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Abstract. Let R be a ring and d a derivation of R. We consider the following
three conditions: (a) every quasi-prime d-ideal of R is prime, (b) any weak
associated prime of every d-ideal of R is a d-ideal and (c) every d-prime d-ideal
of R is prime. In this paper we show that if R is a Laskerian ring, then the
two conditions (a) and (b) are equivalent. Furthermore we show that if R is a
strongly Laskerian ring, then any d-prime d-ideal of R is quasi-prime, and then
the three conditions (a), (b) and (c) are equivalent.
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§1. Introduction

All rings in this paper are assumed to be commutative with a unit element.
Let R be a ring. A derivation d of a ring R is an additive endomorphism
d : R — R such that d(ab) = d(a)b + ad(b) for every a,b € R. Let d be a
derivation of R. An ideal I of R is called a d-ideal if d(I) C I. A proper
d-ideal @ of R is called a d-prime d-ideal if for d-ideals I and J of R the
relation IJ C @Q implies either I C Q or J C Q. A proper d-ideal @) of R
is called a quasi-prime d-ideal if there is a multiplicative subset S of R such
that @ is maximal among d-ideals disjoint from S. Some of the properties of
the d-prime d-ideals and the quasi-prime d-ideals are given in [3], [8], [9], [11],
[12], [14].

Let I be an ideal of R. A prime ideal P of R is called a minimal prime
divisor of I if P is minimal among the prime ideals containing I. A prime
ideal P of R is called a weak associated prime of I if there exists x € R such
that P is a minimal prime divisor of I : (x) ; We denote by Assy(R/I) the
set of weak associated primes of I (cf.[1, IV, §1,Exercise 17]). It is known
that if R is Noetherian, then the weak associated primes of I coincides with
the usual associated primes of I. If I can be expressed as an intersection of a
finite number of primary ideals, we say that I has a primary decomposition.
A ring R is called Laskerian if every ideal of R has a primary decomposition.
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A Laskerian ring R is called strongly Laskerian if each primary ideal of R
contains a power of its radical (cf.[1, IV, §2, Exercise 23, 28]).

Let R be a ring and d a derivation of R. A. Nowicki ([11], [12]) obtained
the following results under the assumption that the ring R is Noetherian:

(1) An ideal Q of R is a d-prime d-ideal if and only if Q is a quasi-prime
d-ideal.

(2) The following three conditions are equivalent:

(a) every quasi-prime ideal of R is a prime ideal,

(b) any weak associated prime of every d-ideal of R is a d-ideal,

(c) every d-prime d-ideal of R is a prime ideal.
The aim of this paper is to try to weaken the condition “Noetherian” of the
ring R in A. Nowicki’s results above. The results which we obtained are as
follows:

If R is a Laskerian ring, then the conditions (a) and (b) above are equiv-
alent (see Theorem 4.1). Furthermore, if R is a strongly Laskerian ring, the
results (1) and (2) above hold (see Theorem 4.2). If the ring R is not strongly
Laskerian, then the result (1) is not necessarily true, and then the conditions
(a) and (c) of (2) are not equivalent in general, even if R is Laskerian (see
Example 4.3).

§2. Preliminaries

Throughout this paper, let R be a ring, d a derivation of R and Z the
rational integers. In this section we record several lemmas for convenience,
which are known.

Lemma 2.1 ([4, Proposition (1.4)]). Let I be a d-ideal of R and P a
minimal prime divisor of I. Then the primary component @ (= satp(I)) of I
belonging to P is also d-ideal.

Lemma 2.2 ([9, Exercise 3, p.63]). Any quasi-prime d-ideal of R is pri-
mary. If R contains the rational numbers, then every quasi-prime d-ideal of R
is prime.

For an ideal I of R, we denote by I4 the biggest d-ideal contained in I.
Note that [y = {x €I |d"(z) € I, for all n > 1}.

