lambda$ and N_G denotes $\sum_{w \in G} w$ ($\in \Lambda$). Applying the functor $\operatorname{Hom}_{\Lambda}(-, {}_{\psi}\Gamma)$ on the sequence above, we have the following complex which gives $H^n(G, {}_{\psi}\Gamma)$, where we identify $\operatorname{Hom}_{\Lambda}(Y_0, {}_{\psi}\Gamma)$ with Γ , $\operatorname{Hom}_{\Lambda}(Y_1, {}_{\psi}\Gamma)$ with $\Gamma^2 := \Gamma \oplus \Gamma$ and so on:

$$\left(\operatorname{Hom}_{\Lambda}(Y, {}_{\psi}\Gamma), \delta^{\#}\right) : \quad \cdots \leftarrow \Gamma \xleftarrow{\delta_{4}^{\#}} \Gamma \xleftarrow{\delta_{3}^{\#}} \Gamma^{2} \xleftarrow{\delta_{2}^{\#}} \Gamma^{2} \xleftarrow{\delta_{1}^{\#}} \Gamma \leftarrow 0,
\delta_{1}^{\#}(\gamma) = ((y-1)\gamma, (x-1)\gamma),
\delta_{2}^{\#}(\gamma_{1}, \gamma_{2}) = ((x-1)\gamma_{1} + (xy+1)\gamma_{2}, -(y+1)\gamma_{1} + (x+1)\gamma_{2}),
\delta_{3}^{\#}(\gamma_{1}, \gamma_{2}) = -(xy-1)\gamma_{1} + (x-1)\gamma_{2},
\delta_{4}^{\#}(\gamma) = 2(1+x+y+xy)\gamma.$$

In the above, we note that $(y-1)\gamma = -j\gamma j - \gamma$ and so on. Therefore, the module structure of $H^n(G, {}_{\psi}\Gamma)$ is represented by the form of the subquotient of the complex $\operatorname{Hom}_{\Lambda}(Y, {}_{\psi}\Gamma)$ as follows:

$$H^{n}(G, \psi \Gamma)$$

$$= \begin{cases}
\mathbb{Z}e & \text{for } n = 0 \\
\mathbb{Z}e/8 & \text{for } n \equiv 0 \mod 4, n \neq 0
\end{cases}$$

$$= \begin{cases}
\mathbb{Z}(i,0)/2 \oplus \mathbb{Z}(0,j)/2 \oplus \mathbb{Z}(ij,ij)/2 & \text{for } n \equiv 1 \mod 4 \\
\mathbb{Z}(e,0)/2 \oplus \mathbb{Z}(0,e)/2 \oplus \mathbb{Z}(0,i)/2 & \text{for } n \equiv 2 \mod 4 \\
\mathbb{Z}(i,j)/2 \oplus \mathbb{Z}(i,j)/2 & \text{for } n \equiv 3 \mod 4
\end{cases}$$

In the above, M/m denotes the quotient module M/mM for a \mathbb{Z} -module M and an integer m.

2.2. Product on $H^n(G, \psi \Gamma)$. First, we give an initial part of a chain transformation lifting the identity map on \mathbb{Z} between (Y, δ) in Section 2.1 and the standard complex (X_G, d_G) , that is, $v_i : Y_i \to (X_G)_i$ $(0 \le i \le 4)$ and $u_i : (X_G)_i \to Y_i$ (i = 0, 1) as follows:

$$\begin{split} v_0 &= \mathrm{id}; \\ v_1(1,0) &= [y], \quad v_1(0,1) = [x]; \\ v_2(1,0) &= [x|y] + [xy|x], \quad v_2(0,1) = [x|x] - [y|y]; \\ v_3(1) &= -[xy|x|y] - [x|y|y] + [x|x|x] - [xy|xy|x]; \\ v_4(1) &= -[N_G|xy|x|y] - [N_G - 1|x|y|y] + [N_G - 1|x|x|x] - [N_G - 1|xy|xy|x] \\ &\quad - [1|x|y|xy]; \end{split}$$

