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THE EXPONENTIAL INTEGRAL AND THE
CONVOLUTION
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Abstract. The exponential integral ei(Az) and its associated functions eiy (Az)
and ei_(Az) are defined as locally summable functions on the real line and
their derivatives are found as distributions. Some convolution products of these
distributions and other distributions are then found.
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The exponential integral ei(x) is defined for x > 0 by

ei(x) = /:O ute ™ du, (1)

see Sneddon [3], the integral diverging for x < 0. It was pointed out in [1]
that equation (1) can be rewritten in the form

[e.e]
ei(x) = / u e — H(1 —u)]du— H(1 —x)ln |z,
T
where H denotes Heaviside’s function. The integral in this equation is con-

vergent for all z and so was used to define ei(z) on the real line.
More generally, if A # 0, ei(Az) was defined in the obvious way by

ci(\r) = /;O w Ve — H(1 —u)]du— H(1 — \z) In |\, )

xT

Further, eiy (Ax) and ei_(Az) were defined by
eiy(A\x) = H(x)ei(Ax), ei_(Ax)= H(—x)ei(\x)
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so that
ei(Az) = eiy(Ax) + ei_(Ax). (3)

In particular, if A > 0, we have
ei(\x) = /OO u e — H(1 — )] du— H(1 = Xx)In|\z|, (4)
eip(A\x) = /Oo u e ™ du, x>0, (5)
ei_(A\z) = —y—In|\+ /Ou_l(e_m —1Ddu—Inz_, x<0, (6)

where

v = —/0 ue™ — H(1 — M) du

is Euler’s constant.
If A <0, we have

eilA\z) = —/ ue™ — H(1 — )| du — H(1 — Az)In | z|, (7)

eiy(Ar) = —y—In|A|— / w e ™ —1)du—Inzy, >0, (8)
0

ei_(Ax) = —/ w e Mdu, x<0. (9)

The derivatives of these functions were found as

iAz)] = —eMat=—2t =) (_Z,,A)in—l, (10)
=1 :
i) = —e it = (4 I A)O()
= o -y e g, @)

=1
i) = e Ml 4 (v + I A)3(x)

RO U
= x' - ; ﬁ:cz_ " (v +In[ADS (), (12)

for all A # 0.
We now note the following results obtained by replacing « by —x in the
functions ei(Az), eiy (Ax) and ei_(Az).

eilA(—z)) = ei((—=N)z
eip(AM(—=z)) = H(=z)ei(A(—x)) = ei_((=N)z), (14)
ei_(AN(—x)) = H(x)ei
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These results will be used to deduce results for A < 0 from results proved for
A > 0.

The classical definition of the convolution product of two functions f and
g is as follows:

Definition 1. Let f and g be functions. Then the convolution product f g
is defined by

(Fro)a) = [ sglo—t)ar
for all points x for which the integral exist.

It follows easily from the definition that if f * g exists then g * f exists and

frg=gxf (16)
and if (fxg) and f* g (or f' *g) exists, then
(f*9) =fxg (or f'xg) (17)

Definition 1 can be extended to define the convolution product f * g of
two distributions f and g in D’ with the following definition, see Gel’fand and
Shilov [2].

Definition 2. Let f and g be distributions in D’'. Then the convolution
product f * g is defined by the equation

(fxg)(x), ) = (f(y), (9(2), ¢(x +y)))

for arbitrary ¢ in D, provided f and g satisfy either of the conditions
(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side.

It follows that if the convolution product f* g exists by this definition then
equations (16) and (17) are satisfied. In the following, the locally summable
functions ej\f and e** are defined for A # 0 by

eﬁ‘f = H(z)eM M = H(—z)eM.

Note that

6)\(—:6)

= el Ve A0 = N AT (18)

€+ = €_ 9

These results will also be used to deduce results for A < 0 from results proved
for A > 0.
We now prove the following theorem
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Theorem 1. If\# 0 and p # 0, then the convolution product iy (Ax) x el
exists and

iy (Az) * el = pmH e eiy [(A + p)a] + In |1+ /A" —eir (M)} (19)
if A+ p # 0 and
eiy (Az) % e = A eip (Ax) + (v + In |A)e3™ + e M Inay]. (20)
if A+ p=0.

Proof. The convolution product eit(Az)* el = 0 if z < 0 and so we suppose
that > 0. There are four cases to consider to prove equation (19).

