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Abstract. The expected relative entropy (or the expected divergence) between
finite probability distribution Q on {1, 2, . . . , `} and its empirical one obtained
from the sample of size n drawn from Q is computed and is found to be given
asymptotically by (` − 1)(log e)/2n which is independent of Q. A method to
compute the entropy of the binomial distribution more accurately than before
is also given.
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§1. Introduction

In information theory, the relative entropy (or divergence) D[P ||Q] :=∑
x∈X P (x) log P (x)

Q(x) plays an important role as a kind of measure of distance
between two probability distributions P,Q on a discrete set X (log will al-
ways mean log2). It is known that D[P ||Q] ≥ 1

2 ln 2(
∑

x∈X |P (x) − Q(x)|)2
holds (see for example [1]). The relative entropy is closely related to math-
ematical statistics. For example, the log-likelihood ratio can be written as
the difference between two relative entropies, and the so-called Fisher infor-
mation can be expressed in terms of the relative entropy. In this paper, we
compute the expected relative entropy between a finite probability distribu-
tion and its empirical one. Let Xn = (X1, X2, . . . , Xn) be the sample of size
n drawn from the distribution Q(x) on X = {1, 2, . . . , `} and let PXn(x) be
the empirical (frequency) distribution corresponding to Xn. It is known that
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E [D [PXn ||Q]] ≤ E [D [PXn−1 ||Q]] (see [1]). Actually, however, the following
estimate will be found in §3 using a lemma in §2:

E [D [PXn ||Q]] =
(` − 1) log e

2n
+

log e

12

(∑
x∈X

1
Q(x)

− 1

)
1
n2

+ O(
1
n3

).

§2. A Lemma

We prove a lemma which is essential for the proof of the theorem given in
§3. The lemma states that for the random variable X obeying B(n, p) (the
binomial distribution with parameters n, p) and for sufficiently large n,

E

[
f(

X

n
)
]
≈

2m−2∑
i=0

f (i)(p)E[(X − np)i]
i!ni

,

where f(x) is an arbitrary function such that maxx∈[ 1
n

,1] |f (2m)(x)| ≤ cns

for some m ≥ 1, for example f(x) = −x lnx that appears in the entropy
−

∑
x∈X p(x) log p(x).

Lemma . Let f(x) ∈ C(2m)(0, 1] for some m ≥ 1 and suppose there exist
constants c and s such that maxx∈[ 1

n
,1] |f (2m)(x)| ≤ cns for any positive integer

n. Then for 0 < p < 1, we have

[g2(p) − g1(p)]nm → 0 (n → ∞)

and

g1(p) =
2m−2∑
i=0

f (i)(p)µi

i!ni
+ O(n−m),

where

pk =

(
n

k

)
pk(1 − p)(n−k) (k = 0, 1, . . . , n)

g1(p) =
n∑

k=1

pkf

(
k

n

)

µi =
n∑

k=0

pk(k − np)i

g2(p) =
2m∑
i=0

f (i)(p)
i!

µi

ni
.
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Note: From the lemma, we have g1(p) ≈ g2(p), and it is easy to show

E

[
f

(
X

n

)]
=

n∑
k=0

pkf

(
k

n

)

≈
2m∑
i=0

f (i)(p)
i!

µi

ni

≈ f(p) +
f ′′(p)

2
p(1 − p)

n
+ . . . .

Proof. Since

g1(p) =
n∑

k=1

pkf(
k

n
)

=
n∑

k=1

pk[f(p) +
f ′(p)

1!
(
k

n
− p) + . . .

+
f (2m−1)(p)
(2m − 1)!

(
k

n
− p)2m−1 +

f (2m)(θ k
n
)

(2m)!
(
k

n
− p)2m]

with θ k
n

lying between k
n and p, we get with some manipulations

[g2(p) − g1(p)]nm

= p0

(
f(p) +

f ′(p)
1!

(−p) + . . . +
f (2m)(p)
(2m)!

(−p)2m

)
nm

+
1

(2m)!
1

nm

n∑
k=1

pk(f (2m)(p) − f (2m)(θ k
n
))(k − np)2m.