 $u_0 = id;$

$$u_1: [1] \mapsto (0,0), \quad [x] \mapsto (0,1), \quad [x^2] \mapsto (0,x+1), \quad [x^3] \mapsto (0,x^2+x+1),$$

 $[y] \mapsto (1,0), \quad [xy] \mapsto (x,1), \quad [x^2y] \mapsto (x^2,x+1),$
 $[x^3y] \mapsto (x^3,x^2+x+1).$

Next, we calculate the products of the generators A=(i,0), B=(0,j) and C=(ij,ij) of $H^1(G,_{\psi}\Gamma)$ using the above chain transformations. These are obtained by means of the following homomorphisms:

$$\Gamma^{2} \otimes \Gamma^{2} \xrightarrow{\alpha_{1}^{-1} \otimes \alpha_{1}^{-1}} \operatorname{Hom}_{A}(Y_{1}, {}_{\psi}\Gamma) \otimes \operatorname{Hom}_{A}(Y_{1}, {}_{\psi}\Gamma)$$

$$\xrightarrow{u_{1}^{\#} \otimes u_{1}^{\#}} \operatorname{Hom}_{A}((X_{G})_{1}, {}_{\psi}\Gamma) \otimes \operatorname{Hom}_{A}((X_{G})_{1}, {}_{\psi}\Gamma)$$

$$\xrightarrow{-} \operatorname{Hom}_{A}((X_{G})_{2}, {}_{\psi}\Gamma)$$

$$\xrightarrow{v_{2}^{\#}} \operatorname{Hom}_{A}(Y_{2}, {}_{\psi}\Gamma)$$

$$\xrightarrow{\alpha_{2}} \Gamma^{2},$$

where α_1 denotes the isomorphism $\operatorname{Hom}_{\Lambda}(Y_1, {}_{\psi}\Gamma) \xrightarrow{\sim} \Gamma^2$ stated in Section 2.1, and so on. Let $\Delta_{k,l}$ denote the diagonal approximation giving the cup product $\cup^{k,l}$. Since

$$u_{1} \otimes u_{1} \cdot \Delta_{1,1} \cdot v_{2}(1,0)$$

$$= u_{1} \otimes u_{1} \cdot \Delta_{1,1} ([x|y] + [xy|x])$$

$$= u_{1} \otimes u_{1} ([x] \otimes x[y] + [xy] \otimes xy[x])$$

$$= (0,1) \otimes x(1,0) + (x,1) \otimes xy(0,1),$$

$$u_{1} \otimes u_{1} \cdot \Delta_{1,1} \cdot v_{2}(0,1)$$

$$= (0,1) \otimes x(0,1) - (1,0) \otimes y(1,0)$$

and also

$$\alpha_1^{-1}(A)(z_1, z_2) = z_1 i, \quad \alpha_1^{-1}(B)(z_1, z_2) = z_2 j, \quad \alpha_1^{-1}(C)(z_1, z_2) = (z_1 + z_2) i j,$$

it follows that the following equations hold in $H^2(G, {}_{\psi}\Gamma)$.

$$A^2 = (0, e), \quad B^2 = (e, e), \quad C^2 = (e, 0),$$

 $AB = BA = (ij, 0), \quad AC = CA = (j, j), \quad BC = CB = (0, i).$

This shows that $H^2(G, \psi \Gamma)$ is generated by A, B and C. Note that $A^2 + B^2 + C^2 = 0$ in $H^2(G, \psi \Gamma)$.

Similarly, we have the following equations in $H^3(G, \psi\Gamma)$ by means of the cup product $\cup^{1,1}, \cup^{2,1}$ and v_3 stated above.

$$A^{3} = B^{3} = C^{3} = 0, \quad ABC = 0,$$

 $AB^{2} = AC^{2} = i, \quad A^{2}B = BC^{2} = j, \quad A^{2}C = B^{2}C = ij.$

This shows that $H^3(G, {}_{\psi}\Gamma)$ is also generated by A, B and C.