Case (i). A >0, A+p>0.
We first of all prove that

cip(\p) kbt = prlet /05”’ u e — o= OFmu) gy 4
(e — 1) eip (Mx). (21)
We have
eiy(A\z) xel” = /Ox et@=t) /too ule M du dt

= / u_le_’\“/ etl@=t) dtdu—l—/ u_le_A“/ ==t gt du,
0 0 T 0
= ,u_le‘ff/ uHe M — e M) gy 4
0
(e — T)eiy (M),

giving equation (21).
Further,

/ w e — H(1l — )] du = / u e ™™ — H(1 — )] du +
0 0
—/ ute ™ du +/ w T H(1 - \u)du

= —y—eir(A\x)+ / w H(1 — \u) du.
(22)
Similarly

/oz u e — H(1 = A+ pu)ldu = — —eir[(A+ p)a] +

—l—/ H[1 — (A + p)u] du.
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It follows from equations (22) and (23) that
/Oxu_l(e_m — ey = el [(A+ p)a] — eiyp(Az) +
+ /Oo W H (1 = M) — H(1 = (A + p)u)] du
= ei+F()\ + p)x] —eip(Ax) +In(1 4+ p/X). (24)
Equation (19) now follows from equations (21) and (24) for Case (i).

Case (ii). A>0, A+pu<0.

Equations (21) and (22) again hold in this case but since A + p < 0, we
have from equation (8)

/ N em AT _ ) dy = —y —In| A+ pf —eiy [N+ p)z] —Inz,.  (25)
0

It follows from equations (22) and (25) that equation (24) again holds. Equa-
tion (19) follows for Case (ii).

Case (iii). A <0, A4+ u<0.
This time we have
T T t
eiy(Az)xel” = —(y+1In \)\])/ ettt — / et =t) / u (e M — 1) dudt +
0 0 0

—/ M=) 11y du
0

= —pu v+ In|A)(e"® —1) — / u (e M — 1)/ @0 dt du +
0 U

+u_le‘m/ Inud(e ™ " —1)
0

= —p 'y + A — 1) +
+u [ wT e —1) (1 — P T dy +
0

+p7 11— ") Inz — u_le’“”/ u e ™ — 1) du
0

= —pleiy (M) — u_le’“/ u”H(em OB emiuy gy 4
0

xr
—pu (v + In|X\)et” — p et Ing — ,u_le“x/ u e M — 1) du
0

= —pteip(\x) — /fle’“/ uHem U 1) du +
0
—u Yy +In | N\)ett — et Ing

and equation (19) follows for Case (iii).

(26)
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Case (iv). A <0, A+p>0.
Equation (26) still holds for this case but this time we have

X [ee]
/ uHem MY ) du = / e OFWY — H(1 — (A + p)u)] du +
0 0

1

1S9 (A p)~
—/ u tem (At gy, +/ g wldu
= —y—eit[(A+p)z] — In[(A + p)a]

and equation (19) now follows from this equation and equation (26) for Case
(iv).

We now have a further two cases to consider when A 4+ p = 0.

Case (v). A>0, A\ +p=0.

Equation (21) holds for this case. Further, replacing A+ p by p in equation
(25) we have

/0 Tl e — 1) du = —y — eiy () — In(Aa) 27)

and equation (20) now follows from equation (21) for Case (v).
Case (vi). A<0, A+p=0.
Equation (26) holds when p = —\ but it reduces to

eis () € = ALk (M) + A7y InADe™ + AT1e M In

and equation (20) follows for Case (vi). O

Corollary 1.1. If\ # 0 and p # 0, then the convolution product (e_’\%:f)*
e‘f exists for s = 1,2,.... In particular, if A + p # 0, then

(e aih) v el = —eMeiy [(A+ p)z] — (v +In A+ p))ef”  (28)

and if A+ p =0, then

(e e % e = e Minwy. (29)
Proof. The convolution product (e **27*) e/ exists by Definition 2 for
s=1,2,...since e_’\xxjrs and e’ff are both bounded on the left. In particular,

we have from equations (11), (17) and (19)

(et — (v + I ADS(2)] x e = els (Ax) * [nelt” + 5(2)]
= e"ei, [(A+ p)a] +In |1 + /At



THE EXPONENTIAL INTEGRAL AND THE CONVOLUTION 145

and equation (28) follows.
Similarly, using equations (11), (17) and (20), we have

