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Abstract. We will give a homomorphism of the cohomology rings H∗(Γ, Γ ) →
H∗(Q8, ψΓ ) induced by the ring homomorphism from the integral group alge-

bra Λ = ZQ8 of the quaternion group Q8 to the quaternion algebra Γ = Λe
for a central idempotent e in QQ8.
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Introduction

Let G be a finite group and e a central idempotent of QG. We set Λ = ZG
and Γ = ZGe. The ring homomorphism ϕ : Λ → Γ,w 7→ we derives a
homomorphism Fn : Hn (Γ,M) → Hn (G, ψM) for any left Γ e-module M ,
where ψM denotes M regarded as a G-module using the ring homomorphism
ψ : Λ → Γ e, x 7→ xe ⊗

(
x−1e

)◦ for x ∈ G. The map Fn induces the ho-
momorphism of the cohomology rings F ∗ : H∗(Γ, Γ ) → H∗(G, ψΓ ). In the
paper we determine F ∗ in the case G is the quaternion group Q8 and Γ is the
quaternion algebra over Z.

In Section 1, as preliminaries, we give the above Fn on the cochain level
explicitly for any finite group G following [CE] and [M]. Moreover we show that
Fn preserves the cup product, hence that Fn yields the ring homomorphism
F ∗. In Section 2 we give the ring structure of H∗ (Q8, ψΓ ) (Theorem 1).
In fact, we define a transformation map between the well known periodic
resolution of period 4 and the standard resolution for Q8, and compute the
cup products of the generators of H∗ (Q8, ψΓ ). In Section 3, we determine the
ring homomorphism F ∗ by investigating the images under F 1 of the generators
χ, ξ and ω of H∗(Γ, Γ ) = Z[χ, ξ, ω]/

(
2χ, 2ξ, 2ω, χ2 + ξ2 + ω2

)
(Theorem 2).
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§1. Preliminaries

Let G be a finite group and e a central idempotent of the group algebra
QG. We set Λ = ZG and Γ = ZGe in this section. Then we have a ring
homomorphism ϕ : Λ → Γ by ϕ(w) = we for w ∈ Λ. Let M be a left Γ e-
module, which is regarded as a left Λe-module using ϕe : Λe → Γ e, hence it is
denoted by ϕeM . Then we have a homomorphism

Hn(Γ,M) → Hn(Λ, ϕeM)

for n > 0 (see [CE, Chapter IX, Section 5]). This is induced by the homomor-
phisms

HomΓ e ((XΓ )n,M)
g#

n−→ HomΓ e (Γ e ⊗Λe (XΛ)n,M) ∼−→ HomΛe ((XΛ)n, ϕeM)

by means of the standard complex XΛ and XΓ of Λ and Γ respectively, where
the above g#

n is given by

gn : Γ e ⊗Λe (XΛ)n → (XΓ )n,

(γ ⊗ γ′◦) ⊗Λe λ0[λ1, . . . , λn]λn+1 7→ γ(λ0e)[λ1e, . . . , λne](λn+1e)γ′.

Unless otherwise stated, in the rest of the paper, XΛ and XΓ denotes the
standard complex of Λ and Γ respectively.

Next, we have an isomorphism

Hn(Λ, N) ∼−→ Hn(G, ηN) := Extn
Λ(Z, ηN)

for a left Λe-module N (see [M, Chapter X, Theorem 5.5]). In the above, ηN
denotes N regarded as a G-module using the ring homomorphism

η : Λ → Λe, x 7→ x ⊗
(
x−1

)◦
for x ∈ G.

The above map is induced by the homomorphism

HomΛe((XΛ)n, N) → HomΛ((XG)n, ηN),

f 7→
(
x0[x1| · · · |xn] 7→ f

(
x0[x1, . . . , xn](x0x1 · · ·xn)−1

))
for xi ∈ G,

where (XG)n denotes (XΛ)n ⊗Λ Z and the element x0[x1| · · · |xn] denotes
x0[x1, . . . , xn] ⊗Λ 1 for xi ∈ G.

