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Abstract. Let R be a ring and d a derivation of R. We consider the following

three conditions: (a) every quasi-prime d-ideal of R is prime, (b) any weak
associated prime of every d-ideal of R is a d-ideal and (c) every d-prime d-ideal
of R is prime. In this paper we show that if R is a Laskerian ring, then the
two conditions (a) and (b) are equivalent. Furthermore we show that if R is a

strongly Laskerian ring, then any d-prime d-ideal of R is quasi-prime, and then
the three conditions (a), (b) and (c) are equivalent.
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§1. Introduction

All rings in this paper are assumed to be commutative with a unit element.
Let R be a ring. A derivation d of a ring R is an additive endomorphism
d : R → R such that d(ab) = d(a)b + ad(b) for every a, b ∈ R. Let d be a
derivation of R. An ideal I of R is called a d-ideal if d(I) ⊂ I. A proper
d-ideal Q of R is called a d-prime d-ideal if for d-ideals I and J of R the
relation IJ ⊂ Q implies either I ⊂ Q or J ⊂ Q. A proper d-ideal Q of R
is called a quasi-prime d-ideal if there is a multiplicative subset S of R such
that Q is maximal among d-ideals disjoint from S. Some of the properties of
the d-prime d-ideals and the quasi-prime d-ideals are given in [3], [8], [9], [11],
[12], [14].

Let I be an ideal of R. A prime ideal P of R is called a minimal prime
divisor of I if P is minimal among the prime ideals containing I. A prime
ideal P of R is called a weak associated prime of I if there exists x ∈ R such
that P is a minimal prime divisor of I : (x) ; We denote by Assf (R/I) the
set of weak associated primes of I (cf.[1, IV, §1,Exercise 17]). It is known
that if R is Noetherian, then the weak associated primes of I coincides with
the usual associated primes of I. If I can be expressed as an intersection of a
finite number of primary ideals, we say that I has a primary decomposition.
A ring R is called Laskerian if every ideal of R has a primary decomposition.
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A Laskerian ring R is called strongly Laskerian if each primary ideal of R
contains a power of its radical (cf.[1, IV, §2, Exercise 23, 28]).

Let R be a ring and d a derivation of R. A. Nowicki ([11], [12]) obtained
the following results under the assumption that the ring R is Noetherian:

(1) An ideal Q of R is a d-prime d-ideal if and only if Q is a quasi-prime
d-ideal.

(2) The following three conditions are equivalent:
(a) every quasi-prime ideal of R is a prime ideal,
(b) any weak associated prime of every d-ideal of R is a d-ideal,
(c) every d-prime d-ideal of R is a prime ideal.

The aim of this paper is to try to weaken the condition “Noetherian” of the
ring R in A. Nowicki’s results above. The results which we obtained are as
follows:

If R is a Laskerian ring, then the conditions (a) and (b) above are equiv-
alent (see Theorem 4.1). Furthermore, if R is a strongly Laskerian ring, the
results (1) and (2) above hold (see Theorem 4.2). If the ring R is not strongly
Laskerian, then the result (1) is not necessarily true, and then the conditions
(a) and (c) of (2) are not equivalent in general, even if R is Laskerian (see
Example 4.3).

§2. Preliminaries

Throughout this paper, let R be a ring, d a derivation of R and Z the
rational integers. In this section we record several lemmas for convenience,
which are known.

Lemma 2.1 ([4, Proposition (1.4)]). Let I be a d-ideal of R and P a
minimal prime divisor of I. Then the primary component Q (= satP (I)) of I
belonging to P is also d-ideal.

Lemma 2.2 ([9, Exercise 3, p.63]). Any quasi-prime d-ideal of R is pri-
mary. If R contains the rational numbers, then every quasi-prime d-ideal of R
is prime.

For an ideal I of R, we denote by I# the biggest d-ideal contained in I.
Note that I# = {x ∈ I | dn(x) ∈ I, for all n ≥ 1}.

Lemma 2.3 ([8, Proposition 2.2]). For a d-ideal Q of R, the following
three conditions are equivalent:

(1) Q is quasi-prime.
(2) Q is primary and Q = (

√
Q)#.

(3) There is a prime ideal P in R such that Q = P#.