Moreover, we have the following equations in $H^4(G, \psi \Gamma)$ by means of the cup products $\cup^{1,1}, \cup^{2,1}, \cup^{3,1}$ and v_4 stated above.

$$A^2B^2(=A^2C^2=B^2C^2)=4D,$$

where D denotes e in $H^4(G, {}_{\psi}\Gamma)$. Since \mathbb{Z} is a G-direct summand of ${}_{\psi}\Gamma$ using the embedding map $\mathbb{Z} \to {}_{\psi}\Gamma$ by $1 \mapsto e$, we have the following monomorphism of the complete cohomology rings.

$$\hat{H}^*(G,\mathbb{Z}) := \bigoplus_{r \in \mathbb{Z}} \hat{H}^r(G,\mathbb{Z}) \to \hat{H}^*(G,{}_{\psi}\Gamma) := \bigoplus_{r \in \mathbb{Z}} \hat{H}^r(G,{}_{\psi}\Gamma).$$

Since D above which is of order 8 in $H^4(G, \psi \Gamma)$ is the image of an element of order 8 in $H^4(G, \mathbb{Z})$, invertible in $\hat{H}^*(G, \mathbb{Z})$, by the above map, it follows that D is also an invertible element in $\hat{H}^*(G, \psi \Gamma)$.

Thus we have the following theorem.

Theorem 1. The cohomology ring $H^*(G, {}_{\psi}\Gamma)$ is isomorphic to

$$\mathbb{Z}[A, B, C, D]/(2A, 2B, 2C, 8D, A^2 + B^2 + C^2, A^3, B^3, C^3, ABC, A^2B^2 - 4D),$$

where $\deg A = \deg B = \deg C = 1$ and $\deg D = 4$.

By referring the module structure of $H^n(G, {}_{\psi}\Gamma)$ in Section 2.1, we know that the monomorphism of the ordinary cohomology rings $H^*(G, \mathbb{Z}) \to H^*(G, {}_{\psi}\Gamma)$ is induced by the map $X \mapsto A^2, Y \mapsto B^2, Z \mapsto D$ where X and Y denote certain generators of $H^2(G, \mathbb{Z})$ and Z denotes the element of order 8 in $H^4(G, \mathbb{Z})$ stated above. Hence we have the following corollary as an immediate consequence of the theorem, while the fact is already known in [A, Section 13].

Corollary. The cohomology ring $H^*(G,\mathbb{Z})$ is isomorphic to

$$\mathbb{Z}[X, Y, Z]/(2X, 2Y, 8Z, X^2, Y^2, XY - 4Z),$$

where $\deg X = \deg Y = 2$ and $\deg Z = 4$.

§3. The ring homomorphism $F^*: H^*(\Gamma, \Gamma) \to H^*(G, \psi \Gamma)$

We use $W = (W_{p,q}; \delta', \delta'')$ stated in [S, Section 3.3] for a Γ^{e} -free complex of Γ giving $H^n(\Gamma, -)$. We remark that $W_{p,q} = \Gamma \otimes \Gamma$ for every p, q and

$$\delta': W_{1,0} \to W_{0,0}, \quad [\cdot] \mapsto -j[\cdot]j - [\cdot];$$

$$\delta'': W_{0,1} \to W_{0,0}, \quad [\cdot] \mapsto i[\cdot] - [\cdot]i,$$

where $[\cdot]$ denotes $1 \otimes 1 \in \Gamma \otimes \Gamma$. Then an initial part of a chain transformation between the standard Γ^{e} -projective resolution (X_{Γ}, d_{Γ}) and W above is as follows:

$$\begin{split} t_0 &= \mathrm{id} : (X_{\varGamma})_0 \to W_0 = W_{0,0}; \\ t_1 &: (X_{\varGamma})_1 \to W_1 = W_{0,1} \oplus W_{1,0}, \\ &[e] \mapsto (0,0), \quad [i] \mapsto ([\cdot],0), \quad [j] \mapsto (0,[\cdot]j), \quad [ij] \mapsto ([\cdot]j,i[\cdot]j). \end{split}$$

Applying the functor $\operatorname{Hom}_{\Gamma^{e}}(-,\Gamma)$, we have

$$t_1^{\#}: \operatorname{Hom}_{\Gamma^{\mathbf{e}}}(W_1, \Gamma) \to \operatorname{Hom}_{\Gamma^{\mathbf{e}}}((X_{\Gamma})_1, \Gamma).$$

