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1. INTRODUCTION

Impulsive differential equations represent a natural apparatus for math-
ematical simulations of real processes and phenomena studied in biology,
physics, control theory etc. On the other hand the mathematical theory of
impulsive differential equations is much richer than the corresponding theory
of equations without impulses [1–5].

Since the solutions of the impulsive differential equations are piecewise con-
tinuous functions it is necessary to introduce certain analogous of Lyapunov’s
functions which have discontinuities of the first kind.

By means of such functions the extension of Lyapunov’s second method to
impulsive differential equations is much more effective [1], [4–5].

In the present paper the problem of the existence of integral manifold for
systems of impulsive differential equations is considered. Piecewise continuous
Lyapunov’s functions are used in the investigations. It is proved that the
existence of such functions with certain properties is a sufficient conditions for
existence of integral manifolds.

2. PRELIMINARY NOTES AND DEFINITIONS

Let Rn be an n-dimensional Euclidean space with norm ‖·‖, scalar product
〈·, ·〉 and let I = [0,∞).
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With PCκ(J,Rn), where J ⊆ I, κ = 1, 2, . . . , we denote the space which is
constructed from all piecewise continuous functions such that:

1. If by {ti ∈ J, i = 1, 2, . . . } we denote the set of all points ti at which
the function x ∈ PCκ(J,Rn) is discontinuous, and x(ti − 0) = x(ti)
is finite. The set {ti ∈ J, i = 1, 2, . . . } have no finite accumulation
point.

2. If t ∈ J\{ti ∈ J, i = 1, 2, . . . }, then x is of class Cκ.
Let Ω ⊂ Rn, f : I × Ω → Rn, and Φi : Ω → Rn, i = 1, 2, . . . .
Introduce the following conditions:
H1. f ∈ C1(I × Ω, Rn).
H2. φi ∈ C1(Ω, Rn), i = 1, 2, . . . .
H3. If x ∈ Ω, then x + Φi(x) ∈ Ω, Fi(x) = x + Φi(x) where Fi : Ω → Ω

are invertible in Ω, and F−1
i (x) ∈ Ω for i = 1, 2, . . . , and x ∈ Ω.

H4. The impulsive moments {ti}∞i=1 forms a strictly increasing sequence
such that limi→∞ ti = ∞.

Let the conditions H1–H4 are satisfied. We consider the system of impulsive
differential equations with fixed moments of time {ti}∞i=1

x′ = f(t, x), t 6= ti, (1)

∆x(t) = Φi(x(t)), t = ti, i = 1, 2, . . . , (2)

where x′ =
dx

dt
,∆x(ti) = x(ti + 0) − x(ti − 0).

We shall denote that from [1], [2] for any (t0, x0) ∈ I × Ω the solution of
the system (1), (2) with initial condition x(t0) = x0 is any function x(t; t0, x0)
for which:

1. x(t; t0, x0) ∈ PC2(J,Rn) and for any i = 1, 2, . . . , x(ti + 0; t0, x0) =
x(ti; t0, x0) + Φi(x(ti; t0, x0)).

2. For any t ∈ J\{ti ∈ J, i = 1, 2, . . . }, (1) holds.
With J+ = J+(t0, x0), (J− = J−(t0, x0)) we shall denote the maximal

interval of the form (t0, ω), ((ω, t0)) in which x(t; t0, x0) is defined.
With θ+(t0, x0), θ−(t0, x0), and θ(t0, x0) we shall denote the integral orbit

of the solution x(t; t0, x0) for t ∈ J+, t ∈ J−, and t ∈ J respectively.

DEFINITION 1. We shall say that a manifold M in the extended phase
space is:

a) an r-integral manifold, if (t0, x0) ∈ M it follows that θ+(t0, x0) ⊂ M.
b) an l-integral manifold, if (t0, x0) ∈ M it follows that θ−(t0, x0) ⊂ M.
c) an integral manifold, if M is an r-integral manifold and an l-integral

manifold.

In this paper we give sufficient conditions for the existence of integral man-
ifolds of the system (1), (2).



SECOND METHOD OF LYAPUNOV 103

Consider the sets

Gi = {(t, x) ∈ I × Ω, ti−1 < t < ti}, i = 1, 2, . . . ,

G =
∞⋃

i=1

Gi.

