ON RESIDUE FREE DIFFERENTIAL FORMS OF AN ALGEBRAIC SCHEME OVER A FIELD OF CHARACTERISTIC p

Tomio Uchibori

(Received March 10, 1997)

Abstract. Let V be an n-dimensional non-singular algebraic integral scheme over a perfect field k of characteristic p > 0 and K its algebraic function field. In this paper, we will prove the following:

Theorem B. Let ω be a differential form in $Z_{\infty}(K/k)$. Then the following three conditions are equivalent:

- (1) ω is residue free on V,
- (2) there exists an integer N such that $C_K^N(\omega) \in G_1(V)$,
- (3) $\omega \in D(V)$.

The above theorem is a generalization of the main theorem in Nakakoshi[5]. He proved the theorem in case of $degree(\omega) = n$.

AMS 1991 Mathematics Subject Classification. Primary 13N05, 12H05.

Key words and phrases. Differential form, residue, residue free, Cartier operator.

1. Preliminaries

Throughout this paper, k will denote a perfect field of characteristic p > 0. Let V be an n-dimensional non-singular algebraic integral scheme over k, where a scheme V is said to be algebraic over k if V is a separated scheme of finite type over k. We will denote by K the function field of V.

Let W be a prime divisor of V, R the local ring at the generic point of W. We know that R is a discrete valuation ring and call it the valuation ring of W. Let ν_R be its valuation. If $f \in R$, then we will denote by \overline{f} its canonical image in the residue field D of R. Since k is perfect, we can choose a family $\{t_1, t_2, \ldots, t_n\}$ of elements in R such that t_1 is a prime element of R (i.e. t_1R is the maximal ideal of R.) and $\{\overline{t}_2, \ldots, \overline{t}_n\}$ is a separating transcendental basis of D/k. We will call such a family $\underline{t} = \{t_1, t_2, \ldots, t_n\}$ a parameter of R. Then we know that $\{d\overline{t}_2, \ldots, d\overline{t}_n\}$ forms a basis of the module of Kähler differentials $\Omega^1(D/k)$ of D/k and $\{dt_1, \ldots, dt_n\}$ forms a free basis of $\Omega^1(R/k)$ as an R-module also a basis of $\Omega^1(K/k)$, (c.f. Kawahara-Uchibori[2]). We put $\Omega^r(K/k) = \bigwedge^r \Omega^1(K/k)$ and $\Omega(K/k) = \bigoplus_r \Omega^r(K/k)$. Then $\Omega(K/k)$ is

T. UCHIBORI

a graded K-algebra. Similarly we define $\Omega(R/k)$ and $\Omega(D/k)$. If there is no confusion, we will omit a symbol "/k".

Let \hat{R} be the completion of R. Then there exists a unique coefficient field E of \hat{R} such that $\hat{R} = E[[t_1]]$ and $E \supseteq k(t_2, \ldots, t_n)$ (c.f. Th. 28.3 in Matsumura[4]). The quotient field of \hat{R} is the field $E((t_1))$ of formal power series and K can be regarded as a subfield of $E((t_1))$.

Let ω be a differential form in $\Omega^r(K)$ (r > 0). Then ω can be uniquely expressed in the form

$$\omega = \sum_{1 < i_1 < \dots < i_r} g_{i_1, \dots, i_r} dt_{i_1} \wedge \dots \wedge dt_{i_r} + \sum_{1 < i_2 < \dots < i_r} h_{i_2, \dots, i_r} dt_1 \wedge dt_{i_2} \wedge \dots \wedge dt_{i_r},$$

$$(g_{i_1, \dots, i_r}, h_{i_2, \dots, i_r} \in K).$$

Elzein[1] defined the residue $\operatorname{res}_{R,\underline{t}}(\omega)$ of $\omega \in \Omega(K)$ as follows. The coefficient h_{i_2,\ldots,i_r} can be uniquely expressed as an element of $E((t_1))$ in the following form:

$$h_{i_2,...,i_r} = \sum_k h_{i_2,...,i_r,k} t_1^k \quad (h_{i_2,...,i_r,k} \in E).$$

Then the residue of ω is defined by

$$\operatorname{res}_{R,\underline{t}}(\omega) = \sum_{1 < i_2 < \dots < i_r} \overline{h}_{i_2,\dots,i_r,-1} d\overline{t}_{i_2} \wedge \dots \wedge d\overline{t}_{i_r},$$

where $\overline{h}_{i_2,\ldots,i_r,-1}$ is the canonical image of $h_{i_2,\ldots,i_r,-1}$ in the residue field D of \hat{R} . Moreover Elzein[1] proved the following property

$$\operatorname{res}_{R,t} \circ d + d \circ \operatorname{res}_{R,t} = 0.$$

It follows from this property that $\operatorname{res}_{R,\underline{t}}$ maps a closed differential to closed one and an exact differential to exact one. Since the map $\operatorname{res}_{R,\underline{t}}:\Omega^r(K)\to\Omega^{r-1}(D)$ is k-linear, we can define the map $\operatorname{res}_{R,t}:\Omega(K)\to\Omega(D)$ by linearity.

