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Abstract. Loading vectors and loading coefficients of the parameters of a 3m

factorial design and the characteristic vector of its information matrix are intro-
duced. Specific properties of an orthogonal design derived from three-symbol
orthogonal array of strength two are discussed. Orthogonal 18-run 34 facto-
rial designs obtained respectively from the representatives of twelve isomorphic
classes are reviewed and two designs among them are recommended for use from
the practical point of view.
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§1. 3m factorial designs

Consider a 3m factorial experiment with m factors, F (1), F (2), . . . , and
F (m), each at three levels 0, 1 and 2. Let (j1, j2, . . . , jm) be an assembly or a
treatment combination of m factors each at three levels jp = 0, 1 or 2 for every
p = 1, 2, . . . ,m. Let y(j1, j2, . . . , jm) and η(j1, j2, . . . , jm) be the corresponding
observation and the expectation of the assembly.

Let

η(Z) =



η(0, 0, . . . , 0, 0)
η(0, 0, . . . , 0, 1)
η(0, 0, . . . , 0, 2)
η(0, 0, . . . , 1, 0)

...
η(2, 2, . . . , 2, 0)
η(2, 2, . . . , 2, 1)
η(2, 2, . . . , 2, 2)


and Θ(Z) =



θ(0, 0, . . . , 0, 0)
θ(0, 0, . . . , 0, 1)
θ(0, 0, . . . , 0, 2)
θ(0, 0, . . . , 1, 0)

...
θ(2, 2, . . . , 2, 0)
θ(2, 2, . . . , 2, 1)
θ(2, 2, . . . , 2, 2)


(1.1)
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be the vector of the expectation of possible 3m assemblies and that of factorial
effects based on the orthogonal polynomial models. They are linked to each
other by

Θ(Z) =
1

3m
D

′

(m)η(Z),(1.2)

where D(m) = D ⊗ D ⊗ · · · ⊗ D is the m-times Kronecker products of the
matrix

D =

 d00 d01 d02

d10 d11 d12

d20 d21 d22

 =
[
d0, d1, d2

]
=


1 −

√
3
2

1√
2

1 0 −
√

2

1
√

3
2

1√
2

 .(1.3)

Of course, d
′
0 = j

′
3 = (1, 1, 1), and d0, d1 and d2 satisfy d

′
idj = 3δij for

Kronecker δij , i, j = 0, 1, 2.
We may note that the definition of factorial effects here is designed to keep

homoscedastic property among the BLUE’s obtained under the complete 3m

factorial design in order to compare the effects by their location parameters
only.

Solving (1.2), we have

η(Z) = D(m)Θ(Z), or(1.4)

η(j1, j2, . . . , jm) =
∑

ip=0,1,2
p=1,2,...,m

dj1i1dj2i2 · · · djmimθ(i1, i2, . . . , im).

Let U r = {p|ip = r} be a subset of Ω = {1, 2, . . . ,m} with a superscript r

in which the arguments ip of θ(i1, i2, . . . , im) are equal to r for r = 0, 1 and
2. Then the factorial effect θ(i1, i2, . . . , im) can be expressed alternatively as
θ(U1U2) since U0 = Ω− U1 − U2. If both U1 and U2 are null, the parameter
or factorial effect θ(0, 0, . . . , 0, 0) is called the general mean and is denoted al-
ternatively by θ(φ). If |U1 ∪U2| = 1 and U1 ∪U2 = {p}, then the parameters
θ(0, 0, . . . , 1, . . . , 0) and θ(0, 0, . . . , 2, . . . , 0) both having single nonzero argu-
ment in the pth position are called the linear and the quadratic main effects of
the factor F (p), respectively. They may be denoted alternatively by θ(p1) and
θ(p2), respectively. If |U1 ∪U2| = 2 and U1 ∪U2 = {p, q}, then the parameter
θ(i1, i2, . . . , im) having two nonzero arguments ip and iq is called the linear
× linear , the linear × quadratic, the quadratic × linear or the quadratic ×
quadratic two-factor interactions of the factors F (p) and F (q) according as
(ip, iq) is equal to (1,1), (1,2), (2,1) or (2,2), respectively. Those two-factor
interactions may be denoted alternatively by θ(pipqiq) for ip, iq = 1 or 2, re-
spectively. In general, if |U1 ∪ U2| = k, then the parameter θ(i1, i2, . . . , im)



18-RUN ORTHOGONAL 34 FACTORIAL DESIGNS 115

having k nonzero arguments with respect to k factors is called the k-factor
interaction and is expressed as θ(U1U2) by indicating the sets of arguments
U1 and U2.