DEFINITION 2. The function L : I × Ω → R, (t, x) → L(t, x) is called a
function of type Lyapunov with kernel manifold M for the system of impulsive
differential equations (1), (2) if the following conditions hold

1. L(t, x) ≥ 0 for any (t, x) ∈ I×Ω, and L(t, x) = 0 only when (t, x) ∈ M .
2. For any i = 1, 2, . . . , x0 ∈ Ω there exist finite limits

L(ti − 0, x0) = lim
(t,x)→(ti,x0)

t<ti

L(t, x) L(ti + 0, x0) = lim
(t,x)→(ti,x0)

t>ti

L(t, x),

and the equality L(ti − 0, x0) = L(ti, x0) holds.
3. L ∈ C1(G,R).

Let L(t, x) be a function of Lyapunov with kernel manifold M for the system
(1), (2). Then in G we define the function

L̇ =
〈

∂L(t, x)
∂x

, f(t, x)
〉

+
∂L(t, x)

∂t
.

Obviously
d

dt
L(t, x(t; t0, x0)) = L̇(t, x(t; t0, x0)) for (t, x(t; t0, x0)) ∈ G.

In the further considerations we shall use the class K of all functions a :
I → I that are continuous and strictly increasing, and such that a(0) = 0.

3. MAIN RESULTS

Theorem 1. Let the following conditions are satisfied:

1. The conditions H1–H4 hold.
2. There exists a function L(t, x) of Lyapunov with kernel manifold M

for the system (1), (2) such that:

L̇(t, x) ≤ 0 for (t, x) ∈ G, (3)

(resp. L̇(t, x) ≥ 0 for (t, x) ∈ G),

L(ti + 0, x + Φi(x)) ≤ L(ti, x) for i = 1, 2, . . . , x ∈ Ω, (4)

(resp. L(ti + 0, x + Φi(x)) ≥ L(ti, x) for i = 1, 2, . . . , x ∈ Ω).
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Then M is an r-integral manifold (resp. an l-integral manifold ) of the system
(1), (2).

Proof. We shall prove Theorem 1 for r-integral manifold. For l-integral man-
ifold the proof is analogous. Suppose that M is not an r-integral manifold.
Then there exists t′ > t0 such that, if (t0, x0) ∈ M then (t, x(t; t0, x0)) ∈ M
for t0 ≥ t ≥ t′ and (t, x(t; t0, x0)) /∈ M for t > t′. Then L(t′, x′) = 0, where
x′ = x(t′; t0, x0). Moreover the function x(t) = x(t; t0, x0) is piecewise contin-
uous with a finite number of points of discontinuity in the interval [t0, t′] and
the following two cases are possible.

a) If t′ = ti, i = j, j+1, · · · , then (t′, x(t′+0; t0, x0)) = (t′+0, x(t′; t0, x0)+
Φi(x′)), (t′ + 0, x(t′ + 0; t0, x0)) /∈ M and from Definition 2 it follows
that L(t′ + 0, x(t′ + 0; t0, x0)) > 0.

Consequently L(t′ + 0, x(t′ + 0; t0, x0)) > L(t′, x′) = 0 which is a
cotradiction by (4).

b) If t′ 6= ti, i = j, j + 1, · · · , ,then there exists t′′ such that t′′ > t and
(t′′, x(t′′; t′, x′)) /∈ M . From (3) and (4) it follows that the funcion
L(t, x(t)) is not increasing in (t0,∞).

From Definition 2 it follows that L(t′′, x(t′′; t′, x′)) > 0 so L(t′′, x(t′′; t′, x′))
> L(t′, x′) for t′′ > t′ which is a contradiction to the fact that the function
L(t, x(t)) is not increasing in (t0,∞).

From a) and b) it follows that M is an r-integral manifold.

Theorem 2. Let the following conditions are satisfied:

1. The conditions H1–H4 hold.
2. There exists a function L(t, x) of Lyapunov with kernel manifold M

for the system (1),(2) and the function c ∈ K such that:

L̇(t, x) ≤ −c‖x‖ for (t, x) ∈ G,

(resp L̇(t, x) ≥ c‖x‖ for (t, x) ∈ G),

L(ti + 0, x + Φi(x)) ≤ L(ti, x) for i = 1, 2, . . . , x ∈ Ω,

(resp L(ti + 0, x + Φi(x)) ≥ L(ti, x) for i = 1, 2, . . . , x ∈ Ω).

