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Abstract. Let (Mi, gi) be a certain almost Hermitian 2n-manifold Mi with
a Hermitian metric gi for i = 1, 2, which is more general than an almost L
manifold (a Kählerian manifold is known to be a special almost L manifold).
Let Specp(Mi, gi) denote the spectrum of the real Laplacian on p-forms on Mi.

The purpose of this paper is to show that for some special values of p and n, if
Specp(M1, g1) = Specp(M2, g2), then (M1, g1) is of constant holomorphic sec-
tional curvature H1 if and only if (M2, g2) is of constant holomorphic sectional
curvature H2, and H2 = H1. The corresponding results on almost L manifolds

were obtained by C. C. Hsiung and C. X. Wu (The spectral geometry of almost
L manifolds, Bull. Inst. Math. Acad. Sinica, 23 (1995), 229–241).
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1. Introduction

Let (M, g) be an m-dimensional compact Riemannian manifold M with a
Riemannian metric g. Throughout this paper all manifolds are supposed to
be C∞ and connected. The set of the eigenvalues associated with all the p-
eigenforms, 0 ≤ p ≤ m, with respect to real Laplacian ∆ and the metric g of
M is called the spectrum of ∆ on p-forms on M , which will be denoted by
Specp(M, g).Thus

(1.1) Specp(M, g) = {0 ≥ λ1,p ≥ λ2,p ≥ · · · > −∞},

where each eigenvalue λi,p, i = 1, 2, . . . , is repeated as many times as its
multiplicity; which is finite, and the spectrum Specp(M, g) is discrete since ∆
is an elliptic operator.

It is well known that there are various examples ([13], [7] and the references
there) of a pair of nonisometric manifolds with the same spectrum. Thus the
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spectra do not determine a manifold up to an isometry. However, the rela-
tionship between the geometry of a Riemannian or Kählerian manifold and
its spectra has been extensively studied. Let (M, g) and (M ′, g′) be compact
Riemannian (respectively, Kählerian) manifolds M , M ′ with Riemannian (re-
spectively, Hermitian) metrics g and g′ and Specp(M, g) = Specp(M ′, g′) for
a fixed p. Various authors [1], [4], [6], [14], . . . , [17] have shown that for some
spacial values of p and m, (M, g) is of constant sectional (respectively, holo-
morphic sectional) curvature H if and only if (M ′, g′) is of constant sectional
(respectively holomorphic sectional) curvature H ′ and H = H ′.

Recently Hsiung and Wu [8] have generalized the results on Kählerian man-
ifolds to almost L manifolds of which Kählerian manifolds are special ones.
The purpose of this paper is to further generalize the results of Hsiung and
Wu to more general almost Hermitian manifolds.

In §2 there is a classification of all almost complex structures on a Riemann-
ian manifold, together with inclusion relations among all classes, by means of
the Riemann curvature tensor and the tensor of an almost complex structure.

In §3 we define various almost Hermitian structures and manifolds, and give
necessary and sufficient or just necessary conditions for some classes of almost
complex manifolds defined in §2 with an Hermitian structure to have constant
holomorphic sectional curvature at each point.

§4 contains some fundamenzal formulas for a Riemannian structure and the
well-known Minakshisundaram-Pleijel-Gaffney’s formula for the spectra of a
Riemannian manifold.

§5 deals with the spectral geometry of some almost Hermitian manifolds
which are more general than L manifolds.

2. Almost complex structures

Let M be a Riemannian 2n-manifold, and let gij , Rhijk, Rij , R, and Ji
j

denote, respectively, the Riemannian metric tensor, the Riemann curvature
tensor, the Ricci curvature tensor, the scalar curvature and the tensor of an
almost complex structure J of M . Let (gij) be the inverse matrix of the matrix
(gij). Throughout this paper all Latin indices take values 1, · · · , 2n unless
stated otherwise. We shall follow the usual tensor convention that indices of
tensors can be raised and lowered by using gij and gij respectively, and that
repeated indices imply summation. Moreover, if we multiply, for example, the
components aij of a tensor of type (0,2) by the components bjk of a tensor of
type(2,0), it will be always understood that j is to be summed.