Let T be a fraction of 3m factorial design with m factors composed of
n assemblies (j(α)

1 , j
(α)
2 , . . . , j

(α)
m ); j

(α)
p = 0, 1 or 2, p = 1, 2, . . . ,m, α =

1, 2, . . . , n; and suppose y(T ) be the corresponding vector of observations, i.e.,

T =



j
(1)
1 , j

(1)
2 , . . . , j

(1)
m

...
j
(α)
1 ,j

(α)
2 , . . . ,j

(α)
m

...
j
(n)
1 , j

(n)
2 , . . . , j

(n)
m


and y(T ) =



y(j(1)
1 , j

(1)
2 , . . . , j

(1)
m )

...
y(j(α)

1 ,j
(α)
2 , . . . ,j

(α)
m )

...
y(j(n)

1 , j
(n)
2 , . . . , j

(n)
m )


.(1.5)

The vector of observations of the design T is expressed as

y(T ) = E(T )Θ + e(T )(1.6)

in terms of E(T ), Θ, and e(T ), where Θ is the parameter vector obtained
by rearranging Θ(Z) in a natural order of the number of factors and levels
concerned, E(T ) is the design matrix whose element in the row and the column
correspond respectively to αth observation and the effect θ(i1, i2, . . . , im) is
given by

e(α; (i1, i2, . . . , im)) = d
j
(α)
1 i1

d
j
(α)
2 i2

. . . d
j
(α)
m im

(1.7)

and e(T ) is the error vector with the usual assumption that the components
are distributed uncorrelatedly with (0, σ2).

Since dj0 = 1 for every j,

e(α; φ) = 1, for every α,(1.8)

e(α; pip) = d
j
(α)
p ip

, for p ∈ Ω and ip = 1, 2,

e(α; pipqiq) = d
j
(α)
p ip

d
j
(α)
q iq

, for p 6= q ∈ Ω and ip, iq = 1, 2,

and in general,

e(α; U1U2) =
∏

p∈U1

d
j
(α)
p 1

∏
q∈U2

d
j
(α)
q 2

.

The column vector of the design matrix E(T ) corresponding to the factorial
effect θ(i1, i2, . . . , im) is expressed as:

d(i1, i2, . . . , im) = (d
j
(1)
1 i1

d
j
(1)
2 i2

· · · d
j
(1)
m im

, . . . ,(1.9)

d
j
(α)
1 i1

d
j
(α)
2 i2

· · · d
j
(α)
m im

, . . . , d
j
(n)
1 i1

d
j
(n)
2 i2

· · · d
j
(n)
m im

)′.
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Since dj0 = 1 for every j, the above expression may be simplified to a vector
of the products of dji’s with nonzero i’s only.

In particular,

d(φ) = (1, 1, . . . , 1)
′
, and(1.10)

d(pip) = (d
j
(1)
p ip

, d
j
(2)
p ip

, . . . , d
j
(α)
p ip

, . . . , d
j
(n)
p ip

)
′

for p ∈ Ω and ip = 1, 2.

In general,

d(U1U2) =
( ∏

p∈U1

d
j
(1)
p 1

∏
q∈U2

d
j
(1)
q 2

,
∏

p∈U1

d
j
(2)
p 1

∏
q∈U2

d
j
(2)
q 2

(1.11)

, . . . ,
∏

p∈U1

d
j
(α)
p 1

∏
q∈U2

d
j
(α)
q 2

, . . . ,
∏

p∈U1

d
j
(n)
p 1

∏
q∈U2

d
j
(n)
q 2

)′

.

Definition 1. For a fractional 3m factorial design T , the vector
d(i1, i2, . . . , im) or d(U1U2) is called the loading vector of a factorial effect
θ(i1, i2, . . . , im) or θ(U1U2).

Using loading vectors of 2m main effects given in (1.10), every loading
vector can be obtained by the Schur products (∗) of related loading vectors
for main effects as is given by the formula (1.11). For a simplest example,
d(pipqiq) = d(pip) ∗ d(qiq).