We will denote by $Z_1(K)$ (= ker d) all of closed differential forms and by $B_1(K)$ (= im d) all of exact differential forms in $\Omega(K)$. We define the graded subalgebra $H(\underline{t})$ of $\Omega(K)$ as follows:

$$H(\underline{t}) := K^{P}[t_1^{p-1}dt_1, t_2^{p-1}dt_2, \dots, t_n^{p-1}dt_n].$$

We have by Exercise(6) in §5 of E. Kunz[3] that

$$Z_1(K) = B_1(K) \oplus H(\underline{t})$$
 (direct sum as K^P -modules).

The Cartier operator $C_K: Z_1(K) \to \Omega(K)$ is a surjective ring-homomorphism which is defined by the following equations:

$$C_K(\omega) = 0 \quad (\omega \in B_1(K)), \quad C_K(a^p) = a \quad (a^p \in K^p),$$

 $C_K(t_i^{p-1}dt_i) = dt_i \quad \text{(for each } i\text{)}.$

The Cartier operator C_K is independent on the choice of a parameter \underline{t} and also independent on the choice of R. We put, for every integer m > 0,

$$B_{m+1}(K) = C_K^{-1}(B_m(K)), \quad Z_{m+1}(K) = C_K^{-1}(Z_m(K)).$$

Moreover we also put $B_{\infty}(K) = \bigcup_{m=1}^{\infty} B_m(K)$ and $Z_{\infty}(K) = \bigcap_{m=1}^{\infty} Z_m(K)$. Similarly we can define C_D and C_R (because a parameter $\{t_1, t_2, \ldots, t_n\}$ of R is a p-basis of R, see Lemma 1 of Ohi[6]). Moreover we can define $B_m(D)$, Lemma 2 of Suzuki[7] that

$$C_D \circ \operatorname{res}_{R,t} = \operatorname{res}_{R,t} \circ C_K$$
.

The following composition of two maps:

$$Z_{\infty}(K) \xrightarrow{\operatorname{res}_{R,\underline{t}}} Z_{\infty}(D) \xrightarrow{\operatorname{natural surjection}} Z_{\infty}(D)/B_{\infty}(D)$$

is independent on the choice of a parameter \underline{t} and denoted by res_R (c.f. [7], also see [6]). Furthermore, when R is the valuation ring of W, res_R is denoted by res_W .

2. Auxiliary Theorem

Let W be a prime divisor of V, R its valuation ring and \underline{t} a parameter of R. For a differential form $\omega \in \Omega(K)$, we define $\nu_R(\omega)$ as follows:

$$\nu_R(\omega) := -\min\{s \mid t_1^s \omega \in \Omega(R), s : \text{integer}\}.$$

It is clear that $\nu_R(\omega)$ is independent on the choice of a prime element t_1 of R. For an element ω of $Z_{\infty}(K)$, by Lemma 3 in [7], there exists an integer N such that

$$\nu_R(C_K^m(\omega)) \ge -1 \quad (m \ge N).$$

A differential form $\omega \in \Omega^r(K)$ can be uniquely expressed in the form $\omega_1 + \omega_2$, where

$$\begin{split} \omega_1 &= \sum_{1 < i_1 < \ldots < i_r} g_{i_1,\ldots,i_r} dt_{i_1} \wedge \cdots \wedge dt_{i_r}, \\ \omega_2 &= \sum_{1 < i_2 < \ldots < i_r} h_{i_2,\ldots,i_r} dt_1 \wedge dt_{i_2} \wedge \cdots \wedge dt_{i_r}, \quad (g_{i_1,\ldots,i_r}, h_{i_2,\ldots,i_r} \in K). \end{split}$$

Lemma 1. For a closed differential form $\omega \in \Omega^r(K)$, let $\omega_1 + \omega_2$ be the above expression of ω . Then the inequality $\nu_R(\omega) \geq -1$ implies that ω_1 belongs to $\Omega^r(R)$.

