
SUT Journal of Mathematics

Vol. 33, No. 1 (1997), 65–71

TWO WEIGHTED Φ−INEQUALITIES

FOR THE FRACTIONAL MAXIMAL OPERATOR

Yves Rakotondratsimba

(Received October 28, 1996)

Abstract. Sufficient conditions are given for the fractional maximal operator
to send a weighted Orlicz class into another one. As an application, an Orlicz
version of the famous Fefferman-Stein inequality is obtained.
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1. Introduction and Results

The fractional maximal operator Mα of order α, 0 ≤ α < n, is defined as

(Mαf)(x) = sup
{
|Q|α

n−1

∫
Q

|f(y)|dy; where Q is a cube containingx
}

.

Here n is a nonnegative integer and the cubes considered have sides parallel
to the coordinates axis. So M = M0 is the well-known Hardy-Littlewood
maximal operator. In this paper Φ1(.), Φ2(.) and Φ(.) denote some continuous
and increasing functions defined on [0,∞[→ [0,∞[ which take the value 0 at
0 and tend to ∞ when t → ∞; and z(.), z1(.), z2(.), u(.) and v(.) are weights,
i.e. nonnegative locally integrable functions on Rn.

Our purpose is to give a sufficient condition on these weights which guar-
antees Mα : z1L

Φ1
v → z2L

Φ2
u . This boundedness means there is C > 0 for

which
(1.1)∫

Rn
Φ2

(
z2(x)(Mαf)(x)

)
u(x)dx ≤ Φ2Φ−1

1

[∫
Rn

Φ1

(
Cz1(x)f(x)

)
v(x)dx

]
for all nonnegative functions f(.). Interest in study of (1.1) comes from the
fact that such an integral inequality is more and more used (particularly by
Italian schools) to tackle problems in P.D.E..

Inequality (1.1) is a generalization of the classical two weight inequality

(1.2)
∫
Rn

(Mαf)q(x)u(x)dx ≤ C

(∫
Rn

fp(x)v(x)dx

) q
p

.
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The consideration of z1(.) and z2(.), as in [Bl-Ke] and [Go-Ko2], is motivated
by the fact that the weights cannot be combined as in the Lebesgue case where∫
Rn fp(y)v(y)dy =

∫
Rn(fv

1
p )p(y)dy.

Problem (1.1) for particular α and weight functions was considered by many
authors [Ke-To], [Bl-Ke], [Go-Ko1], [Go-Ko2], [Su], [Ch] and [Qi]. But this
inequality has not been studied in full generality, as we will do in this work.
Indeed the boundedness M0 : LΦ

v → LΦ
v was characterized by Bloom and

Kerman [Bl-Ke] and also independently by Gogatishvili and Kokilashvili [Go-
Ko1]. A significant approach of the two weight inequality M0 : LΦ

v → LΦ
u was

given by Sun [Su] and also by Chen [Ch]. And a solution for Mα : 1
v LΦ1

v → LΦ2
u ,

with 0 ≤ α < n, was presented by Qinsheng [Qi].
A characterization of (1.2), with 1 < p ≤ q < ∞, was due to Sawyer

[Sa]. However the right necessary and sufficient condition is expressed in
terms of the maximal operator Mα itself, so in general it is difficult to decide
whether a given pair of weight functions is convenient for (1.2). Consequently
people, who were interested in problems of weighted inequalities, investigated
simpler conditions not necessarily a characterizing condition. Observe that
(1.2) implies

(1.3) |Q|
α
n + 1

q −
1
p

( 1
|Q|

∫
Q

u(y)dy
) 1

q
( 1
|Q|

∫
Q

[ 1
v(y)

]p′

v(y)dy
) 1

p′
≤ A

for all cubes Q and for a fixed constant A > 0. Here p′ = p
p−1 . Conversely

Pérez [Pe] proved that, for 1 < p ≤ q < ∞, (1.2) is true whenever there is
ε > 1 such that

(1.4) |Q|
α
n + 1

q −
1
p

( 1
|Q|

∫
Q

u(y)dy
) 1

q
( 1
|Q|

∫
Q

[ 1
v(y)

]εp′

vε(y)dy
) 1

εp′
≤ A.

for all cubes Q. Clearly by the Hölder inequality condition (1.4) implies (1.3).
So the natural question, answered in this paper, is to find an analogue of this

Pérez’s result for the problem (1.1) without using standard assumptions like
42-condition on Φ1(.) and Φ2(.) [see [Ke-To]] nor Muckenhoupt A∞-condition
on the weight functions.