By using the following identities for the relationship between Ji
j and Rhijk,

Hsiung and Xiong [9] have defined the following four classes of almost complex
structures on the manifold M :

(2.1) Rhijk = Jh
rJi

sRrsjk,
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(2.2) Rhijk = Jh
rJi

sRrsjk + Jh
rJj

sRrisk + Jh
rJk

sRrijs,

(2.3) Rhijk = Jh
pJi

qJj
rJk

sRpqrs,

(2.4) Ji1
rJi2

sRrsi3k + Ji2
rJi3

sRrsi1k + Ji3
rJi1

sRrsi2k = 0.

Let L and K denote respectively the classes of almost complex structures
(or manifolds) and the Kählerian structure (or manifolds). Let L1,L2,L3 and
C denote the classes of almost complex structures (or manifolds) satisfying
(2.1),· · · , (2.4) respectively. Hsiung and Xiong [9] have showed the following
inclusion relations.

(2.5)
L2

K ⊂ L1 L3 ⊂ L.
C

Thus for i = 1, 2, 3, as i decreases the structures (or manifolds) in Li resemble
Kählerian structures (or manifolds) more closely.

For simplicity, throughout this paper if an almost complex manifolds M
admits a certain special almost complex structure, then M is also called by
the same name as the structure’s.

If Ji
j and gij satisfy

(2.6) gijJh
iJk

j = ghk,

then the almost complex structure J is called an almost Hermitian structure,
and gij is called an Hermitian metric. For simplicity, throughout this paper,
unless stated otherwise, by an almost Hermitian manifold M we shall always
mean a manifold with an almost Hermitian structure J and an Hermitian
metric gij . Friedland and Hsiung [5] called an almost Hermitian structure J
an almost L structure if it satisfies

(2.7) [∇j ,∇k]Ji
h ≡ (∇j∇k −∇k∇j)Ji

h = 0,

where ∇ denotes the covariant derivation with respect to gij . Obviously,
Kählerian structures are almost L structures since an almost Hermitian struc-
ture Ji

j is Kählerian if

(2.8) ∇iJj
k = 0 for all i, j, k.

For simplicity we shall denote an almost Hermitian Li structure by AHi

for i = 1, 2, 3, and a Kählerian structure, an almost Hermitian C structure
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and an almost Hermitian structure respectively by K, AHC, and AH. From
(2.5) we thus obtain the following inclusion relations among almost Hermitian
structures:

(2.9)
AH2

K ⊂ AH1 AH3 ⊂ AH.
AHC

We [10] also have defined an AH ′
1 manifold to be an almost Hermitian

manifold satisfying

(2.10) Rhijk = −Jh
rJi

sRrsjk.

Since the difference between (2.1) and (2.10) is only a sign, AH ′
1 ⊂ AHC ⊂

AH3 and the intersection of the two classes AH1 and AH ′
1 is the class of locally

Euclidean spaces, that is, the classe of spaces with Rhijk = 0.
Now we introduce one new classe of AH4 manifolds which are almost Her-

mitian manifolds satisfying

(2.11) 2Rhijk = Jh
rJi

sRrsjk + Jh
rJj

sRrkis + Jh
rJk

sRrjsi.

