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Abstract. Given two closed linear operators T and A in a Banach space,
a sufficient condition is presented for the family {T (κ); Re κ > a} = {T +
κA; Re κ > a}, a ∈ R, to be holomorphic of type (A). Detailed results are
established when T and A are m-accretive in a reflexive Banach space. The

results restricted to the Hilbert space case are almost identical with Kato’s.
As an application a simple first-order singular differential operator in the Lp-
space (1 < p < ∞) is discussed. This is a generalization of Kato’s result in the
L2-case.
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Introduction

This paper is our first attempt to generalize Kato’s theory [6] of holomor-
phic families of closed linear operators from the Hilbert space case to the
(reflexive) Banach space case. We start with a brief review of Kato’s theory.

Let T and A be linear m-accretive operators in a Hilbert space H. Then
Kato assumes that A−1 exists (but not necessarily bounded) and there is a
constant a ∈ R such that

(0.1) lim sup
ε→0

(|ε|−1 Re ε≥δ>0)

Re((A + ε)−1v, T ∗v) ≥ −a‖v‖2 ∀ v ∈ D(T ∗),

where T ∗ is the adjoint of T (and δ may depend on v). Under these conditions
he proved among others that {T + κA; Re κ > a} forms a holomorphic family
of type (A) (see [6, Theorem 2.1]). Kato remarks that if A−1 is bounded, then
(0.1) equals

(0.2) Re(A−1v, T ∗v) ≥ −a‖v‖2 ∀ v ∈ D(T ∗)

and this condition is identical with Sohr’s (see [11], [12]). For an interesting
characterization of the condition (0.2) with a = 0 we refer to Miyajima [7].
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Now let {Aε; ε > 0} be the Yosida approximation of A:

Aε := A(1 + εA)−1 = ε−1[1 − (1 + εA)−1], ε > 0.

Then the second author of the present paper introduced the following condition
for T + A (or its closure) to be m-accretive in H: there are constants a ≤ 1
and b, c ≥ 0 such that for all u ∈ D(T ),

(0.3) Re(Tu,Aεu) ≥ −a‖Aεu‖2 − b‖Aεu‖ · ‖u‖ − c‖u‖2

(see [8, Theorem 4.2 and Corollary 5.5]). It was shown in [8, Theorem 4.7]
that if a ≥ 0, then (0.2) implies (0.3) with b = c = 0. Here we should mention
that the proof in [8] can be modified to include the case of a < 0. In fact, the
inequality (4.10) in [8] can be replaced with (in the notation of this paper)

Re(Tnu,Aεu) ≥ −a‖(1 + n−1T ∗)−1Aεu‖2 ∀ u ∈ H,

where {Tn; n ∈ N} is the Yosida approximation of T (it remains to let n → ∞).
This is nothing but the inequalty (3.1) in [6, Lemma 3.1] (with A replaced with
Aε). Therefore, we see that (0.3) is also a generalization of (0.2). It should
be noted further that A need not be invertible in condition (0.3). Inequalities
of the form (0.3) makes sense even in a (reflexive) Banach space if we replace
the inner product (Tu,Aεu) with the semi-inner product (Tu, F (Aεu)):

(0.4) Re(Tu, F (Aεu)) ≥ −a‖Aεu‖2 − b‖Aεu‖ · ‖u‖ − c‖u‖2,

where F is the duality map on the Banach space X to its adjoint X∗.
Thus the purpose of this paper is to reveal the usefulness of conditions of

the form (0.4) in a (reflexive) Banach space. Namely, in Section 1 we consider
the following inequality (introduced in [8]):

(0.5) Re(Tu, F (Au)) ≥ −a‖Au‖2 − b‖Au‖ · ‖u‖ − c‖u‖2,

where T and A are simply assumed to be closed linear operators in a general
Banach space. It ensures that {T +κA; Re κ > a} forms a holomorphic family
of type (A). In this connection we note that Borisov [2] considered the family
{T + κA} for T and A in a Hilbert space, satisfying

Re(Tu,Au) ≥ −a‖Tu‖2 − b‖Tu‖ · ‖u‖ − c‖u‖2;

in this case the region of holomorphy is proved to be a circle of diameter a−1

(cf. [2, Lemma 1]). Section 2 is concerned with holomorphic families of linear
m-accretive operators in a reflexive Banach space; we can use the fact that
(0.4) implies (0.5). In the last Section 3 the first-order singular differential
operator d/dx + κx−1 in Lp(0,∞), 1 < p < ∞, will be analyzed in detail by
using the theorems in the preceding sections. Roughly speaking, the operators
in this application are not only m-accretive but also m-dispersive, that is, they
are the generators of positive contraction semigroups. In other words, they
are resolvent positive operators (cf. Arendt [1]).

Finally, we hope to deal with in a forthcoming paper typical examples of
second-order singular differential operators in Lp by applying a generalization
(Banach space version) of [6, Theorem 2.2].
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1. Holomorphic families of closed linear operators

Let T and A be two closed linear operators from a Banach space X to
another Y . The domain and range of an operator B from X to Y are denoted
by D(B) and R(B), respectively. Then we consider the operator

(1.1) T + κA, with domain D0 := D(T ) ∩ D(A),

where κ is a complex parameter and D0 is assumed to be non-trivial. We
ask if T + κA forms a holomorphic family of type (A). An answer is given by
Theorem 1.2 below.