Therefore, for any left Γ e-module M , we have the homomorphism of coho-
mologies

Fn : Hn(Γ,M) → Hn(G, ψM)
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given by

F̃n : HomΓ e ((XΓ )n ,M) → HomΛ ((XG)n , ψM) ,

F̃n(f)(x0[x1| · · · |xn]) = f
(
x0e[x1e, . . . , xne] (x0 · · ·xn)−1

e
)

where ψM denotes M regarded as a G-module using the ring homomorphism
ψ = ϕe ◦ η : Λ → Λe → Γ e, x 7→ xe ⊗

(
x−1e

)◦ for x ∈ G.
Furthermore Fn preserves the cup products, that is, the following diagram

is commutative, which is shown by direct calculation on the cochain level:

Hn(Γ,M) ⊗ Hn′
(Γ,M ′) F n⊗F n′

−−−−−→ Hn(G, ψM) ⊗ Hn′
(G, ψM ′)

∪
y y∪Γ

Hn+n′
(Γ,M ⊗Γ M ′) −−−−→

F n+n′
Hn+n′

(G, ψ(M ⊗Γ M ′)) .

In the above, ∪Γ denotes the map induced by the ordinary cup product
Hn(G, ψM)⊗Hn′

(G, ψM ′) → Hn+n′
(G, ψM⊗ψM ′) and the left Λ-homomor-

phism ψM ⊗ ψM ′ → ψ(M ⊗Γ M ′) given by (a ⊗ a′ 7→ a ⊗Γ a′). Hence Fn

yields the ring homomorphism F ∗ : H∗(Γ, Γ ) → H∗(G, ψΓ ), where we set
H∗(−,−) =

⊕
n>0 Hn(−,−).

§2. H∗(Q8, ψΓ )

Let G denote the quaternion group Q8 = 〈x, y|x4 = 1, x2 = y2, yxy−1 =
x−1〉. We set e = (1−x2)/2 ∈ QG. Then e is a central idempotent of QG and
QGe is the quaternion algebra over Q, that is, QGe = Qe ⊕ Qi ⊕ Qj ⊕ Qij
where we set i = xe and j = ye. In the following, we set Λ = ZG and
Γ = Λe = Ze ⊕ Zi ⊕ Zj ⊕ Zij the quaternion algebra over Z. Let ψΓ denote
Γ regarded as a G-module using the ring homomorphisms ψ : Λ → Γ e;x 7→
−i ⊗ i◦, y 7→ −j ⊗ j◦ as in Section 1.

We will determine the cohomology ring H∗(G, ψΓ ) using the fact that the
integral complete cohomology ring Ĥ∗(G, Z) has an invertible element of de-
gree 4 (and of order 8) (cf. [CE, Chapter XII, Sections 7 and 11]).

2.1. Module structure. The following periodic Λ-free resolution of Z of
period 4 is well known (see [CE, Chapter XII, Section 7] or [T, Chapter 3,
Periodicity]):

(Y, δ) : · · · → Λ2 δ1−→ Λ
δ4−→ Λ

δ3−→ Λ2 δ2−→ Λ2 δ1−→ Λ
ε−→ Z → 0,

δ1(z1, z2) = z1(y − 1) + z2(x − 1),

δ2(z1, z2) = (z1(x − 1) − z2(y + 1), z1(xy + 1) + z2(x + 1)) ,
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δ3(z) = (−z(xy − 1), z(x − 1)),

δ4(z) = zNG,

where Λ2 denotes the direct sum Λ ⊕ Λ and NG denotes
∑

w∈G w (∈ Λ). Ap-
plying the functor HomΛ(−, ψΓ ) on the sequence above, we have the following
complex which gives Hn(G, ψΓ ), where we identify HomΛ(Y0, ψΓ ) with Γ ,
HomΛ(Y1, ψΓ ) with Γ 2 := Γ ⊕ Γ and so on:

(
HomΛ(Y, ψΓ ), δ#

)
: · · · ← Γ

δ#
4←− Γ

δ#
3←− Γ 2 δ#

2←− Γ 2 δ#
1←− Γ ← 0,

δ#
1 (γ) = ((y − 1)γ, (x − 1)γ),

δ#
2 (γ1, γ2) = ((x − 1)γ1 + (xy + 1)γ2,−(y + 1)γ1 + (x + 1)γ2),

δ#
3 (γ1, γ2) = −(xy − 1)γ1 + (x − 1)γ2,

δ#
4 (γ) = 2(1 + x + y + xy)γ.

In the above, we note that (y − 1)γ = −jγj − γ and so on. Therefore, the
module structure of Hn(G, ψΓ ) is represented by the form of the subquotient
of the complex HomΛ(Y, ψΓ ) as follows:

Hn(G, ψΓ )

=



Ze for n = 0
Ze/8 for n ≡ 0 mod 4, n 6= 0
Z(i, 0)/2 ⊕ Z(0, j)/2 ⊕ Z(ij, ij)/2 for n ≡ 1 mod 4
Z(e, 0)/2 ⊕ Z(0, e)/2 ⊕ Z(0, i)/2

⊕ Z(j, j)/2 ⊕ Z(ij, 0)/2 for n ≡ 2 mod 4
Zi/2 ⊕ Zj/2 ⊕ Zij/2 for n ≡ 3 mod 4.