3. Almost Hermitian structures

In this section M is a Riemannian manifold as in §2. If there exists on M
a tensor Ji

j of type (1,1) satisfying

(3.1) Ji
jJj

k = −δk
i ,

where δk
i are the Kronecker deltas defined by

(3.2) δk
i =

{
1, i = k,

0, i 6= k,

then Ji
j is said to define an almost complex structure on M , and M is called

an almost complex manifold.
If an almost complex Ji

j is almost Hermitian, then as a consequence of
(3.1) and (2.6) the tensor Jij of type (0,2) defined by

(3.3) Jij = gjkJi
k

is skew-symmetric. Thus

(3.4) JijJk
j = gik, JjiJj

k = gik,

and for any tangent vector vi of M ,

(3.5) gijJk
ivkvj = 0,
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which shows that vi is orthogonal to its transform Jj
ivj . Furthermore, on an

almost Hermitian manifold M , there is a differential form

(3.6) ω = Jijdxi ∧ dxj ,

where x1, . . . , x2n are local coordinates on M , and the wedge ∧ denotes the
exterior product. If the differential form ω is closed, that is, if

(3.7) dω = 0,

then Ji
j is called an almost Kählerian structure. From (3.6) and (3.7) it follows

that an almost Kählerian structure satisfies

(3.8) Jhij ≡ ∇hJij + ∇iJjh + ∇jJhi = 0.

The tensor Jhij is skew-symmetric in all indices.

Lemma 3.1. An almost Hermitian 2n-manifold M with an Hermitian metric
gij and an almost Hermitian structure Ji

j is Kählerian if it satisfies

(3.9) Q ≡ R +
1
2
J ijJklRijkl = 0,

(3.10) Rhijk =
1
4
HGhijk,

where H is a nonzero constant, and

(3.11) Ghijk = ghkgij − ghjgik + JhkJij − JhjJik − 2JhiJjk.

Proof. Substituting (3.10) and (3.11) and four similar equations in Bianchi
identity (4.2) gives

∇l(JhkJij − JhjJik − 2JhiJjk) + ∇j(JhlJik − JhkJil − 2JhiJkl)
(3.12)

+ ∇k(JhjJil − JhlJij − 2JhiJlj) = 0.

Expanding (3.12) by differentiating covariantly, multiplying the resulting equa-
tion by J ik and using J ij∇hJij = 0 we obtain (3.8) which shows that M is
almost Kählerian. Hence M is Kählerian since it is known that an almost
Kählerian manifold with condition (3.9) is Kählerian (see for instance, [5,
p.261]). ¤

Let M be an almost Hermitian manifold with an almost Hermitian structure
Ji

j satisfying (2.6). Then the two-dimensional plane determined by an arbi-
trary tangent vector ui of M and the tangent vector Jj

iuj at a point p of M is
called a holomorphic plane (u, Ju), and the sectional curvature with respect to
the plane (u, Ju) is called the holomorphic sectional curvature H(u, Ju) of M
at p. If the holomorphic sectional curvature at a point p is independent of the
holomorphic plane through p, then M is said to have constant holomorphic
sectional curvature at p.

Concerning constant holomorphic sectional curvature we have the following
theorems:
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Theorem 3.1[5]. A necessary and sufficient condition for an almost L 2n-
manifold M to be of constant holomorphic sectional curvature H at each
point is that the Riemann curvature tensor Rhijk with respect to the metric
gij satisfy (3.10). Furthermore, the Ricci tensor and scalar curvature of such
a manifold are given respectively by

(3.13) Rij =
n + 1

2
Hgij ,

(3.14) R = n(n + 1)H.

As a consequence of (3.13), M is an Einstein manifold.

Theorem 3.2[9]. A necessary and sufficient condition for an AHC 2n-mani-
fold M to be of constant holomorphic sectional curvature H at each point is
that the Riemann curvature tensor Rhijk with respect to the metric gij satisfy

(3.15) Rhijk = Jh
rJj

sRskir −
1
2
H(gkjghi + gkighj − JkjJhi − JkiJhj).

Furthermore, the Ricci tensor and scalar curvature of such a manifold are
given respectively by (3.13) and (3.14). As a consequence of (3.13), M is an
Einstein manifold.