Then M is an r-integral manifold ( resp an l-integral manifold ) of the system
(1), (2).

Proof. The proof of Theorem 2 is analogous to the proof of Theorem 1.

Theorem 3. Let the following conditions are satisfied:

1. The conditions H1–H4 hold.
2. There exist a functions L(t, x) and V (t, x) of Lyapunov with kernel
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manifold M for the system (1),(2) such that:

L̇(t, x) ≤ 0 for (t, x) ∈ G,

V̇ (t, x) ≥ 0 for (t, x) ∈ G,

L(ti + 0, x + Φi(x)) ≤ L(ti, x), for i = 1, 2, . . . , x ∈ Ω,

V (ti + 0, x + Φi(x)) ≥ L(ti, x), for i = 1, 2, . . . , x ∈ Ω.

Then M is an integral manifold of (1),(2).

Proof. The proof of Theorem 3 follows from Theorem 1 and Theorem 2.

Example. We consider the system of impulsive defferential equations
dy

dt
= −y − t2

√
yz2,

dz

dt
= t2y−2(z − 2), t 6= i,

∆y = −1
2
, ∆z = 0, t = i, i = 1, 2, . . . ,

(5)

where t ∈ I, y ∈ I, z ∈ I.

Now we consider the manifold

M = {(t, y, z) ∈ I3 : z = 2, t > 0, y > 0} (6)

and the functions

V (t, y, z) =
(

3
4

)i

exp

{
−

(
t

y

)2
}

(z − 2)2, i − 1 < t < i,

W (t, y, z) = (z − 2)2.

Then

V̇ (t, y, z) =
(

3
4

)i
(
−2ty−2 exp

{
−

(
t

y

)2
}

(z − 2)2
)

+ 2
(

3
4

)i

exp

{
−

(
t

y

)2
}

(z − 2)2t2y−2

+
(

3
4

)i

2t2y−3 exp

{
−

(
t

y

)2
}

(z − 2)2
(
−y − t2

√
yz2

)
= −2

(
3
4

)i

ty−2 exp

{
−

(
t

y

)2
}

(z − 2)2
(
1 + t3y− 1

2 z2
)
≤ 0,

(7)
i < t < i + 1, i = 1, 2, . . . , y > 0, z > 0
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On the other hand

Ẇ (t, y, z) = 2(z − 2)2t2y−2 ≥ 0, i < t < i + 1, i = 1, 2, . . . , y > 0, z > 0,
(8)

V (i + 0, y − 1
2
, z) ≤ V (i, y, z), y > 0, z > 0, i = 1, 2, . . . , (9)

W (i + 0, y − 1
2
, z) = W (i, y, z), y > 0, z > 0, i = 1, 2, . . . ,

(10)

From (7), (8), (9) and (10) it follows that the conditions of Theorem 3 are
satisfied. Therefore (6) is an integral manifold of the system (5).

Now we consider the function

W (t, s, x) =



L(t, x), t > s, (t, x) ∈ I × Ω, (s, x) ∈ I × Ω,

V (t, x), t < s, (t, x) ∈ I × Ω, (s, x) ∈ I × Ω,

max{L(t, x), V (t, x)}, (t, x) ∈ I × Ω, t = s,

max{L(t + 0, x + Φi(x)), V (t + 0, x + Φi(x))},
(t, x) ∈ I × Ω, t = s = ti, i = 1, 2, . . . , x ∈ Ω

(11)

where L(t, x) and V (t, x) are defined in Theorem 3.

Theorem 4. Let the condition H1–H4 hold. Then a manifold M in the
extended phase space of (1), (2) is an integral manifold (1), (2) if there exist
a function W (t, s, x) in the form (11) such that:

Ẇ (t, s, x) ≤ 0 for t > s, (t, x) ∈ G, (s, x) ∈ G,

W (ti + 0, s + 0, x + Φi(x)) ≤ W (ti, s, x) for ti > s, x ∈ Ω,

0 ≤ Ẇ (t, s, x) for t < s, (t, x) ∈ G, (s, x) ∈ G,

W (ti, s, x) ≤ W (ti + 0, s + 0, x + Φi(x)) for ti < s, x ∈ Ω.

Proof. The proof of Theorem 4 follows from (11) and Theorem 3.
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