First let us recall the definition (see Kato [4, VII-§2]). Let G0 be a domain
in C. Then a family {T (κ); κ ∈ G0} is said to be holomorphic of type (A) if

i) T (κ) is a closed linear operator (from X to Y ) with domain D(T (κ)) = D
independent of κ;

ii) T (κ)u is holomorphic with respect to κ in G0 for every u ∈ D.
In particular, if T (κ) is a linear function of κ as in (1.1), then only the closed-
ness of T + κA is required.

Now let Y ∗ be the adjoint space of Y . Then F denotes the duality map on
Y to Y ∗: for every y ∈ Y ,

F (y) := {g ∈ Y ∗; (y, g) = ‖y‖2 = ‖g‖2}.

The homogeneity of F is worth noticing: F (ry) = rF (y), r ≥ 0.
The next lemma is fundamental in this paper.

Lemma 1.1 ([8, Lemma 1.1]). Let S, B be linear operators from X to Y. Set
D(S + B) := D(S) ∩ D(B). Assume that for every u ∈ D(S + B) there is
g ∈ F (Bu) such that

(1.2) Re(Su, g) ≥ −γ‖u‖2 − β‖Bu‖ · ‖u‖ − α‖Bu‖2,

where α ∈ R(α < 1) and β, γ ≥ 0 are constants.
Then B is (S + B)-bounded :

‖Bu‖ ≤ (1 − α)−1‖(S + B)u‖ + K1‖u‖, u ∈ D(S + B),

and hence S is also (S + B)-bounded :

‖Su‖ ≤ 2 − α

1 − α
‖(S + B)u‖ + K1‖u‖, u ∈ D(S + B),

where K1 := β(1 − α)−1 +
√

γ(1 − α)−1.

Our first result is the following
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Theorem 1.2. Let T,A be closed linear operators from X to Y . Assume
that for every u ∈ D0 there is g ∈ F (Au) such that

(1.3) Re(Tu, g) ≥ −c‖u‖2 − b‖Au‖ · ‖u‖ − a‖Au‖2,

where a ∈ R and b, c ≥ 0 are constants.
Then T + κA is closed for κ with Re κ > a and {T + κA; Re κ > a, κ 6= 0}

forms a holomorphic family of type (A); κ = 0 is an exceptional point even if
a < 0.

Proof. Fix r > 0 arbitrarily. Then we see from (1.3) that for every u ∈ D0

there is g ∈ F (rAu) such that

Re((T + aA)u, g) ≥ −rc‖u‖2 − b‖rAu‖ · ‖u‖.

This is nothing but the inequality (1.2) with S = T + aA,B = rA and α = 0.
Therefore it follows from Lemma 1.1 that

(1.4) ‖rAu‖ ≤ ‖(T + (a + r)A)u‖ + K2‖u‖,

where K2 := b +
√

rc, and

‖(T + aA)u‖ ≤ 2‖(T + (a + r)A)u‖ + K2‖u‖.

Consequently, we obtain

‖Tu‖ ≤ (2 + r−1|a|)‖(T + (a + r)A)u‖ + (1 + r−1|a|)K2‖u‖.

This inequality implies together with (1.4) that T + (a + r)A is closed.
Next let κ ∈ C with |κ − (a + r)| < r. Then it follows from (1.4) that

‖(κ − (a + r))Au‖ = r−1|κ − (a + r)| · ‖rAu‖
≤r−1|κ − (a + r)|

(
‖(T + (a + r)A)u‖ + K2‖u‖

)
.

Since r−1|κ − (a + r)| < 1, we see that

T + κA = T + (a + r)A + (κ − (a + r))A

is closed; note that closedness is stable under relatively bounded small pertur-
bation (see Kato [4, Theorem IV-1.1]). Noting further that

{κ ∈ C; Re κ > a} = ∪r>0 {κ ∈ C; |κ − (a + r)| < r}(1.5)

= ∪r>a+ {κ ∈ C; |κ − (a + r)| < r},

where a+ := max {a, 0}, we obtain the assertion of the theorem. ¤
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Remark 1.3. In particular, if a < 0 in (1.3), then we can take r = −a in
(1.4) :

(1.6) ‖Au‖ ≤ (−a)−1‖Tu‖ + K3‖u‖, u ∈ D0,

where K3 = (−a)−1K2 = b(−a)−1 +
√

c(−a)−1. To conclude that A is T -
bounded, it is necessary to know that D0 is a core for T . This will be achieved
in Theorem 2.2.

Proposition 1.4. Let T,A be closed linear operators from X to Y . Assume
that for every u ∈ D0 there is g ∈ F (Au) such that

(1.7) Re(Tu, g) ≥ −a‖Au‖2,

where a ∈ R is a constant. Assume further that T +tA is boundedly invertible
for every t > a+.

Then T + κA is also boundedly invertible for κ ∈ C with Re κ > a.