Theorem 3.3[10]. A necessary condition for an AH2 2n-manifold M to be of
constant holomorphic sectional curvature H at each point is that the Riemann
curvature tensor Rhijk with respect to the metric gij satisfy

(3.16) Rhijk =
1
2
(RpqkjJh

pJi
q + RpkqiJh

pJj
q + RpjiqJh

pJk
q) +

1
2
HGhijk.

Furthermore, the Ricci tensor and scalar curvature of such a manifold are
given respectively by

(3.17) Rij = 3RpiqrJ
pqJj

r + 2(n + 1)Hgij ,

(3.18) R = 3RpsrqJ
pqJrs + 4n(n + 1)H.

4. Spectra of Riemannian manifolds

Let (M, g) be a Riemannian manifold of dimension m ≥ 2 with a Riemann-
ian mertic g = (gij). We shall use all the notation with 2n = m, in §2, and
also the following identities:

(4.1) Rhijk + Rhjki + Rhkij = 0,
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and

(4.2) ∇lRhijk + ∇jRhikl + ∇kRhilj = 0.

(4.2) is called the Bianchi identity. In 1919 Einstein suggested the following
equation, called the Einstein equation,

(4.3) Tij = Rij −
R

m
gij ,

where R is the scalar curvature:

(4.4) R = gijRij ,

and Tij is called the stress-energy tensor. When Tij = 0, (M, g) is called an
Einstein manifold and gij an Einstein mertic.

Assume that M is compact. To study Specp(M, g) given by (1.1) we need
the following Minakshisundaram-Pleijel-Gaffney’s formula:

(4.5)
∞∑

i=0

eλi,pt ∼
t↓0

1
4πt

m
2

∞∑
i=0

ai,pt
i,

where

(4.6) a0,p =
(

m
p

) ∫
M

dM,

(4.7) a1,p =
[
1
6

(
m
p

)
−

(
m − 2
p − 1

)]∫
M

R dM,

(4.8) a2,p =
∫

M

[c1(m, p)R2 + c2(m, p)|Rij |2 + c3(m, p)|Rhijk|2]dM,

and

(4.9) c1(m, p) =
1
72

(
m
p

)
− 1

6

(
m − 2
p − 1

)
+

1
2

(
m − 4
p − 2

)
,

(4.10) c2(m, p) = − 1
180

(
m
p

)
+

1
2

(
m − 2
p − 1

)
− 2

(
m − 4
p − 2

)
,

(4.11) c3(m, p) =
1

180

(
m
p

)
− 1

12

(
m − 2
p − 1

)
+

1
2

(
m − 4
p − 2

)
,
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dM being the volume element of M,

(
m
p

)
a binomial coefficient, and |Rij |2

and |Rhijk|2 the square of the lengths of the Ricci and Riemann curvature
tensors respectively given by

(4.12) |Rij |2 = RijRij , |Rhijk|2 = RhijkRhijk.

The coefficients a0,p,a1,p and a2,p have been calculated for p = 0 by many
authors (see [1], [12]), and determined for all p by V.K.Patodi [14].

Remarks. 1. Let (M, g) and (M ′, g′) be compact Riemannian manifolds. If
Specp(M, g) = Specp(M ′, g′) for some p, then from (4.5) and (4.6) we have

(i) m = dim M = dim M ′ = m′,
(ii) V ol.M = V ol.M ′.

2. For a geometric quantity A on (M, g), we shall denote the corresponding
quantity on (M ′, g′) by A′.

5. AH2,4 manifolds

The purpose of this section is to study the spectral geometry of the almost
Hermitian manifold M satisfying (2.2) and (2.11), which we call an AH2,4-
manifold. At first we need

Lemma 5.1. An AH1-manifold is an AH2,4-manifold.