Lemma 2.3 ([8, Proposition 2.2]). For a d-ideal @ of R, the following
three conditions are equivalent:

(1) Q is quasi-prime.

(2) Q is primary and Q = (v/Q) 4.

(3) There is a prime ideal P in R such that Q = Py.

Lemma 2.4 ([12, Proposition 2.1]). Any quasi-prime d-ideal of R is d-
prime.
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Lemma 2.5 ([8, Proposition 2.1]). The following four conditions are equiv-
alent:

(1) Every quasi-prime d-ideal of R is prime.

(2) Any minimal prime divisor of every d-ideal of R is a d-ideal.

(3) The radical of any d-ideal of R is a d-ideal.

(4) For any prime ideal P of R, the ideal Py is prime.

§3. d-prime d-ideals and quasi-prime d-ideals

In this section we study some conditions under which a d-prime d-ideal
is primary. Furthermore we discuss a relation among quasi-prime ideals and
prime ideals, and we give some examples.

For a ring R to be Laskerian, it is necessary and sufficient that it satisfies
the following two conditions:

(LA;1) For every ideal I of R and every prime ideal P of R, the saturation
of I with respect to P in R is of the form I : (a) for some a ¢ P.

(LA3) For every ideal I of R, every decreasing sequence (satg, (I)) (where
(Sn) is any decreasing sequence of multiplicative subset of R) is stationary.
(cf.[1, IV, §2, Exercise 23]).

Proposition 3.1. Let R be a ring and d a derivation of R. If R satisfies
the conditions (LA;) above or char(R) # 0, then evry d-prime d-ideal of R is
primary. In particular, if the ring R is Laskerian, then every d-prime d-ideal
of R is primary.

Proof. First we sssume that R satisfies the condition (LA;). Let I be a d-
prime d-ideal of R and P a minimal prime divisor of I. Then the primary
component @ of I belonging to P is d-ideal by Lemma 1.1. Since R satisfies
the condition (LA;), the saturation satp(I)(= Q) of I is of the form I : (x)
for some x ¢ P. It follows that (z) C I : @ and so [z] C I : Q, where [z] is the
smallest d-ideal containing x. Hence [z]Q) C I. Since [z] ¢ I, we have that
Q C I, and hence Q = I. Therefore I is primary.

Next we sssume that char(R) = n(# 0). Let I be a d-prime d-ideal. Suppose
that 2y € I and = ¢ v/I. Then we have 2™y € I and hence y € I : (z™). Since
I: (™) is a d-ideal, we have [y] C I : (™), where [y] is the smallest d-ideal
containing y. Therefore (z™)[y] C I. On the other hand, since (") ¢ I, we
have that [y] C I, and hence y € I. Therefore I is primary.

Proposition 3.2. Let R be a ring and d a derivation of R. If a d-prime
d-ideal I of R has a primary decomposition, then I is primary.

Proof. Let P be a minimal prime divisor of I and () the primary component
of I belonging to P. Since I has a primary decomposition, it is clear that
Q = 1I: (z) for some z ¢ P. Therefore by the same way as the proof of the
first case of Proposition 3.1, we have that [ is primary.
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Proposition 3.3. Let R be a ring of characteristic 0 and d a derivation of
R. Let I be a d-prime d-ideal of R. If I NZ # (0), where Z is the rational
integers, then I is primary.

Proof. Put INZ = (n)(n # 0). Then the residue ring R/I is of characteristic
n. Let d be the derivation of R/I defined by d(x+1) = d(x)+1I (z € R). Since
I is a d-prime d-ideal of R, (0) is a d-prime d-ideal of R/I. By Proposition
3.1, (0) is a primary ideal of R/I, and thus I is a primary ideal of R.

Remark. We do not know whether a d-prime d-ideal is a primary ideal in
general.

Proposition 3.4. Let R be a ring of characteristic 0 and d a derivation of R.
Let @ be a quasi-prime d-ideal of R. If Q N Z = (0), then @ is prime.