Proof. Fix r > a− := max {−a, 0} arbitrarily. Then as in Proof of Theorem
1.2 we have

‖(κ − (a + r))Au‖ ≤ r−1|κ − (a + r)|‖(T + (a + r)A)u‖,

where κ ∈ C with |κ − (a + r)| < r (note that K2 = 0 by (1.7)). Since
a + r > a + a− = a+, we see by assumption that T + (a + r)A is boundedly
invertible. Since r−1|κ − (a + r)| < 1, it follows that

T + κA = T + (a + r)A + (κ − (a + r))A

is also boundedly invertible; note that bounded invertibility is stable under
relatively bounded small perturbation (see Kato [4, Theorem IV-1.16]). In
view of (1.5) we obtain the assertion. ¤

2. Holomorphic families of m-accretive operators

Let F be the duality map on a Banach space X to its adjoint X∗. Then a
linear operator B in X is accretive if for every u ∈ D(B) there is f ∈ F (u) such
that Re(Bu, f) ≥ 0. By definition an accretive operator B in X is m-accretive
if R(B + ξ) = X for ξ > 0.

Now let T and A be linear m-accretive operators in a reflexive Banach
space X. As in Section 1 we consider the operator

(2.1) T + κA, with domain D0 := D(T ) ∩ D(A).

The m-accretivity of A allows us to use the Yosida approximation {Aε; ε > 0}
of A (see Introduction). Accordingly we can state our basic assumption as
follows.
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(A1) For any u ∈ D(T ) and ε > 0 there is fε ∈ F (Aεu) such that

(2.2) Re(Tu, fε) ≥ −c‖u‖2 − b‖Aεu‖ · ‖u‖ − a‖Aεu‖2,

where a ∈ R and b, c ≥ 0 are constants.

The m-accretivity of T+A depends on the size of the constant a in condition
(A1).

Lemma 2.1([8, Theorem 4.2]). Let T and A be m-accretive in reflexive X.
Assume that condition (A1) (with 0 ≤ a ≤ 1) is satisfied. If a < 1 then T +A
is m-accretive in X and D0 is a core for A. In particular, if a = 0 then D0 is
a core for T . If a = 1 then (T +A)̃ , the closure of T +A, is m-accretive in X.

The next theorem is an immediate consequence of the consideration in [8]
and Theorem 1.2.

Theorem 2.2. Let T and A be m-accretive in reflexive X. Assume that
condition (A1) is satisfied. Then

(a) T + tA is m-accretive in X for t > a+ := max{a, 0}; consequently, D0

is dense in X. In particular, if a > 0 in (2.2), then (T +aA)̃ is also m-accretive
in X.

(b) D0 is a core for A; consequently,

(2.3) (A + ζ)−1 = s-lim
t→∞

(t−1T + A + ζ)−1, Re ζ > 0.

(c) If a ≤ 0 in (2.2), then D0 is a core for T .
(d) If a < 0 in (2.2), then A is T -bounded with T -bound less than or equal

to (−a)−1 so that D0 = D(T ).
(e) T + κA is closed for κ with Re κ > a and {T + κA; Re κ > a} forms a

holomorphic family of type (A).

Proof. Let t > 0. Then it follows from (2.2) that

Re(t−1Tu, fε) ≥ −t−1(c‖u‖2 + b‖Aεu‖ · ‖u‖) − t−1a+‖Aεu‖2.

Since t−1T is m-accretive, we see from Lemma 2.1 that if t−1a+ < 1 then
T + tA = t(t−1T + A) is m-accretive in X and D0 is a core for A. For the
convergence (2.3) see Kato [4, Theorem VIII-1.5]. Since X is reflexive, the
m-accretivity of T + tA implies that D0 is dense in X (see Pazy [10, Theorem
1.4.6] or Yosida [13, VIII-§4]).

Now suppose that a > 0 in (2.2). Then we have

Re(a−1Tu, fε) ≥ −a−1(c‖u‖2 + b‖Aεu‖ · ‖u‖) − ‖Aεu‖2.

Since a−1T is also m-accretive, it follows from Lemma 2.1 that (T + aA)˜=
a(a−1T + A)˜is m-accretive in X. Thus we obtain (a) and (b).
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Next suppose that a ≤ 0 in (2.2). Then we have

Re(Tu, fε) ≥ −c‖u‖2 − b‖Aεu‖ · ‖u‖.

Therefore (c) follows also from Lemma 2.1. On the other hand, (d) is a non-
selfadjoint generalization of [8, Remark 5.6]. But since (d) is an important
information, we want to explain the relationship to Remark 1.3. First we note
that the inequality (1.3) follows from (2.2). In fact, we can find a subsequence
{fεn} of {fε} and g ∈ F (Au) such that

fεn → g (n → ∞) weakly

(see [8, Proof of Theorem 4.2]). Thus we obtain (1.3) and hence (1.6):

‖Au‖ ≤ (−a)−1‖Tu‖ + K3‖u‖, u ∈ D0.