Let Sp[x] be the spur of a vector x being defined by the sum of its compo-
nents.

Definition 2. The spur Sp[d(U1U2)] of the loading vector of a factorial effect
θ(U1U2), denoted by γ(U1U2), is called the loading coefficient of θ(U1U2) of
the design T .

In particular,

γ(φ) = n,(1.12)

γ(pip) =
n∑

α=1

d
j
(α)
p ip

for p ∈ Ω and ip = 1, 2,

γ(pipqiq) =
n∑

α=1

d
j
(α)
p ip

d
j
(α)
q iq

for p 6= q ∈ Ω and ip, iq = 1, 2,

and, in general,

γ(U1U2) =
n∑

α=1

∏
p∈U1

d
j
(α)
p 1

∏
q∈U2

d
j
(α)
q 2

.(1.13)
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The normal equation for estimating Θ is given by

M(T )Θ = E′(T )y(T )(1.14)

where M(T ) = E′(T )E(T ) is the information matrix of a design T .
The element ε(i1i2 . . . im, k1k2 . . . km) of the information matrix in the θ(i1, i2, . . . , im)

row and the θ(k1, k2, . . . , km) column is given by

ε(i1i2 . . . im, k1k2 . . . km)(1.15)

=
n∑

α=1

d
j
(α)
1 i1

d
j
(α)
2 i2

· · · d
j
(α)
m im

d
j
(α)
1 k1

d
j
(α)
2 k2

· · · d
j
(α)
m km

=
n∑

α=1

∏
p∈Ω

d
j
(α)
p ip

d
j
(α)
p kp

.

The following is a modification of the lemma due to Kuwada [3].

Lemma 1. Every product djidjk of the elements of the matrix D satisfy the
following irrespective of the value j = 0, 1, 2, i.e.,

dj0dj0 = dj0 = 1, dj0dj1 = dj1dj0 = dj1, dj0dj2 = dj2dj0 = dj2,(1.16)

dj1dj1 = 1 +
√

1
2
dj2, dj2dj2 = 1 −

√
1
2
dj2, dj1dj2 =

√
1
2
dj1.

Let Kxy = (Ux ∩ V y) ∪ (Uy ∩ V x) with cardinality |Kxy| = kxy for every
pair of x ≤ y = 0, 1, and 2. Then, we have:

Theorem 2. The (θ(U1U2), θ(V 1V 2)) element of the information matrix
M(T ) of a fractional 3m factorial design T is given by

ε(U1U2, V 1V 2) =
n∑

α=1

∏
p∈K01

d
j
(α)
p 1

∏
q∈K02

d
j
(α)
q 2

(1.17)

·
∏

r∈K11

(
1 +

√
1
2
d

j
(α)
r 2

)
·

∏
s∈K22

(
1 −

√
1
2
d

j
(α)
s 2

)
·

∏
t∈K12

(√
1
2
d

j
(α)
t 1

)
.

Definition 3. The first row Γ(T ) of the information matrix M(T ) which is

composed of all loading coefficients γ(U1U2)’s arranged in a natural order of
θ(U1U2) is called the characteristic vector of M(T ) or the design T .

Theorem 3. The information matrix M(T ) of the design T is completely
determined by its characteristic vector Γ(T ).
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Proof. The formula (1.17) shows that every component of M(T ) is a linear
combination of the terms each composed of the sum of the products of at most
m d

j
(α)
p i

’s with respect to α, i.e., the loading coefficients.
In particular,

ε(φ, φ) = n.

ε(φ, pip) = γ(pip) for p ∈ Ω and ip = 1, 2.

ε(φ, pipqiq) = γ(pipqiq) for p 6= q ∈ Ω and ip, iq = 1, 2.

ε(φ,U1U2) = γ(U1U2).

ε(p1, p1) = n +
√

1
2
γ(p2), ε(p1, p2) =

√
1
2
γ(p1), and

ε(p2, p2) = n −
√

1
2
γ(p2), for p ∈ Ω.

ε(pip , qiq) = γ(pipqiq) for p 6= q ∈ Ω and ip, iq = 1, 2.

ε(p1, p1qiq) = γ(qiq) +
√

1
2
γ(p2qiq), ε(p1, p2qiq) =

√
1
2
γ(p1qiq), and

ε(p2, p2qiq) = γ(qiq) −
√

1
2
γ(p2qiq), for p 6= q ∈ Ω and iq = 1, 2.