Proof. Substituting (2.1) for the second and the third terms on the right-hand
side of (2.11) and using (4.1) we can easily see that the right-hand side of (2.11)
becomes automatically the left-hand side of (2.11). So an AH1-manifold is an
AH4-manifold and therefore an AH2,4-manifold, since from (2.9) an AH1-
manifold is also an AH2-manifold. ¤
Theorem 5.1. A necessary and sufficient condition for an AH2,4 2n-manifold
M to be of constant holomorphic sectional curvature H at each point is that
the Riemann curvature tensor Rhijk with respect to the metric gij satisfy
(3.10). Furthermore, the Ricci tensor and scalar curvature of such a manifold
are given respectively by (3.13) and (3.14). As a consequence of (3.13), M is
an Einstein manifold.

Proof. Suppose that M is of constant holomorphic sectional curvature H at
each point. Since M is an AH2 manifold, (3.16) holds. Since M is also an
AH4 manifold, (2.11) also holds. Substituting (2.11) in the right-hand side of
(3.16) gives condition (3.10) immediately.

For the proof of the sufficiency of condition (3.10) one may see [5] as The-
orem 3.1 also has this condition. ¤

Now we want to derive some relations among the tensors Ji
j , Rhijk and Rij

of an AH4 2n-manifold M . At first, from (4.1) follows

(5.4) JkrRrkis = −JkrRrisk − JrkRksri = 2JkrRriks.
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Multiplying (2.11) by ghk and using (3.4), (5.4), we obtain

(5.5) 3Rij = JkrJi
sRrsjk + 2JkrJj

sRriks.

Similarly, multiplication of (2.11) by gij and use of (5.4) give

(5.6) 2Rhk + Jh
rJk

sRrs = 3Jh
rJ isRikrs.

Substituting the right-hand side of (5.6) for each term on the right-hand side
of (5.5) yields readily

(5.7) Rij = Ji
rJj

sRrs,

which together with (5.6) implies that

(5.8) Rhk = Jh
rJ isRikrs = Jk

rJ isRihrs,

where the last equality is due to the symmetry of h and k. Multiplying (5.8)
by ghk gives

(5.9) J isJhrRihrs = R.

Multiplying (5.4) by Jj
i and using (5.8) we obtain

(5.10) JkrJj
iRkrsi = −2Rjs.

Multiplication of (5.10) by gis gives

(5.11) JkrJsiRkrsi = −2R.

Multiplying (5.7) by Jk
i yields

(5.12) Jk
iRij = −Jj

sRks,

which together with (3.5) shows that

(5.13) RirJ
isRjsJ

jr = Ri
rJ isRjrJs

j = −RirR
ir.

On the other hand, since

Jrs(Rrpks + Rrkps) = JrsRrpks + JsrRskpr = 0,

we have

(5.14) JrsRrpks = −JrsRrkps.

From (5.8) and (5.14) it follows that

(5.15) Rhk = Jh
rJ isRikrs = −Jk

rJ isRirks.

Multiplying (5.1) by Jj
h gives

(5.16) J isRikjs = Jk
rJj

hJ isRirhs.

Moreover, using (5.8), (3.4), (4.12) we readily obtain

(5.17) |Rij |2 = |J isRikrs|
2
.

The following lemma is an immediate consequence of (5.11), Theorem 5.1
and Lemma 3.1.
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Lemma 5.2. If an AH2,4 2n-manifold M is of constant holomorphic sectional
curvature H at each point, then M is Kählerian.

The Bochner curvature tensor B = (Bhijk) of an almost Hermitian m-
manifold M with an Hermitian mertic g and an almost Hermitian structure
Ji

j is defined as follows:

(5.18) Bhijk = Rhijk − 1
2(n + 2)

Ahijk +
R

4(n + 1)(n + 2)
Ghijk,

where the components of the tensors G = (Ghijk) and A = (Ahijk) are given
respectively by (3.11) and

(5.19) Ahijk = ahijk + bhijk − 2chijk,

with

(5.20) ahijk = ghkRij − ghjRik + gijRhk − gikRhj ,

(5.21) bhijk = JijJh
rRrk − JikJh

rRrj + JhkJi
rRrj − JhjJi

rRrk,

(5.22) chijk = JjkJh
rRri + JhiJj

rRrk.