Since D0 is a core for T (as noted in (c)), we can give a complete proof of (d).
Finally, we prove (e). As noted above, (1.3) follows from (2.2). Therefore

we see from Theorem 1.2 that {T +κA; Re κ > a (κ 6= 0)} forms a holomorphic
family of type (A). Now suppose that a < 0 in (2.2). Then we see from (d)
that D0 = D(T ). Therefore we do not need to exclude the origin κ = 0. Thus
we can conclude that {T + κA; Re κ > a} forms a holomorphic family of type
(A). ¤
Remark 2.3. If X∗ is uniformly convex, then the assertions (a) and (d) of
Theorem 2.2 are stated in Okazawa [9, Theorems 1.6 and 1.7] and applied to
the “m-accretivity” problem of Schrödinger operators in Lp(1 < p < ∞).

Now we are in a position to state the main theorem in this paper.

Theorem 2.4. Let T and A be m-accretive in reflexive X. Assume that
conditions (A1) above and (A2) below are satisfied.

(A2) For every u ∈ D(A), Im(Au, g) = 0 ∀ g ∈ F (u) and

(2.4) (u, f) ≥ 0 ∀ f ∈ F (Au).

Then
(i) {T + κA; Re κ > a} forms a holomorphic family of type (A), with

(2.5) ‖Au‖ ≤ (Reκ − a)−1‖(T + κA + λ)u‖ + K(Re κ)‖u‖,

where u ∈ D0, λ ∈ C with Re λ ≥ 0 and

(2.6) K(r) := b(r − a)−1 +
√

c(r − a)−1, r > a.

(ii) The left half-plane C− is contained in the resolvent set of T + κA for
Re κ > a.
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(iii) If a ≥ 0 in (2.2), then T +κA is m-accretive in X for κ with Re κ > a.
If a < 0 in (2.2), then T + κA is m-accretive in X for κ with Re κ ≥ 0.

(iv) If D00 ⊂ D0 is a core for T + κ0A for some κ0 > a+, then D00 is a
core for A.

Theorem 2.4 combined with Theorem 2.2 is regarded as a generalization
of Kato [6, Theorem 2.1] from the Hilbert space case to the reflexive Banach
space case.

To prove Theorem 2.4 we need two lemmas.

Lemma 2.5. Let A be a linear m-accretive operator in a Banach space X
and {Aε} its Yosida approximation. Assume that condition (2.4) is satisfied.
Then for any v ∈ X and ε > 0

(2.7) (v, fε) ≥ 0 ∀ fε ∈ F (Aεv).

Proof. Let u ∈ D(A) and ε > 0. Then it follows from (2.4) that

(2.8) ((1 + εA)u, f) ≥ 0, f ∈ F (Au).

Now let v ∈ X. Then (1 + εA)−1v ∈ D(A). So, we can obtain (2.8) with
u = (1 + εA)−1v for all fε ∈ F (A(1 + εA)−1v) = F (Aεv). ¤

The next lemma is a modification of Lemma 1.1.

Lemma 2.6. Under conditions (A1) and (2.4) one has

(2.9) ‖Aεu‖ ≤ (Reκ − a)−1‖(T + κAε + λ)u‖ + K(Re κ)‖u‖,

where u ∈ D(T ), Re λ ≥ 0 and K(·) is defined by (2.6).

Proof. Let u ∈ D(T ) and Re λ ≥ 0. Then it follows from (2.7) and (2.2) that

(Re κ)‖Aεu‖2 = Re(κAεu, fε)

≤ Re((T + κAε + λ)u, fε) + c‖u‖2 + b‖Aεu‖ · ‖u‖ + a‖Aεu‖2.

So we have

(Re κ − a)‖Aεu‖2 ≤
[
‖(T + κAε + λ)u‖ + b‖u‖

]
‖Aεu‖ + c‖u‖2

which implies (2.9). ¤

Proof of Theorem 2.4. (i) We have already proved that {T + κA; Re κ > a}
forms a holomorphic family of type (A) (see Theorem 2.2(e)). On the other
hand, (2.5) follows directly from (2.9).
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(ii) Let t > a+. Then the resolvent of T +κA will be given by the Neumann
series for Re λ > 0

(2.10) (T + κA + λ)−1 = (T + tA + λ)−1
∞∑

n=0

(t − κ)n
[
A(T + tA + λ)−1

]n
.

We will show that

(2.11) ‖A(T + tA + λ)−1‖ ≤ (t − a)−1[1 + K(t)(Re λ)−1], Re λ > 0,

where K(t) is given by (2.6). Since T + tA is accretive, it follows that

K(t)‖u‖ ≤ K(t)(Re λ)−1‖(T + tA + λ)u‖, Re λ > 0.

So, we see from (2.5) with κ = t > a+ that

‖Au‖ ≤ (t − a)−1[1 + K(t)(Re λ)−1]‖(T + tA + λ)u‖, u ∈ D0, Re λ > 0,

which is nothing but (2.11) because T + tA is m-accretive in X. Hence the
resolvent (2.10) exists for Re λ > 0 and κ in the region:

|t − κ| <
(t − a)Re λ

K(t) + Re λ
.

Noting that K(t) → 0(t → ∞) (see (2.6)), we have

{κ ∈ C; Re κ > a} =
∪

t>a+

{
κ ∈ C; |κ − t| <

(t − a)Re λ

K(t) + Re λ

}
.