ε(pip , qiqrir) = γ(pipqiqrir) for q 6= r, p 6= q, r ∈ Ω and ip, iq, ir = 1, 2.

ε(p1q1, p1q1) = n +
√

1
2

(
γ(p2) + γ(q2)

)
+

1
2
γ(p2q2),

ε(p1q1, p1q2) =
√

1
2
γ(q1) +

1
2
γ(p2q1),

ε(p1q1, p2q2) =
1
2
γ(p1q1),

ε(p1q2, p1q2) = n +
√

1
2

(
γ(p2) − γ(q2)

)
−1

2
γ(p2q2),

ε(p1q2, p2q1) =
1
2
γ(p1q1),

ε(p1q2, p2q2) =
√

1
2
γ(p1) − 1

2
γ(p1q2), and

ε(p2q2, p2q2) = n −
√

1
2

(
γ(p2) + γ(q2)

)
+

1
2
γ(p2q2), for p 6= q ∈ Ω.

ε(p1qiq , p1rir) = γ(qiqrir) +
√

1
2
γ(p2qiqrir),

ε(p1qiq , p2rir) =
√

1
2
γ(p1qiqrir), and

ε(p2qiq , p2rir) = γ(qiqrir) −
√

1
2
γ(p2qiqrir),

for p 6= q, r 6= p, q ∈ Ω and iq, ir = 1, 2.
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ε(pipqiq , rirsis) = γ(pipqiqrirsis) for p 6= q, r 6= p, q, s 6= p, q, r ∈ Ω

and ip, iq, ir, is = 1, 2.

§2. Normal equation of a fractional 3m factorial design

The first member of the normal equation (1.14) is given by

nθ(φ) +
m∑

k=1

∑
|V 1∪V 2|=k

γ(V 1V 2)θ(V 1V 2) = d′(φ)y(T ),(2.1)

or =
n∑

α=1

y(j(α)
1 , j

(α)
2 , . . . , j(α)

m ).

In some sense, the left hand member of equation (2.1) may be called the
defining formula. This is an extension of the so-called defining relation intro-
duced by Box and Hunter [1,2] in the case of 2m factorial designs.

Those members corresponding to the main effects θ(p1) and θ(p2), for p ∈ Ω,
are given by

γ(p1)θ(φ) +
(
n +

√
1
2
γ(p2)

)
θ(p1) +

√
1
2
γ(p1)θ(p2)(2.2)

+
∑
q 6=p

(
γ(p1q1)θ(q1) + γ(p1q2)θ(q2)

)

+
m∑

k=2

∑
|V 1∪V 2|=k

ε(p1, V 1V 2)θ(V 1V 2) = d
′
(p1)y(T ),

or =
n∑

α=1

d
j
(α)
p 1

y(j(α)
1 , j

(α)
2 , . . . , j(α)

m ) for θ(p1), and

γ(p2)θ(φ) +
√

1
2
γ(p1)θ(p1) +

(
n −

√
1
2
γ(p2)

)
θ(p2)(2.3)

+
∑
q 6=p

(
γ(p2q1)θ(q1) + γ(p2q2)θ(q2)

)

+
m∑

k=2

∑
|V 1∪V 2|=k

ε(p2, V 1V 2)θ(V 1V 2) = d
′
(p2)y(T ),

or =
n∑

α=1

d
j
(α)
p 2

y(j(α)
1 , j

(α)
2 , . . . , j(α)

m ) for θ(p2).

The member corresponding to θ(pipqiq), for p 6= q ∈ Ω, is given by

γ(pipqiq)θ(φ) +
∑
r

∑
ir=1,2

ε(pipqiq , rir)θ(rir)(2.4)
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+
∑
r 6=s

∑
ir,is=1,2

ε(pipqiq , rirsis)θ(rirsis)

+
m∑

k=3

∑
|V 1∪V 2|=k

ε(pipqiq , V 1V 2)θ(V 1V 2) = d
′
(pipqiq)y(T ).

In general, the member corresponding to θ(U1U2), which may be called
principal equation of estimating the parameter, is given by

m∑
k=0

∑
|V 1∪V 2|=k

ε(U1U2, V 1V 2)θ(V 1V 2) = d
′
(U1U2)y(T ),(2.5)

or =
n∑

α=1

∏
p∈U1

d
j
(α)
p 1

∏
q∈U2

d
j
(α)
q 2

y(j(α)
1 , j

(α)
2 , . . . , j(α)

m ).