Proof. Let R’ be the quotient ring S™!R with respect to S = Z — {0}(C R)
and d’ the derivation of R’ induced by d. Put P = 1/Q. Then Q is P-primary
and @ = Py C P. Put Q' = QR' and P’ = PR’. Then @' is a d’-ideal and
P’- primary. Furthermore we have (P')y = (Pg)R’. Thus (P')x = QR = Q'
and therefore Q' is a quasi-prime d’-ideal of R’. Since R’ contains the rational
integers, Q' is a prime ideal by Lemma 2.2. Tt follows that Q" = P’ and so we
have () = P. Consequently @) is prime.

In case of char(R) # 0, a quasi-prime d-ideal of R is not necessarily prime
as in the following example.

Example 3.5. Let k be a field of characteristic p > 0 and R = k[X] a
polynomial ring over k. Let d be a k-derivation of R such that d(X) = 1. Put
P = (X) and Q = (XP). Then @ is a P-primary ideal of R and by a simple
calculation we have Q = Px. Thus @ is a quasi-prime d-ideal by Lemma 2.3,
but @ is not a prime ideal.

In case of char(R) = 0, let @ be a quasi-prime d-ideal of R such that
QNZ # (0). Then @ is not necessarily prime as shown in the following
example.

Example 3.6. Let R = Z[X] be a polynomial ring over the rational integers
Z and d a derivation of R such that d(X) = 1. Then Q := (X?,2) is a d-ideal
of R. Put P = (X,2). Then @ is a P-primary ideal. It is clear that Q) = Py.
Thus @ is a quasi-prime d-ideal by Lemma 2.3, but @ is not a prime ideal.

§4. Main results

We are now ready to prove the main results.

Theorem 4.1. Let R be a Laskerian ring and d a derivation of R. The
following two conditions are equivalent:
(a) Every quasi-prime d-ideal of R is prime.
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(b) Any weak associated prime of every d-ideal of R is a d-ideal.

Proof. (a) = (b). Let I be a d-ideal of R. First, we consider the case
char(R) # 0 or char (R) = 0 and I NZ # (0). Then I can be written as an
irredundant intersection of a finite number of primary d-ideals Q;(i = 1, ...,n)
by [5, Theorem 2 and Proposition 6]. Furthermore we have that Assy(R/I) =
{VQ1,...,v/Qn}. By the hypothesis (a) and Lemma 1.5, all v/Q; are d-ideals.
Thus every weak associated prime of [ is a d-ideal.

Next, suppose that char(R) = 0and INZ = (0). Let I =Q1N---NQy,
be an irredundant primary decomposition such that P,NZ = (0)(i = 1,... ,t)
and P,NZ # (0)(i=t+1,...,n), where P, = /Q; (i=1,...,n). Note that
Assf(R/I) = {P1,...,P,}. By [5, Theorem 1], P;(i = 1,...,t) are d-ideals.
Putlh =Q1N---NQtand Is = Qry1N---NQyp. Then Io NZ = (q) for some
non-zero integer q. Put I = qR + I. Then I} is a d-ideal and I C I} C L.
Thus we have I = I; NI}, and I can be written as an intersection Q{1 N---NQ.,
of primary d-ideals Q}(i = 1,..,m) by [5, Proposition 6]. Therefore we have
that I = Q1N---NQ:NQ N---NQ.,. By the same reason as the first step, each
\/672 is a d-ideal. For any i(t+1 <1i<n), P, =,/Q for some j(1 < j <m).

Thus P;(1 <i < n) are d-ideals.

(b) = (a). Let I be a d-ideal of R and P a minimal prime divisor of I.
Then clearly P is a weak associated prime of I. Thus P is a d-ideal. Therefore,
the assertion follows from Lemma 1.5.