(iii) First we note that (ii) implies

R(T + κA + λ) = X, Re κ > a, Re λ > 0.

On the other hand, we see from the first half of condition (A2) that T +κA is
accretive in X for κ with Re κ ≥ 0. Put P (a) := {κ; Re κ > a}∩{κ; Re κ ≥ 0}.
Then we have

P (a) =
{ {κ; Re κ > a} if a ≥ 0,

{κ; Re κ ≥ 0} if a < 0.

Therefore we obtain the assertion of (iii).
(iv) Let D00 be a core for T + t0A for some t0 > a+. Then it suffices to

show that (A + 1)D00 is dense in X (see Kato [4, Problem III-5.19]). Since
t−1T + A is m-accretive for t > a+ (see Theorem 2.2(a)), for every v ∈ X
there is a unique solution u(t) ∈ D0 to the equation

(2.12) (t−1T + A + 1)u(t) = v.
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But since D00 is a core for T + t0A, there is a sequence {un(t)} in D00 such
that in X × X

[un(t), (T + t0A)un(t)] → [u(t), (T + t0A)u(t)] (n → ∞).

Since A is (T + t0A)-bounded (see (2.5)), it follows that Aun(t) → Au(t) (n →
∞).

Now suppose that g ∈ X∗ annihilates (A + 1)D00. Then we have

((A + 1)u(t), g) = lim
n→∞

((A + 1)un(t), g) = 0.

This implies together with (2.12) that

(2.13) (v, g) = t−1(Tu(t), g).

So, it remains to show that

(2.14) t−1Tu(t) → 0 (t → ∞) weakly.

First we note that (2.12) is written as (T +tA+t)u(t) = tv. Since ‖u(t)‖ ≤ ‖v‖,
it follows from (2.5) (with κ = λ = t) that ‖Au(t)‖ ≤ [K(t) + (t − a)−1t]‖v‖.
Therefore we see again from (2.12) that {t−1Tu(t); t ≥ 1 + a+} is bounded:

‖t−1Tu(t)‖ ≤
(
3 + K(t) +

a

t − a

)
‖v‖.

Noting further that D(T ∗) is dense in X∗ (see Pazy [10, Lemma 1.10.5]) and
for every h ∈ D(T ∗)

|t−1(Tu(t), h)| ≤ t−1‖v‖ · ‖T ∗h‖,

we obtain (2.14). It then follows from (2.13) that (v, g) = 0 for all v ∈ X and
hence g = 0. ¤
Remark 2.7. (a) In particular, if b = c = 0 in (2.2), then Theorem 2.4(ii) is
a consequence of Proposition 1.4. In fact, let λ ∈ C with Re λ > 0. Then,
since (2.2) implies (1.3), we see from (2.4) that

Re((T + λ)u, f) ≥ −a‖Au‖2, f ∈ F (Au), u ∈ D0.

Furthermore, T + λ + tA is boundedly invertible for t > a+.
(b) If A is m-accretive in a Hilbert space, then condition (A2) means

that A is nonnegative selfadjoint. We shall see the usefulness of Theorem 2.4
(condition (A2)) in the next section, however, we note that condition (A2)
can be replaced with

(A2 ′) Given u ∈ D(A), Re(u, f) ≥ 0 for all f ∈ F (Au).

In a Hilbert space (A2 ′) is automatically satisfied.
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3. A first-order differential operator in Lp

As the simplest example of singular differential operators, we consider

(3.1)
d

dx
+

κ

x
, 0 < x < ∞,

in the reflexive Banach space Xp := Lp(0,∞), 1 < p < ∞.
Let W 1,p

0 = W 1,p
0 (0,∞) be the usual Sobolev space. Then the operator

Tp := d/dx with domain W 1,p
0 is m-accretive in Xp (see Kato [4, Example

IX-1.7]), with resolvent

(3.2) (Tp − ζ)−1v(x) =
∫ x

0

eζ(x−y)v(y) dy, Re ζ < 0

(see [4, Problem III-6.9]). If −ζ = ξ > 0, then (Tp+ξ)−1 is positive (more pre-
cisely, positivity preserving). Therefore, −Tp is m-dispersive in (real) Xp. The
perturbing operator Ap := x−1 is also m-accretive as a maximal multiplication
operator in Xp, with

(3.3) Im(Apu, F (u)) = 0 and (u, F (Apu)) ≥ 0 ∀ u ∈ D(Ap),

where F (v)(x) := ‖v‖2−p|v(x)|p−2v(x), v ∈ Xp. Thus condition (A2) is
clearly satisfied. The Yosida approximation of Ap is given by

Aε = Ap,ε = (x + ε)−1, ε > 0.

Since (Ap + ξ)−1 = x(1 + ξx)−1, it follows that −Ap is also m-dispersive in
(real) Xp.

Let p ′ be the conjugate exponent of p : p ′−1 + p−1 = 1. Then a simple
computation gives

(3.4) Re(Tpu, F (Ap,εu)) = p ′−1‖Ap,εu‖2, u ∈ W 1,p
0 .