Since the isomorphisms

$$\operatorname{Hom}_{\Gamma^{e}}(W_{1}, \Gamma) \xrightarrow{\sim} \operatorname{Hom}_{\Gamma^{e}}(W_{0,1}, \Gamma) \oplus \operatorname{Hom}_{\Gamma^{e}}(W_{1,0}, \Gamma) \xrightarrow{\sim} \Gamma^{0,1} \oplus \Gamma^{1,0}$$

hold under the notation in [S, Section 3], it follows that $t_1^{\#}$ above is represented as follows:

$$t_1^{\#}: \Gamma^{0,1} \oplus \Gamma^{1,0} \to \operatorname{Hom}_{\Gamma^{e}}((X_{\Gamma})_1, \Gamma),$$

$$(z_1, z_2) \mapsto ([e] \mapsto 0, \quad [i] \mapsto z_1, \quad [j] \mapsto z_2 j, \quad [ij] \mapsto z_1 j + i z_2 j).$$

Accordingly, $F^1: H^1(\Gamma, \Gamma) \to H^1(G, \psi\Gamma)$ stated in Section 1 is given on the cochain levels using $v_1^\#$ defined in Section 2.2 as follows:

$$\Gamma^{0,1} \oplus \Gamma^{1,0} \xrightarrow{t_1^{\#}} \operatorname{Hom}_{\Gamma^{e}}((X_{\Gamma})_{1}, \Gamma) \xrightarrow{\tilde{F}^{1}} \operatorname{Hom}_{\Lambda}((X_{G})_{1}, {}_{\psi}\Gamma)$$
$$\xrightarrow{v_1^{\#}} \operatorname{Hom}_{\Lambda}(Y_{1}, {}_{\psi}\Gamma) \xrightarrow{\alpha_{1}} \Gamma^{2},$$
$$(z_{1}, z_{2}) \mapsto (z_{2}, -z_{1}i).$$

In particular, for the generators $\chi = (0, i), \xi = (ij, 0)$ and $\omega = (j, ij) (\in \Gamma^{0,1} \oplus \Gamma^{1,0})$ with deg $\chi = \deg \xi = \deg \omega = 1$ of $H^*(\Gamma, \Gamma) = \mathbb{Z}[\chi, \xi, \omega]/(2\chi, 2\xi, 2\omega, \chi^2 + \xi^2 + \omega^2)$ (see [S, Section 3.4]), we have

$$F^{1}(\chi) = A, \quad F^{1}(\xi) = B, \quad F^{1}(\omega) = C \quad \text{in } H^{1}(G, {}_{\psi}\Gamma).$$

Thus we have the following theorem.

Theorem 2. The ring homomorphism $F^*: H^*(\Gamma, \Gamma) \to H^*(G, \psi\Gamma)$ is induced by $F^1(\chi) = A$, $F^1(\xi) = B$ and $F^1(\omega) = C$. Hence Ker F^* is the ideal generated by χ^3, ξ^3, ω^3 and $\chi \xi \omega$, and, of course, Im F^* coincides with the canonical image of $\mathbb{Z}[A, B, C]$ in $H^*(G, \psi\Gamma)$. In particular, F^n is an isomorphism for $0 \leq n \leq 2$ and the zero map for $n \geq 5$.

Acknowledgement

The author would like to express his gratitude to the referee for valuable comments and suggestions.

References

- [A] M. F. Atiyah, Characters and the cohomology of finite groups, Publ. Math. IHES 9 (1961), 23-64.
- [CE] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton. NJ., 1956.
- [M] S. MacLane, *Homology*, Springer-Verlag Berlin Heidelberg New York, 1975.
- [S] K. Sanada, On the Hochschild cohomology of crossed products, Comm. Algebra 21 (1993), 2727–2748.
- [T] C. B. Thomas, Characteristic classes and the cohomology of finite groups, Cambridge University Press, Cambridge, 1986.

Katsunori Sanada

Department of Mathematics, Science University of Tokyo

Wakamiya 26, Shinjuku-ku, Tokyo 162, Japan

E-mail: sanada@rs.kagu.sut.ac.jp