Now we have the following crucial lemma.

Lemma 5.3. For an AH4 2n-manifold M ,

(5.23) |Bhijk|2 = |Rhijk|2 −
8

n + 2
|Rij |2 +

2
(n + 1)(n + 2)

R2.

Proof. From (5.18) it follows that

|Bhijk|2 =|Rhijk|2 −
1

n + 2
RhijkAhijk

+
R

2(n + 1)(n + 2)
RhijkGhijk +

1
4(n + 2)2

|Ahijk|2(5.24)

− R

4(n + 1)(n + 2)2
AhijkGhijk +

R2

16(n + 1)2(n + 2)2
|Ghijk|2.

By (3.1), (3.4) and other equations of this section some elementary but com-
plicated computations give the following:

|ahijk|2 = 8(n − 1)|Rij |2 + 4R2,



ALMOST HERMITIAN MANIFOLDS 173

ahijkbhijk = 8|Rij |2 by (5.13),

(5.25) ahijkchijk = −8|Rij |2 by (5.13),

|bhijk|2 = 8(n − 1)|Rij |2 + 4R2,

bhijkchijk = −8|Rij |2 by (5.13),

|chijk|2 = 4n|Rij |2 + 2R2;

Rhijkahijk = 4|Rij |2, Rhijkbhijk = 4|Rij |2 by (5.15),

Rhijkchijk = −4|Rij |2 by (5.10);
(5.26)

(5.27) RhijkGhijk = 8R by (5.9), (5.11);

ahijkahijk = 8(n − 1)|Rij |2 + 4R2,

ahijkbhijk = 8|Rij |2 by (5.13),

(5.28) ahijkchijk = −8|Rij |2 by (5.13),

|bhijk|2 = 8(n − 1)|Rij |2 + 4R2,

bhijkchijk = −8|Rij |2 by (5.13),

|chijk|2 = 4n|Rij |2 + 2R2;

ahijkGhijk = 8(n + 1)R,

bhijkGhijk = 8(n + 1)R,(5.29)

chijkGhijk = −8(n + 1)R;

(5.30) |Ghijk|2 = 32n(n + 1),

From (5.19), (5.25), · · · , (5.29) we obtain

RhijkAhijk = 16|Rij |2,

|Ahijk|2 = 32(n + 2)|Rij |2 + 16R2,

AhijkGhijk = 32(n + 1)R,

|Ghijk|2 = 16n(n + 2).

Substituting (5.27) and (5.31) in (5.24) yields (5.23) immediately. ¤
Assume that M is compact. Now we can express the coefficient a2,p of

formula (4.5) in terms of |Bhijk|2 and

(5.32) |Tij |2 = |Rij |2 −
1
2n

R2,

which follows from (4.3) readily.
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Lemma 5.4. For a compact AH4 2n-manifold M ,

(5.33) a2,p =
∫

M

[b1(n, p)|Bhijk|2 + b2(n, p)|Tij |2 + b3(n, p)R2]dM,

where

b1(n, p) = c3(m, p),

b2(n, p) = c2(m, p) +
8

n + 2
c3(m, p),(5.34)

b3(n, p) = c1(m, p) +
1
2n

c2(m, p) +
2

n(n + 1)
c3(m, p),

and m = 2n.

Proof. The lemma is an immediate consequence by substituting (5.23) and
(5.32) in (4.8). ¤
Lemma 5.5. An AH2,4 2n-manifold M for n ≥ 2 is of constant holomorphic
sectional curvature if and only if the tensors B and T = (Tij) are zero.

Proof. Suppose M to be of constant holomorphic sectional curvature H. Then
(3.10), (3.11), (3.13) and (3.14) hold by Theorem 5.1. Substituting (3.10),
(3.11), (3.13) and (3.14) in (5.18) shows readily that Bhijk = 0. Tij = 0
follows from (4.3), (3.13), (3.14).