In fact, we have for u ∈ C1
0 (0,∞)

(Tpu, |Aεu|p−2Aεu)(3.5)

= lim
δ↓0

∫ ∞

0

u′(x)(x + ε)−(p−1)(|u(x)|2 + δe−x)(p−2)/2u(x) dx;

note that we can take δ = 0 when p ≥ 2. Hence it follows that

Re(Tpu, |Aεu|p−2Aεu)

=
1
p

lim
δ↓0

∫ ∞

0

(x + ε)−(p−1) d

dx
(|u(x)|2 + δe−x)p/2 dx

+
1
2

lim
δ↓0

∫ ∞

0

δe−x(x + ε)−(p−1)(|u(x)|2 + δe−x)(p−2)/2 dx

=
p − 1

p

∫ ∞

0

(x + ε)−p|u(x)|p dx.
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Since C1
0 (0,∞) is dense in W 1,p

0 (0,∞), we obtain (3.4) (see [9, Remark 2.11]).
Thus (2.2) is true with a = −p ′−1 and b = c = 0. Since a < 0, we see from

Theorem 2.2(d) that D(Tp) ⊂ D(Ap) and

(3.6) ‖Apu‖ ≤ p ′‖Tpu‖, u ∈ D(Tp) = W 1,p
0 .

This is a form of the Hardy inequality (see e.g. Ziemer [14, Lemma 1.8.11]).
According to Theorem 2.4(i), {Tp + κAp; Re κ > −p ′−1} (with domain D0 =
W 1,p

0 ) forms a holomorphic family of type (A).
In particular, we see from Theorem 2.4(iii) that Tp + κAp is m-accretive in

Xp for Reκ ≥ 0.
On the other hand, the operator Sp := −d/dx with domain W 1,p =

W 1,p(0,∞) is also m-accretive in Xp (see Kato [4, Example IX-1.8]), that
is, −Sp is m-dissipative in Xp. The resolvent of −Sp is given by

(3.7) (−Sp − ζ)−1v(x) = −
∫ ∞

x

eζ(x−y)v(y) dy, Re ζ > 0

(see [4, III-Problem 6.9]). Therefore −Sp is m-dispersive in (real) Xp.
Another computation gives

(3.8) Re(Spu, F (Ap,εu)) ≥ −p ′−1‖Ap,εu‖2, u ∈ W 1,p.

In fact, let u := u∗|[0,∞) for u∗ ∈ C1
0 (R). Then we have (3.5) with Tpu and

u ′(x) replaced by Spu and −u ′(x), respectively. Hence it follows that

Re(Spu, |Aεu|p−2Aεu) =
1
p
ε−(p−1)|u(0)|p − p − 1

p
‖Aεu‖p.

Since the restriction of C1
0 (R) to [0,∞) is dense in W 1,p(0,∞), we obtain

(3.8), that is, (2.2) is true with a = p ′−1 and b = c = 0. In this case Ap is
not Sp-bounded. But since W 1,p ∩ D(x−1) = W 1,p

0 (see Lemma 3.1 below),
it follows from Theorem 2.4(i) that {Sp + κAp; Re κ > p ′−1} (with domain
D0 = W 1,p

0 ) forms a holomorphic family of type (A). Accordingly,

(3.9) {−(Sp − κAp); Re κ < −p ′−1} (with domain W 1,p
0 )

is holomorphic of type (A). In other words, the family (3.1) is also holomorphic
of type (A) for Re κ < −p ′−1 with domain W 1,p

0 .
In this connection it is worth noticing that D(Sp)∩D(Ap) is not a core for

Sp (cf. Theorem 2.2(c)).
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Lemma 3.1. W 1,p
0 (0,∞) = W 1,p(0,∞) ∩ D(x−1). Furthermore one has

(i) C∞
0 (0,∞) is a core for Tp + κAp for κ with Re κ > −p ′−1.

(ii) C∞
0 (0,∞) is a core for −Sp + κAp for κ with Re κ < −p ′−1.

Proof. Let φ ∈ C∞(0,∞) with 0 ≤ φ ≤ 1 and

φ(x) = 0 (x ≤ 1), φ(x) = 1 (x ≥ 2).

For u ∈ W 1,p(0,∞) ∩ D(x−1) set

un(x) := φn(x)u(x) := φ(nx)u(x) (x > 0), n ∈ N.

Then un ∈ W 1,p
0 (0,∞) and un → u (n → ∞) in W 1,p(0,∞); note that

∫ 2/n

1/n

|φ ′
n(x)u(x)|p dx ≤ Mp

∫ 2/n

1/n

x−p|u(x)|p dx → 0(n → ∞),

where M := max{s|φ ′(s)|; 1 ≤ s ≤ 2}. Hence W 1,p ∩ D(x−1) ⊂ W 1,p
0 . The

opposite inclusion follows from the Hardy inequality (3.6).
(i) By definition we have Tp = Tp,min (the closure of d/dx with domain

C∞
0 (0,∞)). It follows from (3.6) that C∞

0 (0,∞) is also a core for Tp + κAp

for Re κ > −p ′−1.
(ii) Noting that

‖(−Sp + κAp)u‖ ≤‖Tpu‖ + |κ|‖Apu‖

≤(1 + |κ|p ′)‖Tpu‖, u ∈ W 1,p
0 ,

we see that C∞
0 (0,∞) is a core for −Sp + κAp for Re κ < −p ′−1. ¤

Thus (3.1) gives two separate families of type (A) for Re κ > −p ′−1 and
for Re κ < −p ′−1, both with domain W 1,p

0 . Actually the second family can
be continued analytically across the line Re κ = −p ′−1 up to Re κ < p−1,
though it is no longer of type (A). To see this we have only to consider the
adjoint of the first family, with κ replaced with κ.