Proof. The inequality $\nu_R(\omega) \geq -1$ means $t_1\omega \in \Omega^r(R)$, hence $d(t_1\omega) \in \Omega^{r+1}(R)$. Since ω is closed and $dt_1 \wedge \omega_2 = 0$, we have that

$$d(t_1\omega) = dt_1 \wedge \omega = dt_1 \wedge (\omega_1 + \omega_2) = dt_1 \wedge \omega_1.$$

Therefore we have $dt_1 \wedge \omega_1 \in \Omega^{r+1}(R)$, which implies $\omega_1 \in \Omega^r(R)$.

T. UCHIBORI

102

Theorem A. Let W be a prime divisor of V and R its valuation ring. For a differential form ω in $Z_{\infty}(K)$, the following three conditions are equivalent:

- (1) $\operatorname{res}_W(\omega) = 0$,
- (2) there exists an integer N such that $C_K^N(\omega) \in \Omega(R)$,
- (3) there exists $\omega_R \in B_{\infty}(K)$ such that $\omega \omega_R \in \Omega(R)$.

Proof. $(1) \Rightarrow (2)$. We can assume that $\omega \in \Omega^r(K)$ by the linearity of C_K , C_D and res_W . By $\operatorname{res}_W(\omega) = 0$, we have $\operatorname{res}_{R,\underline{t}}(\omega) \in B_\infty(D)$ for any parameter \underline{t} of R. Hence there exists an integer N such that $C_D^N(\operatorname{res}_{R,\underline{t}}(\omega)) = 0$ and so we have $\operatorname{res}_{R,\underline{t}}(C_K^N(\omega)) = 0$. Moreover for a sufficiently large N, we can assume that $\nu_R(C_K^N(\omega)) \geq -1$. The differential form $C_K^N(\omega)$ can be expressed in the form $\omega_1 + \omega_2$, where

$$\omega_1 = \sum_{1 < i_1 < \dots < i_r} g_{i_1, \dots, i_r} dt_{i_1} \wedge \dots \wedge dt_{i_r},$$

$$\omega_2 = \sum_{1 < i_2 < \dots < i_r} h_{i_2, \dots, i_r} dt_1 \wedge dt_{i_2} \wedge \dots \wedge dt_{i_r}, \quad (g_{i_1, \dots, i_r}, h_{i_2, \dots, i_r} \in K)$$

$$h_{i_2,\dots,i_r} = \sum_{k \ge -1} h_{i_2,\dots,i_r,k} t_1^k, \quad (h_{i_2,\dots,i_r,k} \in E).$$

From the relation above $\operatorname{res}_{R,\underline{t}}(C_K^N(\omega)) = 0$, we have

$$\sum_{1 < i_2 < \dots < i_r} \overline{h}_{i_2, \dots, i_r, -1} d\overline{t}_{i_2} \wedge \dots \wedge d\overline{t}_{i_r} = 0,$$

which implies $\overline{h}_{i_2,\ldots,i_r,-1}=0$ for any $1< i_2<\ldots< i_r$. Since the natural surjection: $\hat{R}\to D$ is injective on the coefficient field E of \hat{R} , we have $h_{i_2,\ldots,i_r,-1}=0$ and thus $\omega_2\in\Omega(R)$. On the other hand, by Lemma 1 we have $\omega_1\in\Omega(R)$. Therefore, we get $C_K^N(\omega)\in\Omega(R)$.

(2) \Rightarrow (3). Since the map $C_R^N: Z_N(R) \to \Omega(R)$ is surjective, there exist $\eta \in Z_N(R)$ such that $C_R^N(\eta) = C_K^N(\omega)$. We put $\omega_R = \omega - \eta$. Since $C_R^N(\eta) = C_K^N(\eta)$, we have that $\omega \in B_N(K) \subset B_\infty(K)$ and $\omega - \omega_R = \eta \in Z_N(R) \subset \Omega(R)$.

 $(3) \Rightarrow (1)$. By $\omega - \omega_R \in \Omega(R)$, we have $\operatorname{res}_{R,\underline{t}}(\omega - \omega_R) = 0$ and hence $\operatorname{res}_{R,\underline{t}}(\omega) = \operatorname{res}_{R,\underline{t}}(\omega_R)$. Since $\omega_R \in B_{\infty}(K)$, there exists an integer N such that $C_K^N(\omega_R) = 0$. Therefore, we have $C_D^N(\operatorname{res}_{R,\underline{t}}(\omega)) = \operatorname{res}_{R,\underline{t}}(C_K^N(\omega_R)) = 0$ and thus we get $\operatorname{res}_{R,\underline{t}}(\omega) \in B_N(K)$, which implies $\operatorname{res}_W(\omega) = 0$.

