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1. Introduction

In this article, we give a new idea to prove analyticity of solutions to analytic
nonlinear elliptic equations. To illustrate our idea, we only treat the simple
equation,

(1) 4u = λu2 in Ω,

where 4 =
∑n

j=1 ∂2/∂x2
j , Ω is a domain in Rn and λ is a constant in R. In

next section, we prove the following theorem by using our method.

Theorem 1. Suppose that u is in C∞(Ω) and that u satisfies the equation
(1). Then u is real analytic in Ω.

Many proofs of analyticity of solutions to analytic nonlinear elliptic equa-
tions have been given by many mathematicians. There are two families of
methods to prove analyticity. One is the method to estimate higher order
derivatives of solutions([2], [3], [4], [5], [13], [15]). And another is the method
to extend the variables of the corresponding integral equations to complex
values([9], [11], [12], [14]). Our method belongs to the former. But the author
believes that our proof is new and simple.

In these papers([2], [3], [4], [5], [13], [15]), the Sobolev norm of M times de-
rivative of a solution in a domain B contained in Ω is estimated by the Sobolev
norm of (M −1) times derivative of a solution in Bδ = {x; dist(x,B) < δ}. To
estimate the Sobolev norm of any times derivative of a solution by that of a
solution itself, we must prepare countably many domains B0, B1, . . . , BM , . . .
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with BM+1 = (BM )δM
and must check convergence with respect to δM care-

fully. The method in this article needs only two domains B and B′ with
B̄ ⊂ B′ ⊂ Ω because we use a cut-off function r(x) to the power M for M -th
derivative of a solution.

We briefly exhibit our method. Our method is to multiply a cut-off function
r(x) to the power |α| to the α-th derivative of a solution u and estimate its
Sobolev norm. The point of our method is not multiplication of a cut-off
function r(x) itself to the α-th derivative of a solution but multiplication of
a cut-off function r(x) to the power |α| to the α-th derivative of a solution.
As we see in the following, the term r(x)|α|∂αu is adapted to nonlinear term.
So it is easy to estimate ‖r(x)|α|∂αu‖ with |α| = M + 1 by ‖r(x)|α|∂αu‖ with
|α| ≤ M .

As an application of our method, we refer two papers, [8], [6]. In [8], we
consider the evolution equation,

iut + 4u = f(u), u(0, x) = φ(x).

Applying our method, we show that if the initial data φ satisfies ‖(x ·∇)lφ‖Hm

≤ CAl(l!)2 for all l ∈ N with m > n/2, the solution u is real analytic in x for
t > 0. In [6], we show by our method how analytic singularities for semilinear
wave equations ¤u = f(u) propagate.

2. Proof of Theorem 1

First we introduce some notation and prepare several propositions. Let Ω
be a domain in Rn and m be a real number. We denote an usual Sobolev space
of order m with respect to L2(Ω) by Hm(Ω) and let Hm

0 (Ω)be the completion
of C∞

0 (Ω) with the norm of Hm(Ω). For a multi-index α = (α1, . . . , αn),
we denote xα = xα1

1 · · ·xαn
n , |α| = α1 + · · · + αn, α! = α1! · · ·αn! and ∂α

x =
∂α1
1 ∂α2

2 · · · ∂αn
n with ∂j = ∂/∂xj (j = 1, 2, . . . , n). For multi-indices α and β,

we write α ≤ β if αj ≤ βj for 1 ≤ ∀j ≤ n and define α+β = (α1+β1, . . . , αn+
βn) and

(
α
β

)
= α!/(β!(α − β)!).

Proposition 2.1. Let α be a multi-index and k be an integer with 0 ≤ k ≤
|α|. We have ∑

|β|=k
β≤α

(
α

β

)
=

(
|α|
k

)
.

Proof. Comparing the coefficients of tk in both sides of

(1 + t)α1 · · · (1 + t)αn = (1 + t)|α|,

we have the proposition. ¤
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Proposition 2.2. Let Ω be a domain in Rn with smooth boundary. If f and
g are in Hm(Ω) with m > n/2, then we have

(2) ‖fg‖Hm(Ω) ≤ C1‖f‖Hm(Ω)‖g‖Hm(Ω),

where C1 is a constant which does not depend on f and g.

Proof. See for example Adams[1]. ¤
Proposition 2.3. Let Ω be a domain in Rn. We have

(3) ‖∂α
x v‖Hm(Ω) ≤ ‖4v‖Hm(Ω),

for all v ∈ Hm+2
0 (Ω) and multi-indices α with |α| = 2.

Proof. It suffices to prove (2.1) for v ∈ C∞
0 (Ω). From Plancherel’s theorem,

we have

‖∂α
x v‖Hm(Ω) = ‖∂α

x v‖Hm(Rn)

= ‖(1 + |ξ|2)m/2ξαv̂(ξ)‖L2(Rn)

≤ ‖(1 + |ξ|2)m/2|ξ|2v̂(ξ)‖L2(Rn)

= ‖4v‖Hm(Rn)

= ‖4v‖Hm(Ω).