Conversely, suppose that B = 0 and T = 0 which implies that M is an

Einstein space, so that R is constant for 2n ≥ 4. Substituting Rij =
R

2n
gij in

(5.18) and using (3.1) and (2.6), we obtain

Rhijk =
R

4n(n + 1)
Ghijk.

Hence, by Theorem 5.1. M is of constant holomorphic sectional curvature

H =
R

n(n + 1)
. ¤

6. The main theorem

The main results of this paper are listed in the following theorem.

Theorem 6.1. Let (M, g, J) and (M ′, g′, J ′) be compact AH2,4 2n-manifolds
with almost Hermitian structures J and J ′, Hermitian mertics g and g′. Let
(CPn, g0, J0) be the complex n-dimensional projective space CPn with the
Fubini-Study metric g0 and the standard complex structure J0. Consider the
following statements:

(1) (*) (M, g, J) is of constant holomorphic sectional curvature H if and
only if (M ′, g′, J ′) is of constant holomorphic sectional curvature H ′,
and H = H ′;

(2) (**) (M, g, J) is Kählerian and holomorphically isometric to (CPn,
g0, J0).
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Then we have the following:

(i) (*) is true if Spec0(M, g) = Spec0(M ′, g′) and 2n ≤ 10.
(ii) (**) is true if Spec0(M, g) = Spec0(CPn, g0) and 2n ≤ 10.
(iii) (*) is true if Spec1(M, g) = Spec1(M ′, g′) and 2n = 2 or 16 ≤ 2n ≤

102.
(iv) (**) is true if Spec1(M, g) = Spec1(CPn, g0) and 2n = 2 or 16 ≤ 2n ≤

102.
(v) (*) is true if Spec2(M, g) = Spec2(M ′, g′) and 2n = 2, 6, 8, 14 or

18 ≤ 2n ≤ 188.
(vi) (**) is true if Spec2(M, g) = Spec2(CPn, g0) and 2n = 2, 6, 8, 14 or

18 ≤ 2n ≤ 188.
(vii) (*) is true if Specp(M, g) = Specp(M ′, g′) for p = 0 and 1.
(viii) (**) is true if Specp(M, g) = Specp(CPn, g0) for p = 0 and 1.

Remark. For almost L manifolds M and M ′ Theorem 6.1 is due to Hsiung and
Wu [8]. When (M, g, J) and (M ′, g′, J ′) are Kählerian manifolds, parts (i)-(vi)
of Theorem 6.1 are reduced to the known results in ([14],[15],[16]) mentioned
before.

Proof of Theorem 6.1. It is clear that (*) and (**) hold in the case of n = 1.
So we assume n ≥ 2.

(i) From (4.6), (4.7), (4.9), . . . , (4.11) for m = 2n, and (5.33), (5.34) we
obtain

(6.1) a0,0 =
∫

M

dM = V ol M,

(6.2) a1,0 =
1
6

∫
M

R dM,

(6.3) a2,0 =
1

360

∫
M

[
2|Bhijk|2 +

2(6 − n)
n + 2

|Tij |2 +
5n2 + 4n + 3

n(n + 1)
R2

]
dM.

Since the roles of (M, g, J) and (M ′, g′, J ′) in the theorem are the
same, we need only to prove the “if” part, and the “only if” part can be
proved in the same way as by interchanging the roles of (M, g, J) and
(M ′, g′, J ′). So we assume that (M ′, g′, J ′) has constant holomorphic
sectional curvature H ′. Then R′ = 2H ′ by Theorem 5.1, and therefore
R′ is constant. Thus from a0,0 = a′

0,0 and a1,0 = a′
1,0 it follows that∫

M
R2dM ≥

∫
M ′ R′2dM ′. In fact, using the Schwarz inequality we



176 C– C. HSIUNG, W. YANG AND B. XIONG

have(∫
M

dM

)(∫
M

R2dM

)
≥

(∫
M

R dM

)2

=
(∫

M ′
R′ dM ′

)2

= R′2(V ol M ′)2(6.4)

= R′2V ol M · V ol M ′

= V ol M ·
∫

M ′
R′2dM.