3. Main Theorem

In this section, we denote by R_W the valuation ring R of a prime divisor W.

Definition 1. For a differential form $\omega \in Z_{\infty}(K)$, we define ω is residue free on V if $\operatorname{res}_W(\omega) = 0$, for any prime divisor W of V.

We set $G_1(V) = \bigcap_W \Omega(R_W)$. A differential form in $G_1(V)$ is said to be the first kind.

Definition 2. We define the subsets $D_N(V)$ and D(V) of $\Omega(K)$ as follows: for a differential form $\omega \in \Omega(K)$, ω belongs to $D_N(V)$ if and only if for any prime divisor W of V, there exists $\omega_{R_W} \in B_N(K)$ such that $\omega - \omega_{R_W} \in \Omega(R_W)$. We put $D(V) = \bigcup_{N=1}^{\infty} D_N(V)$.

Lemma 2. Let f be an element of K. Then f belongs to R_W for almost all of W.

Proof. Let spec(A) be an affine open subset of V. Since $V - \operatorname{spec}(A)$ has only finite irreducible componets, almost all of the prime divisors meet to $\operatorname{spec}(A)$. We consider a prime divisor W such that $W \cap \operatorname{spec}(A) \neq \emptyset$. We can put f = b/a $(a, b \in A)$. The closed subset V(a) of $\operatorname{spec}(A)$ has only finite irreducible components and thus $f \in R_W$ for almost all of W.

Let $\{x_1, \ldots, x_n\}$ be a *p*-basis of K/k. Then any element ω of $\Omega^r(K)$ can be expressed in the form

$$\omega = \sum_{i_1 < \dots < i_r} h_{i_1, \dots, i_r} dx_{i_1} \wedge \dots \wedge dx_{i_r} \quad (h_{i_1, \dots, i_r} \in K).$$

Lemma 3. Let ω be an element of $\Omega(K)$. Then ω belongs to $\Omega(R_W)$ for almost all of W.

Proof. We assume $\omega \in \Omega^r(K)$ and use the above expression of ω . By Lemma 2, for almost all of W, R_W contains all of the elements h_{i_1,\ldots,i_r} $(i_1 < \ldots < i_r)$ and x_i $(1 \le i \le n)$, and thus $\omega \in \Omega(R_W)$ for almost all of W.

Theorem B. Let ω be a differential form in $Z_{\infty}(K)$. Then the following three conditions are equivalent:

- (1) ω is residue free on V,
- (2) there exists an integer N such that $C_K^N(\omega) \in G_1(V)$,
- (3) $\omega \in D(V)$.

Proof. (1) \Rightarrow (2). By Lemma 3, the set S of prime divisor W such that $\omega \notin \Omega(R_W)$ is finite. Put $S = \{W_1, \ldots, W_S\}$. By Lemma A, there exists N_i such that $C_K^{N_i}(\omega) \in \Omega(R_{W_i})$ for each i. We put $N = \max\{N_1, \ldots, N_S\}$, then we have $C_K^N(\omega) \in G_1(V)$. The implications (2) \Rightarrow (3) and (3) \Rightarrow (1) are immediately proved by Theorem A.

References

- F. Elzein, Residues en Géométrie Algébrique, Compositio Mathematica 23 (1971), 379-405.
- Y. Kawahara and T. Uchibori, On residues of differential forms in algebraic function fields of several variables, TRU Math. 21 (1985), 173-180.
- 3. E. Kunz, Kähler Differentials, Vieweg Advanced Lectures in Mathematics, 1986.
- 4. H. Matsumura, Commutative Algebra (SecondEdition), Benjamin, New York, 1980.
- 5. K. Nakakoshi, Differential forms of the second kind over a field characteristic p, Arch. Math. 58 (1992), 248-250.
- 6. T. Ohi, On residues of differential forms over a field of characterisic p, SUT J. of Math. 31 (1995), 103-111.
- 7. Y. Suzuki, A remark on residues of differential forms in algebraic function fields of several variables, SUT J. of Math. 29 (1993), 311-322.

Tomio Uchibori

Department of Agricultural Engineering, Faculty of Agriculture, Tokyo University of Agriculture

1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156, Japan