Lemma 2.4 ([12, Proposition 2.1]). Any quasi-prime d-ideal of R is d-
prime.
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Lemma 2.5 ([8, Proposition 2.1]). The following four conditions are equiv-
alent:

(1) Every quasi-prime d-ideal of R is prime.
(2) Any minimal prime divisor of every d-ideal of R is a d-ideal.
(3) The radical of any d-ideal of R is a d-ideal.
(4) For any prime ideal P of R, the ideal P# is prime.

§3. d-prime d-ideals and quasi-prime d-ideals

In this section we study some conditions under which a d-prime d-ideal
is primary. Furthermore we discuss a relation among quasi-prime ideals and
prime ideals, and we give some examples.

For a ring R to be Laskerian, it is necessary and sufficient that it satisfies
the following two conditions:

(LA1) For every ideal I of R and every prime ideal P of R, the saturation
of I with respect to P in R is of the form I : (a) for some a /∈ P .

(LA2) For every ideal I of R, every decreasing sequence (satSn(I)) (where
(Sn) is any decreasing sequence of multiplicative subset of R) is stationary.
(cf.[1, IV, §2, Exercise 23]).

Proposition 3.1. Let R be a ring and d a derivation of R. If R satisfies
the conditions (LA1) above or char(R) 6= 0, then evry d-prime d-ideal of R is
primary. In particular, if the ring R is Laskerian, then every d-prime d-ideal
of R is primary.

Proof. First we sssume that R satisfies the condition (LA1). Let I be a d-
prime d-ideal of R and P a minimal prime divisor of I. Then the primary
component Q of I belonging to P is d-ideal by Lemma 1.1. Since R satisfies
the condition (LA1), the saturation satP (I)(= Q) of I is of the form I : (x)
for some x /∈ P . It follows that (x) ⊂ I : Q and so [x] ⊂ I : Q, where [x] is the
smallest d-ideal containing x. Hence [x]Q ⊂ I. Since [x] 6⊂ I, we have that
Q ⊂ I, and hence Q = I. Therefore I is primary.

Next we sssume that char(R) = n(6= 0). Let I be a d-prime d-ideal. Suppose
that xy ∈ I and x /∈

√
I. Then we have xny ∈ I and hence y ∈ I : (xn). Since

I : (xn) is a d-ideal, we have [y] ⊂ I : (xn), where [y] is the smallest d-ideal
containing y. Therefore (xn)[y] ⊂ I. On the other hand, since (xn) 6⊂ I, we
have that [y] ⊂ I, and hence y ∈ I. Therefore I is primary.

Proposition 3.2. Let R be a ring and d a derivation of R. If a d-prime
d-ideal I of R has a primary decomposition, then I is primary.

Proof. Let P be a minimal prime divisor of I and Q the primary component
of I belonging to P . Since I has a primary decomposition, it is clear that
Q = I : (x) for some x /∈ P . Therefore by the same way as the proof of the
first case of Proposition 3.1, we have that I is primary.
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Proposition 3.3. Let R be a ring of characteristic 0 and d a derivation of
R. Let I be a d-prime d-ideal of R. If I ∩ Z 6= (0), where Z is the rational
integers, then I is primary.

Proof. Put I ∩ Z = (n)(n 6= 0). Then the residue ring R/I is of characteristic
n. Let d̄ be the derivation of R/I defined by d̄(x+I) = d(x)+I (x ∈ R). Since
I is a d-prime d-ideal of R, (0) is a d̄-prime d̄-ideal of R/I. By Proposition
3.1, (0) is a primary ideal of R/I, and thus I is a primary ideal of R.

Remark. We do not know whether a d-prime d-ideal is a primary ideal in
general.

Proposition 3.4. Let R be a ring of characteristic 0 and d a derivation of R.
Let Q be a quasi-prime d-ideal of R. If Q ∩ Z = (0), then Q is prime.