Those left hand members of (2.2), (2.3), (2.4) and, in general, (2.5) may be
called the derived formulas of the design.

§3. Designs derived from three-symbol orthogonal arrays
of strength 2

Let T in (1.5) be a design derived from a three-symbol orthogonal array
of strength 2, m constraints and index λ, denoted by 3-OA(2, m, λ), having
n = 9λ runs. Then, since

∑n
α=1 d

j
(α)
p ip

= 0 and also
∑n

α=1 d
j
(α)
p ip

d
j
(α)
q iq

= 0

hold true for all p 6= q ∈ Ω and ip, iq = 1, 2, all loading coefficients γ(pip) of 2m

main effects and those γ(pipqiq) of 2m(m − 1) two-factor interactions vanish
simultaneously.

In such a circumstance, we have the following:

ε(φ, φ) = n, ε(φ, pip) = ε(φ, pipqiq) = 0, for p 6= q ∈ Ω and ip, iq = 1, 2.

ε(p1, p1) = ε(p2, p2) = n and ε(p1, p2) = ε(p2, p1) = 0, for p ∈ Ω.

ε(pip , qiq) = 0 for p 6= q ∈ Ω and ip, iq = 1, 2.

ε(p1, p1qiq) = ε(p1, p2qiq) = ε(p2, p1qiq) = ε(p2, p2qiq) = 0

for p 6= q ∈ Ω and iq = 1, 2.

ε(pip , qiqrir) = γ(pipqiqrir) for q 6= r, p 6= q, r ∈ Ω and ip, iq, ir = 1, 2.

ε(p1q1, p1q1) = ε(p1q2, p1q2) = ε(p2q2, p2q2) = n, and

ε(p1q1, p1q2) = ε(p1q1, p2q1) = ε(p1q1, p2q2) = ε(p1q2, p1q1) = ε(p1q2, p2q1)

= ε(p1q2, p2q2) = ε(p2q2, p1q1) = ε(p2q2, p1q2) = ε(p2q2, p2q1) = 0,

for p 6= q ∈ Ω.

ε(p1qiq , p1rir) =
√

1
2
γ(p2qiqrir),
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ε(p2qiq , p2rir) = −
√

1
2
γ(p2qiqrir), and

ε(p1qiq , p2rir) =
√

1
2
γ(p1qiqrir),

for p 6= q, r 6= p, q ∈ Ω and iq, ir = 1, 2.

ε(pipqiq , rirsis) = γ(pipqiqrirsis)

for p 6= q, r 6= p, q, s 6= r, p, q ∈ Ω and ip, iq, ir, is = 1, 2.

In this orthogonal case, the principal member of the normal equation for
the general mean θ(φ) is given by

nθ(φ) +
m∑

k=3

∑
|V 1∪V 2|=k

γ(V 1V 2)θ(V 1V 2) = d
′
(φ)y(T ),(3.1)

or =
n∑

α=1

y(j(α)
1 , j

(α)
2 , . . . , j(α)

m ).

The principal member of the normal equation for the main effect θ(pip) is
given by

nθ(pip) +
∑

{q,r}(q,r 6=p)

∑
iq ,ir=1,2

γ(pipqiqrir)θ(qiqrir)(3.2)

+
m∑

k=3

∑
|V 1∪V 2|=k

ε(pip , V 1V 2)θ(V 1V 2) = d
′
(pip)y(T ),

or =
n∑

α=1

d
j
(α)
p 1

y(j(α)
1 , j

(α)
2 , . . . , j(α)

m ),

for p ∈ Ω, ip = 1, 2.