In the above, M/m denotes the quotient module M/mM for a Z-module M
and an integer m.

2.2. Product on Hn(G, ψΓ ). First, we give an initial part of a chain trans-
formation lifting the identity map on Z between (Y, δ) in Section 2.1 and
the standard complex (XG, dG), that is, vi : Yi → (XG)i (0 6 i 6 4) and
ui : (XG)i → Yi (i = 0, 1) as follows:

v0 = id;

v1(1, 0) = [y], v1(0, 1) = [x];

v2(1, 0) = [x|y] + [xy|x], v2(0, 1) = [x|x] − [y|y];

v3(1) = −[xy|x|y] − [x|y|y] + [x|x|x] − [xy|xy|x];

v4(1) = −[NG|xy|x|y] − [NG − 1|x|y|y] + [NG − 1|x|x|x] − [NG − 1|xy|xy|x]

− [1|x|y|xy];
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u0 = id;

u1 : [1] 7→ (0, 0), [x] 7→ (0, 1), [x2] 7→ (0, x + 1), [x3] 7→ (0, x2 + x + 1),

[y] 7→ (1, 0), [xy] 7→ (x, 1), [x2y] 7→ (x2, x + 1),

[x3y] 7→ (x3, x2 + x + 1).

Next, we calculate the products of the generators A = (i, 0), B = (0, j) and
C = (ij, ij) of H1(G, ψΓ ) using the above chain transformations. These are
obtained by means of the following homomorphisms:

Γ 2 ⊗ Γ 2 α−1
1 ⊗α−1

1−−−−−−→ HomΛ(Y1, ψΓ ) ⊗ HomΛ(Y1, ψΓ )
u#

1 ⊗u#
1−−−−−→ HomΛ ((XG)1, ψΓ ) ⊗ HomΛ ((XG)1, ψΓ )

∪1,1

−−−−→ HomΛ ((XG)2, ψΓ )
v#
2−−−−→ HomΛ(Y2, ψΓ )

α2−−−−→ Γ 2,

where α1 denotes the isomorphism HomΛ (Y1, ψΓ ) ∼→ Γ 2 stated in Section 2.1,
and so on. Let ∆k,l denote the diagonal approximation giving the cup product
∪k,l. Since

u1 ⊗ u1 · ∆1,1 · v2(1, 0)

= u1 ⊗ u1 · ∆1,1 ([x|y] + [xy|x])

= u1 ⊗ u1 ([x] ⊗ x[y] + [xy] ⊗ xy[x])

= (0, 1) ⊗ x(1, 0) + (x, 1) ⊗ xy(0, 1),

u1 ⊗ u1 · ∆1,1 · v2(0, 1)

= (0, 1) ⊗ x(0, 1) − (1, 0) ⊗ y(1, 0)

and also

α−1
1 (A)(z1, z2) = z1i, α−1

1 (B)(z1, z2) = z2j, α−1
1 (C)(z1, z2) = (z1 + z2)ij,

it follows that the following equations hold in H2(G, ψΓ ).

A2 = (0, e), B2 = (e, e), C2 = (e, 0),

AB = BA = (ij, 0), AC = CA = (j, j), BC = CB = (0, i).

This shows that H2(G, ψΓ ) is generated by A,B and C. Note that A2 +B2 +
C2 = 0 in H2(G, ψΓ ).
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Similarly, we have the following equations in H3(G, ψΓ ) by means of the
cup product ∪1,1,∪2,1 and v3 stated above.

A3 = B3 = C3 = 0, ABC = 0,

AB2 = AC2 = i, A2B = BC2 = j, A2C = B2C = ij.

This shows that H3(G, ψΓ ) is also generated by A,B and C.
Moreover, we have the following equations in H4(G, ψΓ ) by means of the

cup products ∪1,1,∪2,1,∪3,1 and v4 stated above.

A2B2(= A2C2 = B2C2) = 4D,

where D denotes e in H4(G, ψΓ ). Since Z is a G-direct summand of ψΓ using
the embedding map Z → ψΓ by 1 7→ e, we have the following monomorphism
of the complete cohomology rings.

Ĥ∗(G, Z) :=
⊕
r∈Z

Ĥr(G, Z) → Ĥ∗(G, ψΓ ) :=
⊕
r∈Z

Ĥr(G, ψΓ ).