Following Bloom and Kerman [Bl-Ke], if Φ1(.) is a N-function, then a nec-
essary condition for the boundedness Mα : z1L

Φ1
v → z2L

Φ2
u is

(1.5)
∫

Q

Φ∗
1

[
|Q|α

n−1

Aλz1(x)v(x)
Θ(λ, Q)

]
v(x)dx

≤ Θ(λ, Q) < ∞ for all λ > 0 and all cubes Q,

where A > 0 is a fixed constant. Here

Θ(λ,Q) = Φ1Φ−1
2

[∫
Q

Φ2

(
λz2(y)

)
u(y)dy

]
,
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and Φ∗
1(.) is the complementary function to Φ1(.). Recall that Φ(.) is a N-

function whenever it is a convex function with lims→0
Φ(s)

s = lims→∞
s

Φ(s) =
0, and its complementary function Φ∗(.) is defined as Φ∗(t) = sups≥0{st −
Φ(s)}. Condition (1.5) is the substitute of (1.3) in the Orlicz setting. And the
assumption ”p ≤ q” will be expressed by the growth condition

(1.6)
∑

k

Φ2Φ−1
1 (tk) ≤ Φ2Φ−1

1

[
c0

∑
k

tk

]
for all tk > 0,

where c0 > 0 is a fixed constant. Our main result can be stated as follows.

Theorem 1. Suppose the condition (1.6) is satisfied and Φ
1
t
1 (.) is a N-function

for some t > 1. Then Mα : z1L
Φ1
v → z2L

Φ2
u whenever for a constant A > 0

(1.7)
∫

Q

(Φ
1
t
1 )∗

[
|Q|α

n−1

Aλz1(x)v
1
t (x)

Θt(λ,Q)
]
v

1
t (x)dx

≤ Θt(λ, Q) < ∞ for all λ > 0 and all cubes Q,

where

Θt(λ,Q) = |Q|
{

1
|Q|

Φ1Φ−1
2

[∫
Q

Φ2

(
λz2(y)

)
u(y)dy

]} 1
t

.

Observe that (1.7), a substitute of (1.4), is reduced to (1.5) when t = 1. And
the Pérez’s result, quoted above, is covered by Theorem 1 by taking Φ1(s) ≈ sp

and t = p
(εp′)′ , where ε > 1 < p < ∞ and r′ = r

r−1 for each r > 1. Note that

Φ
1
t
1 (s) ≈ s(εp′)′ , (Φ

1
t
1 )∗(s) ≈ s(εp′) and v−(εp′) 1

t + 1
t (.) = v

−ε
p−1 (.) =

[
1

v(.)

]εp′

vε(.).
In the classical Lebesgue setting, many problems in Analysis are involved

by the famous Fefferman-Stein inequality

(1.8)
∫
Rn

(Mαf)p(x)u(x)dx ≤ C

∫
Rn

fp(x)(Mαpu)(x)dx for all f(.) ≥ 0.

Here 0 ≤ α < n
p and C > 0 is a fixed constant independant of u(.). As an

application of Theorem 1, we obtain an Orlicz version of (1.8).

Proposition 2. Assume that Φ
1
t (.) is a N-function for some t > 1. Then

(1.9)
∫
Rn

Φ
(
z(x)(Mαf)(x)

)
u(x)dx ≤∫

Rn
Φ

(
Cf(x)

)
(Mα,t,Φ,zu)(x)dx for all f(.) ≥ 0.