The principal member corresponding to the two-factor interaction θ(pipqiq)
is given by ∑

r( 6=p,q)

∑
ir=1,2

γ(pipqiqrir)θ(rir) + nθ(pipqiq)(3.3)

+
∑

{r,s}(6={p,q})

∑
ir,is=1,2

ε(pipqiq , rirsis)θ(rirsis)

+
m∑

k=3

∑
|V 1∪V 2|=k

ε(pipqiq , V 1V 2)θ(V 1V 2) = d
′
(pipqiq)y(T ),

or =
n∑

α=1

d
j
(α)
p ip

d
j
(α)
q iq

y(j(α)
1 , j

(α)
2 , . . . , j(α)

m ),

for p 6= q ∈ Ω, ip, iq = 1, 2.
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If three-factor or more interactions are assumed to be negligible, those
equations (3.1), (3.2) and (3.3) may be simplified as follows:

nθ(φ) = d
′
(φ)y(T ),(3.4)

nθ(pip) +
∑

{q,r}(q,r 6=p)

∑
iq ,ir=1,2

γ(pipqiqrir)θ(qiqrir) = d
′
(pip)y(T ),(3.5)

for θ(pip), p ∈ Ω, ip = 1, 2, and∑
r( 6=p,q)

∑
ir=1,2

γ(pipqiqrir)θ(rir) + nθ(pipqiq)(3.6)

+
∑

{r,s}( 6={p,q})

∑
ir,is=1,2

ε(pipqiq , rirsis)θ(rirsis) = d
′
(pipqiq)y(T ),

for θ(pipqiq), p 6= q ∈ Ω, ip, iq = 1, 2.

It can be seen that in estimating the main effects θ(pip)’s and the two-factor
interactions θ(pipqiq)’s using principal equations (3.5) and (3.6), the estimates
may be more or less confounded by several effects, i.e., the estimate of a main
effect may be partially confounded by at most 4×

(m−1
2

)
two-factor interactions

and that of a two-factor interaction may be partially confounded by 2×(m−2)
main effects and 2m(m − 1) − 4 two-factor interactions.

With respect to the confounding coefficient of a two-factor interaction to
the main effect to be estimated and that to the two-factor interaction to be
estimated, the following theorem shows that,

|γ(pipqiqrir)|/n ≤ 1, and |ε(pipqiq , rirsis)|/n ≤ 1,

hold true, respectively.

Theorem 4. The absolute value of the coefficient γ(pipqiqrir) of θ(qiqrir)
in equation (3.5) is bounded by n. The absolute values of the coefficients
γ(pipqiqrir) of θ(rir) and ε(pipqiq , rirsis) of θ(rirsis) in (3.6) are also bounded
by n, respectively.

Proof. In proving the theorem, it is sufficient to show the following:

(γ(pipqiqrir))2 = (
n∑

α=1

d
j
(α)
p ip

d
j
(α)
q iq

d
j
(α)
r ir

)2

≤ (
n∑

α=1

d2

j
(α)
p ip

)(
n∑

α=1

d2

j
(α)
q iq

d2

j
(α)
r ir

) = n2, and

(ε(pipqiq , rirsis))2 = (
n∑

α=1

d
j
(α)
p ip

d
j
(α)
q iq

d
j
(α)
r ir

d
j
(α)
s is

)2

≤ (
n∑

α=1

d2

j
(α)
p ip

d2

j
(α)
q iq

)(
n∑

α=1

d2

j
(α)
r ir

d2

j
(α)
s is

) = n2.
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§4. 18-run orthogonal 34 factorial designs

An orthogonal n-run 34 factorial design can be provided by a three-symbol
orthogonal array, 3-OA(t,m, λ), of size n, m constraints, strength t = 2 and
index λ, where n = 9λ.

The class of three-symbol orthogonal arrays of strength t having m = t + 2
and index λ = 2 (3-OA(t,m = t + 2, λ = 2)) has been investigated by Ya-
mamoto, Fujii and Mitsuoka [4]. They have shown that the number of all
possible 3-OA(2,4,2)’s amounts to 31,356 and these arrays are classified into
12 cosets with respect to the group of the symbol (level) and column (factor)
permutations. In the case of 3-OA(3,5,2)’s the number amounts to 62,944 and
these arrays are classified into 4 cosets. In their subsequent paper [5], the class
of three-symbol orthogonal arrays of strength 2 and index 2 having maximal
or saturated (m = 7) constraints have been investigated and it has been shown
that there are three nonisomorphic classes of 3-OA(t=2,m=7, λ=2).