Proof of Theorem 1. It suffices to prove that u is real analytic in every open
ball B in Ω with B̄ ⊂ Ω. We take an open ball B′ with B̄ ⊂ B′ and B̄′ ⊂ Ω.
We take and fix a real valued function r(x) in C∞

0 (B′) such that 0 ≤ r(x) ≤ 1
and r(x) ≡ 1 in a neighborhood of B. To prove that u is real analytic in B,
we show that there exist positive constants C and A such that

(4) ‖r(x)|α|∂α
x u‖Hm(B′) ≤ CA|α||α|!,

for all multi-indices α, where m = [n/2] + 1. We prove (4) by induction with
respect to |α|. For simplicity we assume that A is larger than or equal to 1.
The inequality (4) is valid for |α| ≤ 1 if C is large enough. We fix a constant
C so that (4) is valid for |α| ≤ 1. Assuming that (4) is valid for |α| ≤ N(≥ 1),
we show that (4) is valid for |α| = N + 1 by taking a constant A sufficiently
large. In the following, we write ‖ · ‖ = ‖ · ‖Hm(B′) for abbreviation. Let α
and β be multi-indices with |α| = N − 1 and |β| = 2. From Proposition 2.3,
we have

‖rN+1∂α+β
x u‖ ≤ ‖∂β

x rN+1∂α
x u‖ + ‖[∂β

x , rN+1]∂α
x u‖

≤ ‖4rN+1∂α
x u‖ + ‖[∂β

x , rN+1]∂α
x u‖

≤ ‖rN+1∂α
x4u‖ + ‖[4, rN+1]∂α

x u‖ + ‖[∂β
x , rN+1]∂α

x u‖
= I1 + I2 + I3,
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where I1 = ‖rN+1∂α
x λu2‖, I2 = ‖[4, rN+1]∂α

x u‖ and I3 = ‖[∂β
x , rN+1]∂α

x u‖.
We estimate each Ij(j = 1, 2, 3) by (1/3)CAN+1(N + 1)!.

First we estimate I3. We put ∂β
x = ∂j∂k. Since the commutator [∂β

x , rN+1]
is equal to

(N +1)[rN (∂jr)∂k +rN (∂kr)∂j ]+(N +1)rN (∂β
x r)+(N +1)NrN−1(∂jr)(∂kr),

we have from Proposition 2.2 and the assumption of induction,

I3 ≤ (N + 1)C1[‖∂jr‖‖rN∂k∂α
x u‖ + ‖∂kr‖‖rN∂j∂

α
x u‖]

+ (N + 1)C1‖r(∂βr)‖‖rN−1∂α
x u‖ + (N + 1)NC1‖(∂jr)(∂kr)‖‖rN−1∂α

x u‖
≤ 4C1C2CAN (N + 1)!,

where C2 = max1≤j,k≤n(‖∂jr‖, ‖r(∂j∂kr)‖, ‖(∂jr)(∂kr)‖, ‖r2‖). If A is larger
than or equal to 12C1C2, we have I3 ≤ (1/3)CAN+1(N + 1)!.

Next we estimate I2. By the same estimate as in the estimate of I3, we
have I2 ≤ 4nC1C2A

N (N + 1)!. If A is larger than or equal to 12nC1C2, we
have I2 ≤ (1/3)AN+1(N + 1)!.

Thirdly we estimate I1. By Leibniz’s rule, Proposition 2.2 and the assump-
tion of induction, we have

I1 ≤ |λ|C2
1

∑
γ≤α

(
α

γ

)
‖r2‖‖r|γ|∂γ

xu‖‖r|α−γ|∂α−γ
x u‖

≤ |λ|C2
1C2

∑
γ≤α

(
α

γ

)
CA|γ||γ|!CA|α−γ||α − γ|!

≤ |λ|C2
1C2C

2A|α||α|!
|α|∑
k=0

∑
|γ|=k
γ≤α

(
|α|
|γ|

)−1(
α

γ

)
.

By Proposition 2.1, we have

I1 ≤ |λ|C2C2
1C2A

|α||α|!
|α|∑
k=0

1

≤ |λ|C2C2
1C2A

N−1N !.

If A is larger than or equal to 3|λ|CC2
1C2, we have I1 ≤ (1/3)CAN+1(N +1)!.

We consequently have

‖rN+1∂α+β
x u‖ ≤ CAN+1(N + 1)!,

if A is larger than or equal to max(1, 12nC1C2, 3|λ|CC2
1C2). This completes

the proof. ¤
Remark. We can prove analyticity of solutions to analytic fully nonlinear el-
liptic equations. We give the proof of analyticity of solutions to analytic fully
nonlinear elliptic equations of second order in forthcoming paper([7]).
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du second ordre, Math. Annal. 59 (1904), 20–76.
3. , Demonstration du théorème de M. Hilbert sur la nature analytique des solutions
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partiellen differentialgleichungen zweiter Ordnung, Math. Zeit. 25 (1926), 514–589.

Keiichi Kato

Department of Mathematics, Science University of Tokyo
Wakamiya 26, Tokyo 162, Japan

E-mail: kato@ma.kagu.sut.ac.jp