68 Y. RAKOTONDRATSIMBA

Here C > 0 does not depend on the weight functions u(.) and z(.). The
maximal operator Mα,t,Φ,z is defined by

(Mα,t,Φ,zg)(x) = sup
Q3x

sup
λ>0

{[
λ−1|Q|α

n

S−1
Φ,t(λ|Q|−α

n )

]t 1
|Q|

∫
Q

Φ
(
λz(y)

)
|g(y)|dy

}
where SΦ,t(s) = s−1(Φ

1
t )∗(s).

For z(.) = 1, Φ(s) ≈ sp and t = p
(εp′)′ with ε > 1 < p < ∞, then Mα,t,Φ,z =

Mαp, so inequality (1.8) is covered by (1.9). For z(.) = 1 and α = 0, elementary
arguments lead to a similar inequality as (1.9) with Mα,t,Φ,z replaced by
M = M0. Thus the real significance of Proposition 2 appears when z(.) 6= 1
or α 6= 0.

2. Proof of Proposition 2

Following Theorem 1, it remains to get

∫
Q

(Φ
1
t )∗

[
λ−1|Q|α

n−1

v
1
t (x)

Θt(λ,Q)
]
v

1
t (x)dx

(2.1)

=λ−1|Q|α
n−1Θt(λ,Q)

∫
Q

SΦ,t

[
λ−1|Q|α

n−1Θt(λ,Q)
1

v
1
t (x)

]
dx

≤Θt(λ,Q) < ∞ for all λ > 0 and all cubes Q,

where v(x) =
(
Mα,t,Φ,zu

)
(x) and Θt(λ,Q) = |Q|

{
1

|Q|
∫

Q
Φ

(
λz(y)dy

)
u(y)dy

} 1
t

.

By the definition of v(.), then

(2.2) λ−1|Q|α
n

(
1
|Q|

∫
Q

Φ
(
λz(y)

)
u(y)dy

) 1
t

≤ S−1
Φ,t

(
λ|Q|−α

n

)
× v

1
t (x) for all λ > 0 and all cubes Q 3 x.

Condition (2.1) will appear once it is proved that

(2.3) λ−1|Q|α
n−1

∫
Q

SΦ,t

[
λ−1|Q|α

n−1Θt(λ, Q)
1

v
1
t (x)

]
dx ≤ 1.

For doing, call I(Q, t, λ) the left member of (2.3). Using the definition of
Θt(λ,Q) and (2.2), then inequality (2.3) will follow since

I(Q, t, λ) =

λ−1|Q|α
n−1

∫
Q

SΦ,t

[
λ−1|Q|α

n

(
1
|Q|

∫
Q

Φ
(
λz(y)

)
u(y)dy

) 1
t 1
v

1
t (x)

]
dx

≤ λ−1|Q|α
n SΦ,tS

−1
Φ,t

(
λ|Q|−α

n

)
≤ 1.
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3. Proof of Theorem 1

The result is based on two lemmas.

Lemma 3. The above condition (1.7) implies

(2.4)
∫

Q

Φ2

(
z2(x)

[
|Q|α

n−1

∫
Q

f(y)dy
])

u(x)dx ≤

Φ2Φ−1
1

[
|Q|

(
1
|Q|

∫
Q

Φ
1
t
1

(
2Az1(x)f(x)

)
v

1
t (x)dx

)t]
for all cubes Q and all f(.) ≥ 0.

Lemma 4. Suppose f(.) is a bounded nonnegative function with a compact
support. Let a > 2n and Ωk = {x; (Mαf)(x) > ak} for each integer k. Then
one can find non overlapping maximal dyadic cubes satisfying the following:

(2.5) Ωk ⊂
∪
j

(3Qjk);

(2.6) 4−nak < |Qjk|
α
n−1

∫
Qjk

f(y)dy ≤ 2−nak;

(2.7)
(
1 − 2n

a

)
|Qjk| < |Ejk|

for some disjoints sets Ejk ⊂ Qjk, and so

(2.8)
∑

k

∑
j

1IEjk
(.) ≤ 1.

This is a sort of discretization of Mα by means of Calderón-Zygmund, whose
details of proof can be seen in [Pe] (p. 678, 681 and 682).