Since p0n
m =

(n
0

)
p0(1 − p)nnm = (1 − p)nnm, the first part of the right hand

side goes to 0 as n → ∞.
The continuity of f (2m)(x) implies

∀ε > 0,∃δ > 0; |p − p′| < δ ⇒ |f (2m)(p) − f (2m)(p′)| < ε.

Hence in the second part:

1
(2m)!

1
nm

n∑
k=1

[
pk

(
f (2m)(p) − f (2m)(θ k

n
)
)

(k − np)2m
]

=
1

(2m)!
1

nm

∑
| k
n
−p|<δ

[ ] +
1

(2m)!
1

nm

∑
| k
n
−p|≥δ

[ ]

= A + B,
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we first have

|A| ≤ 1
(2m)!

1
nm

∑
| k
n
−p|<δ

pk

∣∣∣f (2m)(p) − f (2m)(θ k
n
)
∣∣∣ (k − np)2m

<
1

(2m)!
1

nm

∑
| k
n
−p|<δ

pkε(k − np)2m

≤ ε

(2m)!
1

nm

n∑
k=0

pk(k − np)2m

=
ε

(2m)!
µ2m

nm
.

We know from Riordan [4] that

µ2m = (2m − 1)(2m − 3) · · · 3 · 1(p(1 − p)n)m + O(nm−1)

and so we obtain |A| < ε + O( 1
n). Thus A → 0 as n → ∞.

To estimate |B|, we note that, in the case | kn − p| ≥ δ, we have

Dk := D

[(
k

n
, 1 − k

n

)
||(p, 1 − p)

]
≥ log e

2

(
2|k

n
− p|

)2

(see §1),

hence
√

Dk
2 log e ≥ | kn − p| ≥ δ. Now for large n

|B| ≤ 1
(2m)!

1
nm

∑
k:Dk≥2δ2 log e

pk|f (2m)(p) − f (2m)
(
θ k

n

)
|(k − np)2m

≤ 1
(2m)!

1
nm

∑
k:Dk≥2δ2 log e

pk

(
|f (2m)(p)| + |f (2m)

(
θ k

n

)
|
)

(k − np)2m

≤ 1
(2m)!

2cns

nm

∑
k:Dk≥2δ2 log e

pkn
2m

≤ 2c

(2m)!
ns+m(n + 1)22−2nδ2 log e.

Here in the last inequality we used∑
k:Dk≥a

pk ≤ (n + 1)22−an

(see Theorem 12.2.1 in [1]). Thus B → 0 as n → ∞. And [g2(p)− g1(p)]nm →
0 (n → ∞), hence g1(p) = g2(p) + o(n−m). Recalling µj = O(nb j

2
c) ([4]), we

can write g1(p) =
∑2m−2

i=0
f (i)

i!
µi

ni + O(n−m), completing the proof. 2
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Example 1. Let f(x) = x lnx and m = 3. We can use the lemma since
maxx∈[ 1

n
,1] |f (6)(x)| = 4!n5. Thus

g1(p) = f(p) +
f ′′(p)

2!
p(1 − p)

n
+

f (3)(p)
3!

µ3

n3
+

f (4)(p)
4!

µ4

n4
+ O(n−3)

= p ln p +
1
2p

p(1 − p)
n

+
−1
6p2

p(1 − p)(1 − 2p)
n2

+
2

24p3

3p2(1 − p)2

n2
+ O(n−3)

= p ln p +
1 − p

2n
+

(1 − p)(1 + p)
12pn2

+ O(n−3)

Example 2 [entropy of the binomial distribution].
Frank and Öhrvik[3] computed the entropy of the binomial distribution.

Here we observe it in more detail using the lemma.

H(X)

= −
n∑

k=0

pk log pk

= −
n∑

k=0

pk

(
log

(
n

k

)
+ k log p + (n − k) log (1 − p)

)

= −
n∑

k=0

pk (log n! − log k! − log (n − k)! + k log p + (n − k) log (1 − p))

= − log n! − np log p − n(1 − p) log (1 − p)

+
n∑

k=0

pk (log k! + log (n − k)!)

= − log n! − np log p − n(1 − p) log (1 − p)

+
n∑

k=1

pk log k! +
n−1∑
k=0

pk log (n − k)!.