Proof. Let R′ be the quotient ring S−1R with respect to S = Z − {0}(⊂ R)
and d′ the derivation of R′ induced by d. Put P =

√
Q. Then Q is P -primary

and Q = P# ⊂ P . Put Q′ = QR′ and P ′ = PR′. Then Q′ is a d′-ideal and
P ′- primary. Furthermore we have (P ′)# = (P#)R′. Thus (P ′)# = QR′ = Q′

and therefore Q′ is a quasi-prime d′-ideal of R′. Since R′ contains the rational
integers, Q′ is a prime ideal by Lemma 2.2. It follows that Q′ = P ′ and so we
have Q = P . Consequently Q is prime.

In case of char(R) 6= 0, a quasi-prime d-ideal of R is not necessarily prime
as in the following example.

Example 3.5. Let k be a field of characteristic p > 0 and R = k[X] a
polynomial ring over k. Let d be a k-derivation of R such that d(X) = 1. Put
P = (X) and Q = (Xp). Then Q is a P -primary ideal of R and by a simple
calculation we have Q = P#. Thus Q is a quasi-prime d-ideal by Lemma 2.3,
but Q is not a prime ideal.

In case of char(R) = 0, let Q be a quasi-prime d-ideal of R such that
Q ∩ Z 6= (0). Then Q is not necessarily prime as shown in the following
example.

Example 3.6. Let R = Z[X] be a polynomial ring over the rational integers
Z and d a derivation of R such that d(X) = 1. Then Q := (X2, 2) is a d-ideal
of R. Put P = (X, 2). Then Q is a P -primary ideal. It is clear that Q = P#.
Thus Q is a quasi-prime d-ideal by Lemma 2.3, but Q is not a prime ideal.

§4. Main results

We are now ready to prove the main results.

Theorem 4.1. Let R be a Laskerian ring and d a derivation of R. The
following two conditions are equivalent:

(a) Every quasi-prime d-ideal of R is prime.
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(b) Any weak associated prime of every d-ideal of R is a d-ideal.

Proof. (a) =⇒ (b). Let I be a d-ideal of R. First, we consider the case
char(R) 6= 0 or char (R) = 0 and I ∩ Z 6= (0). Then I can be written as an
irredundant intersection of a finite number of primary d-ideals Qi(i = 1, ..., n)
by [5, Theorem 2 and Proposition 6]. Furthermore we have that Assf (R/I) =
{
√

Q1, ...,
√

Qn}. By the hypothesis (a) and Lemma 1.5, all
√

Qi are d-ideals.
Thus every weak associated prime of I is a d-ideal.

Next, suppose that char(R) = 0 and I ∩ Z = (0). Let I = Q1 ∩ · · · ∩ Qn

be an irredundant primary decomposition such that Pi ∩Z = (0)(i = 1, . . . , t)
and Pi ∩ Z 6= (0)(i = t + 1, . . . , n), where Pi =

√
Qi (i = 1, . . . , n). Note that

Assf (R/I) = {P1, ..., Pn}. By [5, Theorem 1], Pi(i = 1, . . . , t) are d-ideals.
Put I1 = Q1 ∩ · · · ∩ Qt and I2 = Qt+1 ∩ · · · ∩ Qn. Then I2 ∩ Z = (q) for some
non-zero integer q. Put I ′2 = qR + I. Then I ′2 is a d-ideal and I ⊂ I ′2 ⊂ I2.
Thus we have I = I1∩I ′2, and I ′2 can be written as an intersection Q′

1∩· · ·∩Q′
m

of primary d-ideals Q′
i(i = 1, ..,m) by [5, Proposition 6]. Therefore we have

that I = Q1∩· · ·∩Qt∩Q′
1∩· · ·∩Q′

m. By the same reason as the first step, each√
Q′

i is a d-ideal. For any i(t + 1 ≤ i ≤ n), Pi =
√

Q′
j for some j(1 ≤ j ≤ m).

Thus Pi(1 ≤ i ≤ n) are d-ideals.
(b) =⇒ (a). Let I be a d-ideal of R and P a minimal prime divisor of I.

Then clearly P is a weak associated prime of I. Thus P is a d-ideal. Therefore,
the assertion follows from Lemma 1.5.