Remark. By the same way as the proof of Theorem 4.1, we get the following
result:

Let R be a Laskerian ring of characteristic 0, d a derivation of R and I a
proper d-ideal of R. Let Z be the rational integers. Then I can be represented
as an irredundant intersection Q1 N---NQ:N---NQ,(0 <t < n) of primary
ideals @; of R such that: (1) ,NZ = (0)(i = 1,...,t),P,NZ # (0)(j =
t+1,...,n) (where P, = /Q; ). (2) Pi(t =1,...,t),Q;(j =t+1,...,n)
are d-ideals. Obviously, (i) if the ring R contains the rational numbers, then
the number ¢ equal to n, and (ii) if I NZ # (0), then the number ¢ equal to 0.

When R is a Noetherian ring, the following Theorem 4.2 was proved by A.
Nowicki in [11] and [12].

Theorem 4.2. Let R be a strongly Laskerian ring and d a derivation of R,
then the following statements hold.

(1) For a d-ideal Q, Q is d-prime if and only if Q is quasi-prime.

(2) The following three conditions are equivalent:

(a) Every quasi-prime d-ideal of R is prime.

(b) Any weak associated prime of every d-ideal of R is a d-ideal.

(c) Every d-prime d-ideal of R is prime.

Proof. (1) In virtue of Lemma 1.4, it suffices to show that if a d-ideal @ is
d-prime, then Q@ is quasi-prime. Put /@Q = P. Then P is prime by Proposition
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3.1. Furthermore we have that () C Py C P. Since () is P-primary, P" C @
for some n > 1, and hence (Pg)" C Q. Since @ is d-prime, we have that
Py C @ and therefore QQ = Px. Thus @ is quasi-prime by Lemma 1.3.

(2) The equivalence of (a) and (b) follows from Theorem 4.1 and the equiv-
alence of (a) and (c) follows from (1).

Remarks. (1) Let R be a ring and d a derivation of R. If every quasi-prime
d-ideal of R is prime, then R is called a d-MP ring (cf. [11]), or a special
differential ring (cf. [8]).

(2) In Example 4.3 below we show that there is a Laskerian ring R which
is not a strongly Laskerian and there is a derivation d of R such that R has
a d-prime d-ideal which is neither prime nor quasi-prime. Therefore Example
4.3 shows that if R is not strongly Laskerian, Theorem 4.2 is not necessarily
true even if R is Laskerian.

Example 4.3 (cf. [2, Example 2.1]). Let T'= k[X1, X5, ...] be a polynomial
ring over the field k(:= Z/(p)) of prime characteristic p. For the ideal A =
(XP, X% ..), put R =T/A = k[x1, 2, ..., where z,, = X,, + A. Then R is a
local ring with the maximal ideal M = (21, z2,...). Let d be a derivation of R
such that d(x,) = xp41 for every n > 1.

In this situation, the following properties hold.

(1) (0) is a d-prime d-ideal of R, but it is not prime.

(2) M is the only one quasi-prime d-ideal of R.

(3) Every quasi-prime d-ideal of R is prime.

(4) R is a Laskerian ring.

(5) R is not a strongly Laskerian ring.

Proof. (1) Assume that I and J are d-ideals of R such that I.J = (0). If
I#(0) and J # (0), then I > 25 "---22~" and J > 2%} - 22}, for some
n>1and m > 1 (see the proof of Lemma 2.3 (p. 291) of [2]). Hence we
have I.J 3 2?7 ' ... 2P7 1 £ 0, which is a contradiction. Consequently, (0) is a
d-prime d-ideal.

(2) Since Spec(R) = {M} and M is a d-ideal, M is the only one quasi-prime
d-ideal of R.

(3) This is a immediate consequence of (2).

(4) Let I be any ideal of R. Then v/I = M, and so I is primary. Hence R
is a Laskerian ring.

(5) Note that (0) is a M-primary ideal of R and {x1,z2,...} is a p-basis of
R over RP. For every n > 1, M™ contains x125 - - - £, # 0, and hence we have
M™ # (0). Therefore R is not a strongly Laskerian ring.

n+m
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