In a similar way as in Feller[2, II.9], we may show that there exists 0 ≤ bk ≤ 5
21

such that

ln k! =
1
2

ln 2π + (k +
1
2
) ln k − k +

(
1

12k
− 1 − bk

360k3

)
(k ≥ 1).

Then letting f(x) = ln x, 1
x , 1

x3 in the lemma and using Example 1, we find
with some computations that

H(X)=
1
2

log [2πenp(1−p)]−(log e)

(
(1 − 2p)2

12np(1 − p)
+

p4 + (1 − p)4

24n2p2(1 − p)2

)
+O(

1
n3

).
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§3. Expected Relative Entropy

We prove our main theorem below, using Example 1 (hence our lemma). This
theorem states that, for large n, E [D [PXn ||Q]] is essentially (`−1) log e

2n , in
inverse proportion to the sample size n and not dependent on the true distri-
bution.
Theorem. Let Xn = (X1, X2, . . . , Xn) be the sample of size n drawn from
the distribution Q(x) on X = {1, 2, . . . , `} and let PXn(x) be the empirical
(frequency) distribution corresponding to Xn, then

E [D [PXn ||Q]] =
(` − 1) log e

2n
+

log e

12

(∑
x∈X

1
Q(x)

− 1

)
1
n2

+ O(
1
n3

).

Proof. The expectation to be computed is given by

E[D[PXn ||Q]] =
∑

(x1,x2,...,xn)∈Xn

Qn(x1, x2, . . . , xn) D[Pxn ||Q]

=
∑

P∈Pn

Qn(T (P )) D[P ||Q],

where Qn(x1, x2, . . . , xn) = Pr(X1=x1,X2=x2,...,Xn=xn), Pn is the set of all pos-
sible empirical distributions, Qn(T (P )) denotes the probability that the em-
pirical distribution becomes exactly P . Since the empirical distribution P is
written as (k1

n , k2
n , . . . , k`

n ) and Qn(T (P )) =
( n
k1,k2,...,k`

)
Q(1)k1Q(2)k2 · · ·Q(`)k` ,

we have

E[D[PXn ||Q]]

=
∑

P∈Pn

Qn(T (P ))

(∑
i∈X

P (i) log P (i) −
∑
i∈X

P (i) log Q(i)

)

= −E[H(
K1

n
,
K2

n
, . . . ,

K`

n
)] −

∑
i∈X

 ∑
P∈Pn

Qn(T (P )) P (i)

 log Q(i)

= −E[H(
K1

n
,
K2

n
, . . . ,

K`

n
)]

−
∑
i∈X


∑

k1,k2,...,k`:

k1+k2+...+k`=n

(
n

k1, k2, . . . , k`

)
Q(1)k1Q(2)k2 · · ·Q(`)k`

ki

n

 log Q(i)

= −E[H(
K1

n
,
K2

n
, . . . ,

K`

n
)] + H(Q).
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Note that P (i) = Ki
n , i = 1, . . . , `, are random variables and H(Π) denotes the

entropy of the distribution Π. Since Ki ∼ B(n,Q(i)), we see using Example 1
that

E

[
Ki

n
log

Ki

n

]
=

n∑
k=0

pk
k

n
log

k

n

= Q(i) log Q(i) +
1 − Q(i)

2n
log e +

1
12n2

(
1

Q(i)
− Q(i)

)
log e + O(

1
n3

).

Thus

−E

[
H(

K1

n
,
K2

n
, . . . ,

K`

n
)
]

= E

[∑̀
i=1

Ki

n
log

Ki

n

]

=
∑̀
i=1

E

[
Ki

n
log

Ki

n

]

=
∑̀
i=1

(
Q(i) log Q(i) +

1 − Q(i)
2n

log e +
1

12n2
(

1
Q(i)

− Q(i)) log e

)
+ O(

1
n3

).

Therefore,

E [D [PXn ||Q]] =
(` − 1) log e

2n
+

log e

12

(∑
x∈X

1
Q(x)

− 1

)
1
n2

+ O(
1
n3

),

finishing the proof. 2
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