In this way we can prove an Lp-generalization of Kato [6, Theorem 4.1].

Theorem 3.2. There are two holomorphic families {T±
p (κ)} of realization of

(3.1) in Xp = Lp(0,∞), and the rest part of the statement is divided into two
parts.

I. T+
p (κ) := Tp + κAp = d/dx + κx−1, with domain W 1,p

0 , is closed for

Re κ > −p ′−1. T+
p (κ) has the following properties:

(i)+ T+
p (κ) = Tmin

p (κ) (the closed minimal realization of (3.1)).
(ii)+ T+

p (κ) has resolvent set C− and residual spectrum C+.
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(iii)+ For Re κ ≥ 0, T+
p (κ) is m-accretive in Xp, with resolvent

(3.10) (T+
p (κ) − ζ)−1v(x) = x−κ

∫ x

0

eζ(x−y)yκv(y) dy, Re ζ < 0;

consequently, −T+
p (κ) is m-dispersive in (real) Xp for κ ≥ 0.

(iv)+ For Re κ > p−1, T+
p (κ) = Tmax

p (κ) (the maximal realization of (3.1)).
(v)+ {T+

p (κ); Re κ > −p ′−1} = {Tp + κAp; Re κ > −p ′−1} forms a holo-
morphic family of type (A).

II. T−
p (κ) := −(Tp ′ − κAp ′)∗ is defined for Re κ < p−1. T−

p (κ) has the
following properties:

(i)− T−
p (κ) = Tmax

p (κ).
(ii)− T−

p (κ) has resolvent set C+ and point spectrum C−, with eigenfunc-

tions x−κeλx with Re λ < 0.
(iii)− For Re κ ≤ 0, T−

p (κ) is m-dissipative in Xp, with resolvent

(3.11) (T−
p (κ) − ζ)−1v(x) = −x−κ

∫ ∞

x

eζ(x−y)yκv(y) dy, Re ζ > 0;

consequently, T−
p (κ) is m-dispersive in (real) Xp for κ ≥ 0.

(iv)− For Re κ < −p ′−1, T−
p (κ) = Tmin

p (κ) = −(Sp − κAp).
(v)− {T−

p (κ); Re κ < −p ′−1} = {−Sp + κAp; Re κ < −p ′−1} forms a holo-

morphic family of type (A) with domain W 1,p
0 .

Proof. We have already proved basic inequalities (3.4) and (3.8). As men-
tioned above, the closedness of T+

p (κ) as well as (v)+ is a direct consequence
of (3.4) (see Theorem 2.2(e)).

(i)+ is nothing but Lemma 3.1(i). The first half of (ii)+ is a consequence of
Theorem 2.4(ii). We can prove the second half by a direct computation. The
m-accretivity of T+

p (κ) in (iii)+ is also a consequence of (3.3) and (3.4) (see
Theorem 2.4(iii)). It is not difficult to prove (3.10); compare with (3.2).

To prove (iv)+ we consider Tmax
p (κ). By definition v = Tmax

p (κ)u, u ∈
D(Tmax

p (κ)), is equivalent to

(3.12) (u, (Sp ′ + κAp ′)f) = (v, f) ∀ f ∈ C∞
0 (0,∞);

note that T ∗
p = Sp ′ and A∗

p = Ap ′ (p−1 + p ′−1 = 1). Since C∞
0 (0,∞) is a core

for Sp ′ + κAp ′ for Re κ > (p ′) ′−1 (see Lemma 3.1(ii)), we have

(u, (Sp ′ + κAp ′)f) = (v, f) ∀f ∈ W 1,p ′

0 , Re κ > p−1.

Noting further that Sp ′ + κAp ′ with domain W 1,p ′

0 is m-accretive in Xp ′ for
Re κ > p−1, we see from the definition of the adjoint that

Tmax
p (κ) = (Sp ′ + κAp ′)∗, Re κ > p−1.
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Since Tp +κAp ⊂ (Sp ′ +κAp ′)∗ and (Sp ′ +κAp ′)∗ is accretive, it follows from
the m-accretivity of Tp + κAp that

Tp + κAp = (Sp ′ + κAp ′)∗, Re κ > p−1.

This completes the proof of Part I.
It remains to prove Part II. To define T−

p (κ) for Re κ < p−1 it suffices to

consider Tp ′ − κAp ′ . In fact, Tp ′ − κAp ′ = d/dx− κx−1, with domain W 1,p ′

0 ,
is densely defined and closed for Re(−κ) > −(p ′) ′−1, that is, for Re κ < p−1

(other properties are stated in Part I). Noting that T ∗
p ′ = Sp and A∗

p ′ = Ap,
we have

(3.13) Sp − κAp ⊂ (Tp ′ − κAp ′)∗, Re κ < p−1.