Since D above which is of order 8 in H4(G, ψΓ ) is the image of an element of
order 8 in H4(G, Z), invertible in Ĥ∗(G, Z), by the above map, it follows that
D is also an invertible element in Ĥ∗(G, ψΓ ).

Thus we have the following theorem.

Theorem 1. The cohomology ring H∗(G, ψΓ ) is isomorphic to

Z[A,B,C,D]/(2A, 2B, 2C, 8D,A2 + B2 + C2, A3, B3, C3, ABC,A2B2 − 4D),

where deg A = deg B = deg C = 1 and deg D = 4.

By referring the module structure of Hn(G, ψΓ ) in Section 2.1, we know
that the monomorphism of the ordinary cohomology rings H∗(G, Z) → H∗(G,

ψΓ ) is induced by the map X 7→ A2, Y 7→ B2, Z 7→ D where X and Y
denote certain generators of H2(G, Z) and Z denotes the element of order 8 in
H4(G, Z) stated above. Hence we have the following corollary as an immediate
consequence of the theorem, while the fact is already known in [A, Section 13].

Corollary. The cohomology ring H∗(G, Z) is isomorphic to

Z[X,Y, Z]/(2X, 2Y, 8Z,X2, Y 2, XY − 4Z),

where deg X = deg Y = 2 and deg Z = 4.
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§3. The ring homomorphism F ∗ : H∗(Γ, Γ ) → H∗(G, ψΓ )

We use W = (Wp,q; δ′, δ′′) stated in [S, Section 3.3] for a Γ e-free complex
of Γ giving Hn(Γ,−). We remark that Wp,q = Γ ⊗ Γ for every p, q and

δ′ : W1,0 → W0,0, [·] 7→ −j[·]j − [·];
δ′′ : W0,1 → W0,0, [·] 7→ i[·] − [·]i,

where [·] denotes 1⊗1 ∈ Γ ⊗Γ . Then an initial part of a chain transformation
between the standard Γ e-projective resolution (XΓ , dΓ ) and W above is as
follows:

t0 = id : (XΓ )0 → W0 = W0,0;

t1 : (XΓ )1 → W1 = W0,1 ⊕ W1,0,

[e] 7→ (0, 0), [i] 7→ ([·], 0), [j] 7→ (0, [·]j), [ij] 7→ ([·]j, i[·]j).
Applying the functor HomΓ e(−, Γ ), we have

t#1 : HomΓ e(W1, Γ ) → HomΓ e((XΓ )1, Γ ).

Since the isomorphisms

HomΓ e(W1, Γ ) ∼→ HomΓ e(W0,1, Γ ) ⊕ HomΓ e(W1,0, Γ ) ∼→ Γ 0,1 ⊕ Γ 1,0

hold under the notation in [S, Section 3], it follows that t#1 above is represented
as follows:

t#1 :Γ 0,1 ⊕ Γ 1,0 → HomΓ e((XΓ )1, Γ ),

(z1, z2) 7→ ([e] 7→ 0, [i] 7→ z1, [j] 7→ z2j, [ij] 7→ z1j + iz2j) .

Accordingly, F 1 : H1(Γ, Γ ) → H1(G, ψΓ ) stated in Section 1 is given on the
cochain levels using v#

1 defined in Section 2.2 as follows:

Γ 0,1 ⊕ Γ 1,0 t#1−→ HomΓ e((XΓ )1, Γ ) F̃ 1

−→ HomΛ((XG)1, ψΓ )

v#
1−→ HomΛ(Y1, ψΓ ) α1−→ Γ 2,

(z1, z2) 7→ (z2,−z1i).

In particular, for the generators χ = (0, i), ξ = (ij, 0) and ω = (j, ij)(∈ Γ 0,1 ⊕
Γ 1,0) with deg χ = deg ξ = deg ω = 1 of H∗(Γ, Γ ) = Z[χ, ξ, ω]/(2χ, 2ξ, 2ω, χ2+
ξ2 + ω2) (see [S, Section 3.4]), we have

F 1(χ) = A, F 1(ξ) = B, F 1(ω) = C in H1(G, ψΓ ).

Thus we have the following theorem.

Theorem 2. The ring homomorphism F ∗ : H∗(Γ, Γ ) → H∗(G, ψΓ ) is in-
duced by F 1(χ) = A, F 1(ξ) = B and F 1(ω) = C. Hence Ker F ∗ is the
ideal generated by χ3, ξ3, ω3 and χξω, and, of course, Im F ∗ coincides with
the canonical image of Z[A,B,C] in H∗(G, ψΓ ). In particular, Fn is an iso-
morphism for 0 6 n 6 2 and the zero map for n > 5.
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