On the other hand, applying Lemma 5.5 to (M ′, g′, J ′) gives

(6.5) |B′
hijk|

2 = |Tij |2 = 0.

Thus from a2,0 = a′
2,0, (6.4), (6.3) and its corresponding equation

(6,3)′ for (M ′, g′, J ′) and 2n ≤ 10, it follows that

(6.6) |Bhijk|2 = |Tij |2 = 0,

∫
M

R2dM =
∫

M ′
R′2dM ′.

Hence by Lemma 5.5, (M, g, J) is of constant holomorphic sectional
curvature H = H ′.

(ii) Since (CPn, g0, J0) is of constant holomorphic sectional curvature c >
0, (M, g, J) is of constant holomorphic sectional curvature c > 0 by
part (i). From Lemma 5.2 it follows that (M, g, J) is Kählerian. Hence
(M, g, J) is holomorphically isomertic to (CPn, g0, J0).

(iii) As in part (i) we have

(6.7) a0,1 = 2n

∫
M

dM = 2n V ol M,

(6.8) a1,1 =
n − 3

3

∫
M

R dM,

a2,1 =
1

360

∫
M

{2(2n − 15)|Bhijk|2 +
4

n + 2
[n(51 − n) + 30]|Tij |2

+
2

n(n + 1)
[n2(5n − 26) + 18n + 15]R2}dM.(6.9)

For 8 ≤ n ≤ 51, all coefficients of |Bhijk|2, |Tij |2 and R2 in (6.9) are
positive. Also as before we may assume that (M ′, g′, J ′) is of constant
holomorphic sectional curvature H ′ so that R′ is constant and (6.5)
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holds. We also have (6.4). Thus from a2,1 = a′
2,1 and (6.9), (6.9)′

follows (6.6). Hence (M, g, J) is of constant holomorphic sectional
curvature H = H ′.

(iv) follows from (iii) and Lemma 5.2.
(v) As before we have

(6.10) a0,2 = n(2n − 1)
∫

M

dM = n(2n − 1)V ol M,

(6.11) a1,2 =
1
6
(2n2 − 13n + 12)

∫
M

R dM.

(6.12) a2,2 =
1

360

∫
M

(A1|Bhijk|2 + A2|Tij |2 + A3R
2)dM,

where
A1 = 2(2n2 − 31n + 120)

(6.13) A2 =
2

n + 2
(2n3 − 193n2 + 426n + 120),

A3 =
1

n(n + 1)
(10n4 − 117n3 + 362n2 − 183n − 60).

Thus for n = 3, 4 or 7, or 9 ≤ n ≤ 94, A1, A2, and A3 are positive.
The remaining part of the proof is completely similar to that in (i) or
(iii).

(vi) follows from (v) and Lemma 5.2.
(vii) Multiplying (6.3) by (2n− 15) and subtracting the resulting equation

from (6.9) we obtain

(6.14) a2,1 − (2n − 15)a2,0 = 15
∫

M

[
10|Tij |2 +

1
n

(n + 5)R2

]
dM.

Assume that (M ′, g′, J ′) is of constant holomorphic curvature H ′.
Then we have (6.5) and (6.4) which together with a2,1−(2n−15)a2,0 =
a′

2,1 − (2n− 15)a′
2,0, (6.14) and (6.14)′ implies that |Tij |2 = 0. Thus

from a2,0 = a′
2,0, (6.3) and (6.3)′ it follows that |Bhijk|2 = 0. Hence

(M, g, J) is of constant holomorphic sectional curvature H = H ′.
(viii) follows from (vii) and Lemma 5.2. ¤
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