In view of (3.9) we are led to the definition

(3.14) T−
p (κ) := −(Tp ′ − κAp ′)∗ for Re κ < p−1.

To prove (i)− and (ii)− let v = Tmax
p (κ)u, u ∈ D(Tmax

p (κ)). Then (3.12)
yields that

(u,−(Tp ′ − κAp ′)f) = (v, f) ∀ f ∈ C∞
0 (0,∞).

Since C∞
0 (0,∞) is a core for Tp ′ − κAp ′ for Re(−κ) > −(p ′) ′−1 (see Lemma

3.1(i)), we have

(3.15) (u,−(Tp ′ − κAp ′)f) = (v, f) ∀ f ∈ W 1,p ′

0 , Re κ < p−1.

This proves (i)−. Let λ ∈ C with Re λ > 0. Then we see from (3.15) that

(u,−(Tp ′ − κAp ′ + λ)f) = (v − λu, f) ∀ f ∈ W 1,p ′

0 .

Since −λ ∈ ρ(Tp ′ − κAp ′) (see (ii)+), it follows that −λ ∈ ρ((Tp ′ − κAp ′)∗)
and

−(Tp ′ − κAp ′)∗u − λu = Tmax
p (κ)u − λu, Re κ < p−1,

where ρ(T ) is the resolvent set of T . This proves the first half of (ii)− : λ ∈
ρ(T−

p (κ)). We can prove the second half of (ii)− by a direct computation.
Now we prove (iii)−. We see from (iii)+ that for Re κ ≤ 0, T+

p ′(κ) =
Tp ′ − κAp ′ is m-accretive in Xp ′ . Therefore (Tp ′ − κAp ′)∗ is also m-accretive
in Xp, that is, T−

p (κ) = −(Tp ′ − κAp ′)∗ is m-dissipative in Xp for Re κ ≤ 0.
It is not difficult to prove (3.11); compare with (3.7).

On the other hand, it follows from (3.3) and (3.8) that Sp − κAp is m-
accretive in Xp for Re(−κ) > p ′−1 (see Theorem 2.4(iii)), that is, for Re κ <
−p ′−1. In view of (3.13) we see from (iii)− that

(3.16) Sp − κAp = (Tp ′ − κAp ′)∗, Re κ < −p ′−1.

Since −(Sp − κAp) = Tmin
p (κ) (see Lemma 3.1(ii)), (iv)− follows from (3.14)

and (3.16). Therefore (v)− is clear from (3.8) (see Theorem 2.2(e)). ¤
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Remark 3.3. (a) We have

Tmax
p (κ) = Tmin

p (κ) for κ with Re κ < −p ′−1 or p−1 < Re κ.

Both T±
p (κ) are defined on the strip

(3.17) S(p ′, p) :=
{

κ;− 1
p ′ < Re κ <

1
p

}
,

where
Tmin

p (κ) = T+
p (κ) ⊂ T−

p (κ) = Tmax
p (κ);

in particular Tmin
p (0) = Tp ( −Sp = −(Tp ′)∗ = Tmax

p (0). Note that we obtain
the strip 0 < Re κ < 1 as the limit of p → 1 and the strip −1 < Re κ < 0 as
the limit of p → ∞.

(b) −T+
p (κ) generates a contraction semigroup for Re κ ≥ 0, and T−

p (κ)
does for Re κ ≤ 0. The semigroups generated by −T+

p (κ) and T−
p (κ) are

holomorphic in κ in the half-planes {κ; Re κ > 0} and {κ; Re κ < 0}, re-
spectively. To see this we can employ a recent result of Kantorovitz [3]. In
fact, {−T+

p (κ)} and {T−
p (κ)} have resolvent analyticity (in the sense of Kan-

torovitz) with respect to κ. Therefore the desired assertion follows from the
equivalence of semigroup analyticity and resolvent analyticity (see [3, Theo-
rem 1]). It appears that neither −T+

p (κ) nor T−
p (κ) generates a C0-semigroup

for other values of κ. The same question arises even if Lp(0,∞) is replaced
with Lp(0, 1). But the question in Lp(0, 1), 1 ≤ p < ∞, has been solved by
Arendt [1, Examples 3.3 and 3.5].

(c) The family {T−
p (κ);κ ∈ S(p ′, p)}, where S(p ′, p) is defined by (3.17), is

not holomorphic of type (A) or of any familiar type dealt with in [4], as is seen
from the behavior of its eigenfunctions x−κeλx. In fact, let κ, ν ∈ S(p ′, p).
Then x−κeλx does not belong to D(T−

p (ν)) for ν 6= κ. This implies that
D(T−

p (κ)) 6= D(T−
p (ν)) for κ, ν ∈ S(p ′, p) with κ 6= ν.

Remark 3.4. Dirac operators are typical examples of first-order differential
operators in (L2(RN ))4. But Theorems 2.2 and 2.4 (in which X is a Hilbert
space) do not yield satisfactory results (see [5], [6]).
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