Representative arrays of the 3 cosets of 3-OA(t = 2,m = 7, λ = 2) (labeled
as [A], [B], [C]) and those of 12 cosets of 3-OA(t=2,m=4, λ=2) (labeled as
( 1), ( 2), . . . , (12)) will be referred to here in Table 1.
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Table 1. Representatives of the three isomorphic classes of
saturated 3-OA(t=2,m=7, λ=2) and

twelve classes of 3-OA(t=2,m=4, λ=2)

[A] [B] [C]
0021000 0021000 0021000
0022111 0022111 0022111
0110002 0110002 0110002
0112221 0112221 0112221
0200112 0200120 0200120
0201220 0201212 0201212
1010120 1010112 1010210
1011212 1011220 1011122
1101011 1101011 1101011
1102100 1102100 1102100
1220021 1220021 1220021
1222202 1222202 1222202
2000201 2000201 2000201
2002022 2002022 2002022
2120210 2120210 2120112
2121122 2121122 2121220
2211101 2211101 2211101
2212010 2212010 2212010

( 1) ( 2) ( 3) ( 4) ( 5) ( 6) ( 7) ( 8) ( 9) (10) (11) (12)
0022 0022 0022 0022 0022 0021 0021 0021 0021 0021 0021 0012
0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0021
0111 0111 0110 0110 0101 0110 0110 0110 0110 0100 0102 0102
0111 0111 0111 0111 0110 0112 0112 0112 0112 0110 0110 0120
0200 0200 0200 0200 0200 0200 0200 0200 0200 0202 0200 0200
0200 0200 0201 0201 0211 0201 0201 0201 0201 0211 0211 0211
1010 1001 1001 1000 1001 1010 1000 1000 1000 1000 1002 1001
1010 1010 1011 1011 1010 1011 1010 1010 1011 1011 1010 1010
1102 1102 1102 1102 1112 1101 1101 1102 1102 1101 1101 1111
1102 1120 1120 1121 1121 1102 1121 1121 1121 1122 1121 1122
1221 1212 1212 1212 1202 1220 1212 1211 1212 1212 1212 1202
1221 1221 1220 1220 1220 1222 1222 1222 1220 1220 1220 1220
2001 2001 2000 2001 2000 2000 2002 2002 2002 2002 2000 2000
2001 2010 2010 2010 2011 2002 2011 2011 2010 2010 2011 2022
2120 2102 2102 2102 2102 2120 2102 2101 2101 2112 2112 2101
2120 2120 2121 2120 2120 2121 2120 2120 2120 2121 2120 2110
2212 2212 2212 2212 2212 2211 2211 2212 2211 2201 2201 2212
2212 2221 2221 2221 2221 2212 2220 2220 2222 2220 2222 2221

After editing the results appearing in Yamamoto, Fujii and Mitsuoka [5],
the possibility of embedding those 12 classes of 3-OA(t = 2,m = 4, λ = 2)
into those 3 classes of saturated 3-OA(t = 2,m = 7, λ = 2) having maximal
constraints can be summarized in the following Table 2. This table, of course,
shows the possibility of deriving the former from the latter.



18-RUN ORTHOGONAL 34 FACTORIAL DESIGNS 125

Table 2. Possibility of deriving 3-OA(t=2,m=4, λ=2)
from saturated 3-OA(t=2,m=7, λ=2)

3-OA(t=2,m=4, λ=2)
( 1) ( 2) ( 3) ( 4) ( 5) ( 6) ( 7) ( 8) ( 9) (10) (11) (12)

3-OA(t=2, [A] × × × × × ◦ ◦ × ◦ × × ◦
m=7, [B] × × × × × ◦ × ◦ ◦ × ◦ ◦
λ=2) [C] × × × × × ◦ × × × ◦ ◦ ◦

(◦: possible, ×: impossible)

With respect to each of the 18-run orthogonal 34 factorial designs provided
by the 12 representative arrays ( 1), ( 2), . . . , (12), the loading vectors, the
characteristic vector and the information matrix are calculated. Those 12
information matrices M(2, T ), under the assumption that three or more factor
interactions are negligible, will be given in Table 3.

The number of two-factor interactions actually confounded with (though
partially) the main effect to be estimated by the principal equation is at most
12 in this case. The number, however, varies from a main effect to another and
from a design to another. The largest is 12 which can be seen in the design
( 1) and some of others and the smallest is 4 which can be seen in the design
( 7).

The average of the confounding coefficients among 12 two-factor interac-
tions having the possibility of confounding also varies from a main effect to
another and a design to another(see Table 3).

These considerations along Table 3 show that the design (11) and also the
design ( 7) seem to be recommendable for the practical use.
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