[—e Mzt — (v +InADS(2)] * e = eip(Ax) # [~ e + 6(x)]
= —eiy(A\z) — (y +In|A)el™ — e M Inzy +eiy (M)

and equation (29) follows. O

Theorem 2. If\ # 0 and p # 0, then the convolution product ei_ (\z) x e"”
exists and

ei_(Ax) * e = —p Het el [N+ p)a] +1In |1+ /A" —ei_(Ax)}  (30)
ifA+p#0, and
ei_(Az) x e ™ = —A"Hei_ (M) + (v + In|A)e=* + e M Inx_] (31)
if A+ p=0.
Proof. Replacing A by —\ and p by —p in equation (19) we get
eip (~N)z) % e = el el (<A — p)a] + In |1+ u/A)el " +
—eiy ((=A)z)}

and equation (30) follows on replacing = by —z in this equation.
Equation (31) follows similarly. O

Corollary 2.1. If\ # 0and p # 0, then the convolution product (e~ **z~%)x
e exists for s = 1,2, .... In particular, if \ + 1 # 0, then
(e X021y 4 e = —ehoi_[(A+ p)a] — (v + In]A+ pe  (32)
and if A+ p =0 then
(e Mz ) xe ™ = Ming_. (33)

Proof. The existence of convolution product (e 2% x " follows from

equations (11), (17) and (30). In particular, we have from equations (11), (17)
and (30)

ez 4 (v + In|A)S(x)] x e = ei_(\x) * [ue™ — 6(x)]
—eMei [N+ p)x] — In(1 + p/N)et”

and equation (32) follows. Similarly, using equations (11), (17) and (31), we
have

ez 4 (v 4+ InA)o(2)] x e~ = ei_(Ax) * [-Ae™ — d(2)]
= (y+In\)e M +e Mz

and equation (33) follows. O
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Theorem 3. If A, A+ p > 0 and p # 0, then the convolution product
eiy (A\x) * e!® exists and

eiy (Az) * e’ = 1 In(1 + p/N)et®. (34)
Proof. We have

o0 o0
eiy (Ax) x et = / e“(m*t)/ ute ™ dudt
0 t

= /OO u e /u M@=t gt dy
0 0

= pler® /Oo uil[e#‘“ — efo‘ﬂ‘)“] du.
0
Now
/ u e M — e_(>‘+“)“] du = / u e ™ — H(1 — \u)] du +
0 0
[T e Ot ] du
0
+/ wHHQ = M) — H(1 — (A + p)u)] du
0
= —v+y+In(1+pu/N)

and equation (34) follows. O

Note 1. Theorem 3 is equivalent to the van der Pol formula [4]

/OOO e PPei(\z)dz = p~tn(l+p/N).
Corollary 3.1. If A\, A+ pu > 0 and p # 0, then the convolution product
(e A2 1) % M exists and
(e72a7) % e = —(y + In|A + e, (35)
Proof. Differentiating equation (34) we get
[—e Mzt — (v +In A3 (z)] * e = In(1 + p/\)et”

and equation (35) follows. O

Note 2. Corollary 3.1 is equivalent to
o
/ e*pxxjrl dr = —y — Inp,
—0o

due to Gel’fand and Shilov [2].
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Corollary 3.2. If A, A+ pu > 0 and pu # 0, then the convolution products

eir(\z) * e and (e a7 !) * * exist and

eiy(Az) x e = pHeip(Az) — e*eiy [N+ p)x] + In(1 4 p/N)e""}

(36)
(e M) s et = e eip[(A+ p)a] — (v +In|X + pl])e. (37)
Proof. Equation (36) follows from equations (19) and (34). Equation (37)

then follows from equations (28) and (35). O

Theorem 4. If A A+ u < 0 and p # 0, then the convolution product
ei_(A\x) * e!* exists and

ei_(Ax) x e = —p M n(1 4 p/X)e!”. (38)
Proof. Replacing A by —\ and p by —p in equation (34) we get
el [(=A)z)] % e = —p "t (1 + p/N)e

and equation (38) follows on replacing x by —z in this equation. O

The results of the corollaries follow easily.

Corollary 4.1. If A A+ pu < 0 and p # 0, then the convolution product
(e Mzl x el exists and

(e ™1) % eh = —(y +1In |\ + ) e

Corollary 4.2. If A, A+ p < 0 and u # 0, then the convolution products

ei_(\z) * e and (e xZ!) x €/ exist and

ei_(Az) * " = p~Heio (Ax) — " ei_[(A + p)z] + In(1 + p/N)el®
(e MaZh) x el = e el [(A + p)a] — (v + In A + pl)eh”.
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