Remark. By the same way as the proof of Theorem 4.1, we get the following
result:

Let R be a Laskerian ring of characteristic 0, d a derivation of R and I a
proper d-ideal of R. Let Z be the rational integers. Then I can be represented
as an irredundant intersection Q1 ∩ · · · ∩ Qt ∩ · · · ∩ Qn(0 ≤ t ≤ n) of primary
ideals Qi of R such that: (1) Pi ∩ Z = (0)(i = 1, . . . , t), Pj ∩ Z 6= (0)(j =
t + 1, . . . , n) ( where Pi =

√
Qi ). (2) Pi(i = 1, . . . , t), Qj(j = t + 1, . . . , n)

are d-ideals. Obviously, (i) if the ring R contains the rational numbers, then
the number t equal to n, and (ii) if I ∩Z 6= (0), then the number t equal to 0.

When R is a Noetherian ring, the following Theorem 4.2 was proved by A.
Nowicki in [11] and [12].

Theorem 4.2. Let R be a strongly Laskerian ring and d a derivation of R,
then the following statements hold.

(1) For a d-ideal Q, Q is d-prime if and only if Q is quasi-prime.
(2) The following three conditions are equivalent:
(a) Every quasi-prime d-ideal of R is prime.
(b) Any weak associated prime of every d-ideal of R is a d-ideal.
(c) Every d-prime d-ideal of R is prime.

Proof. (1) In virtue of Lemma 1.4, it suffices to show that if a d-ideal Q is
d-prime, then Q is quasi-prime. Put

√
Q = P . Then P is prime by Proposition
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3.1. Furthermore we have that Q ⊂ P# ⊂ P . Since Q is P -primary, Pn ⊂ Q
for some n ≥ 1, and hence (P#)n ⊂ Q. Since Q is d-prime, we have that
P# ⊂ Q and therefore Q = P#. Thus Q is quasi-prime by Lemma 1.3.

(2) The equivalence of (a) and (b) follows from Theorem 4.1 and the equiv-
alence of (a) and (c) follows from (1).

Remarks. (1) Let R be a ring and d a derivation of R. If every quasi-prime
d-ideal of R is prime, then R is called a d-MP ring (cf. [11]), or a special
differential ring (cf. [8]).

(2) In Example 4.3 below we show that there is a Laskerian ring R which
is not a strongly Laskerian and there is a derivation d of R such that R has
a d-prime d-ideal which is neither prime nor quasi-prime. Therefore Example
4.3 shows that if R is not strongly Laskerian, Theorem 4.2 is not necessarily
true even if R is Laskerian.

Example 4.3 (cf. [2, Example 2.1]). Let T = k[X1, X2, ...] be a polynomial
ring over the field k(:= Z/(p)) of prime characteristic p. For the ideal A =
(Xp

1 , Xp
2 , ...), put R = T/A = k[x1, x2, ...], where xn = Xn + A. Then R is a

local ring with the maximal ideal M = (x1, x2, ...). Let d be a derivation of R
such that d(xn) = xn+1 for every n ≥ 1.

In this situation, the following properties hold.
(1) (0) is a d-prime d-ideal of R, but it is not prime.
(2) M is the only one quasi-prime d-ideal of R.
(3) Every quasi-prime d-ideal of R is prime.
(4) R is a Laskerian ring.
(5) R is not a strongly Laskerian ring.

Proof. (1) Assume that I and J are d-ideals of R such that IJ = (0). If
I 6= (0) and J 6= (0), then I 3 xp−1

1 · · ·xp−1
n and J 3 xp−1

n+1 · · ·x
p−1
n+m for some

n ≥ 1 and m ≥ 1 (see the proof of Lemma 2.3 (p. 291) of [2]). Hence we
have IJ 3 xp−1

1 · · ·xp−1
n+m 6= 0, which is a contradiction. Consequently, (0) is a

d-prime d-ideal.
(2) Since Spec(R) = {M} and M is a d-ideal, M is the only one quasi-prime

d-ideal of R.
(3) This is a immediate consequence of (2).
(4) Let I be any ideal of R. Then

√
I = M , and so I is primary. Hence R

is a Laskerian ring.
(5) Note that (0) is a M -primary ideal of R and {x1, x2, . . . } is a p-basis of

R over Rp. For every n ≥ 1, Mn contains x1x2 · · ·xn 6= 0, and hence we have
Mn 6= (0). Therefore R is not a strongly Laskerian ring.
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