By the monotone convergence theorem and since the estimates do not in-
volve the bound of f(.), then it can be assumed that this functions is nonnega-
tive, bounded and has a compact support. Therefore the chain of computations
which yields to the conclusion in Theorem 1 is as follows∫

Rn
Φ2

(
z2(x)(Mαf)(x)

)
u(x)dx =

∑
k

∫
Ωk\Ωk+1

Φ2

(
z2(x)(Mαf)(x)

)
u(x)dx

≤
∑

k

∑
j

∫
(3Qjk)

Φ2

(
z2(x)ak+1

)
u(x)dx by (2.5) and the definition of Ωk+1
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≤
∑

k

∑
j

∫
(3Qjk)

Φ2

[
c1z2(x)

(
|3Qjk|

α
n−1

∫
3Qjk

f(y)dy
)]

u(x)dx by (2.6)

≤
∑

k

∑
j

Φ2Φ−1
1

[
|3Qjk|

(
1

|3Qjk|

∫
(3Qjk)

Φ
1
t
1

(
2c1Az1(x)f(x)

)
v

1
t (x)dx

)t]
by Lemma 3

≤ Φ2Φ−1
1

[
c2

∑
k

∑
j

|3Qjk|
(

1
|3Qjk|

∫
(3Qjk)

Φ
1
t
1

(
2c1Az1(x)f(x)

)
v

1
t (x)dx

)t]
by the growth condition (1.6)

≤ Φ2Φ−1
1

[
c3

∑
k

∑
j

|Ejk|
(

1
|3Qjk|

∫
(3Qjk)

Φ
1
t
1

(
2c1Az1(x)f(x)

)
v

1
t (x)dx

)t]
by property (2.7)

≤ Φ2Φ−1
1

[
c3

∑
k

∑
j

∫
Ejk

[
MΦ

1
t
1

(
2c1Az1(.)f(.)

)
v

1
t (.)

]t

(x)dx

]
recall that M is the Hardy-Littlewood maximal operator

≤ Φ2Φ−1
1

[
c3

∫
Rn

[
MΦ

1
t
1

(
2c1Az1(.)f(.)

)
v

1
t (.)

]t

(x)dx

]
by property (2.8)

≤ Φ2Φ−1
1

[
c4

∫
Rn

[
Φ

1
t
1

(
2c1Az1(x)f(x)

)
v

1
t (x)

]t

dx

]
since t > 1 and M : Lt

1 → Lt
1, and here c4 > 1

≤ Φ2Φ−1
1

[∫
Rn

Φ1

(
2c1c4Az1(x)f(x)

)
v(x)dx

]
since Φ

1
t
1 (.) is convex function and c4 > 1.

To achieve the proof of Theorem 1, it remains to give

Proof of Lemma 3.
The conclusion in Lemma 3 is equivalent to

(2.9) Θt(λ,Q) ≤
∫

Q

Φ
1
t
1

(
2Az1(x)f(x)

)
v

1
t (x)dx = B(Q)

where λ = |Q|α
n−1

∫
Q

f(y)dy. On the other hand by condition (1.7) then

(2.10) A(Q) =
∫

Q

(Φ
1
t
1 )∗

[
λ−1|Q|α

n−1

Az1(x)v
1
t (x)

Θt(λ,Q)
]
v

1
t (x)dx ≤ Θt(λ,Q) < ∞.
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Estimate (2.9) can be obtained by using the Young inequality [which asserts

that s1s2 ≤ (Φ
1
t
1 )∗(s1) + Φ

1
t
1 (s2)] and (2.10) as follows

2Θt(λ,Q) =
∫

Q

λ−1|Q|α
n−1 × 2Θt(λ,Q)f(y)dy

=
∫

Q

[
λ−1|Q|α

n−1

Az1(y)v
1
t (y)

Θt(λ,Q)
]
×

[
2Az1(y)f(y)

]
v

1
t (y)dy

≤ A(Q) + B(Q) ≤ Θt(λ, Q) + B(Q).
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